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Abstract
By means of the Green function, the boundary value problem of a fractional
differential equation can be reduced to the equivalent integral equation. Recently,
this method has been used successfully to discuss the existence of the solution to the
boundary value problem of a nonlinear fractional differential equation. By applying
the nonlinear alternative of the Leray-Schauder type and the Krasnoselskii fixed point
theorem, we investigate the boundary value problem of a nonlinear impulsive
fractional differential equation, and we obtain two existence results for the solution.
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1 Introduction
Boundary value problems for nonlinear fractional differential equations have recently
been addressed by several researchers. The interest in the study of differential equations
of fractional order lies in the fact that fractional derivatives provide an excellent tool for
the description of memory and hereditary properties of various materials and processes
[–]. For some recent development on the topic, see [–] and the references therein.
Impulsive differential equations, which provide a natural description of observed evolu-

tion processes, are regarded as importantmathematical tools for the better understanding
of several real world problems in the applied sciences. The theory of impulsive differen-
tial equations of integer order has found extensive applications in realistic mathematical
modeling of a wide variety of practical situations and has emerged as an important area
of investigation in recent years. For the general theory and applications of impulsive dif-
ferential equations, we refer the reader to references [–]. The impulsive differential
equations of fractional order have also attracted considerable attention and a variety of
results can be found in [–] and the references therein.
In [], Ahmad et al. considered the following the impulsive fractional differential equa-

tions:

⎧⎪⎨
⎪⎩

cDqx(t) = f (t,x(t)), t ∈ J = [, ] \ {t, t, t, . . . , tp},
�x(tk) = Ik(x(t–k )), �x′(tk) = Jk(x(t–k )), tk ∈ (, ),k = , . . . ,p,
x() + x′() = , x() + x′() = ,
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where cDq is the Caputo fractional derivative. The results are based on the contraction
mapping principle and Krasnoselskii’s fixed point theorem.
In [], Tian et al. considered the following the impulsive fractional differential equa-

tions:

⎧⎪⎨
⎪⎩

cDqu(t) = f (t,u),  < t < , t �= tk ,k = , . . . ,p,  < q ≤ ,
�u(tk) = Ik(u(t–k )), �u′(tk) = Ik(u(t–k )), k = , . . . ,p,
u() + u′() = , u() + u′(ξ ) = , ξ ∈ (, ), ξ �= tk ,k = , . . . ,p.

The results are based on the contraction mapping principle and Schauder’s fixed point
theorem.
In [], Zhang et al. considered the following impulsive fractional differential equations:

⎧⎪⎨
⎪⎩

cDqy(t) = f (t, y), ∀t ∈ J = [,T], t �= tk ,k = , . . . ,m,  < q ≤ ,
�u(tk) = Ik(u(t–k )), �u′(tk) = Ik(u(t–k )), k = , . . . ,p,
y() = –y(T), y′() = –y′(T).

The results are based on the Altman fixed point theorem and Leray-Schauder fixed point
theorem.
On the other hand, the impulsive boundary value problems for nonlinear fractional dif-

ferential equations have not been addressed so extensively andmany aspects of these prob-
lems are yet to be explored. For example, we observed that in the above-mentioned work
[–], the authors all require that the nonlinear term f is bounded and continuous; if
the impulse functions Ik and Ik are bounded, it is easy to see that these conditions are
very strongly restrictive and difficult to satisfy in applications. Motivated by the above-
mentioned work [–], this article is mainly concerned with the existence of a solution
for the boundary value problems for the nonlinear impulsive fractional differential equa-
tions

⎧⎪⎨
⎪⎩

cDqu(t) = f (t,u(t)),  < q ≤ , t ∈ J ′,
�u(tk) = Ik(u(t–k )), �u′(tk) = Ik(u(t–k )), k = , . . . ,m,
au() – bu′() = x, cu() + du′() = x,

(.)

where cDq is the Caputo fractional derivative, a ≥ , b > , c ≥ , d > , δ = ac + ad +
bc �= , and x,x ∈ R. f ∈ C(I × R,R), Ik , Ik :∈ C(R,R), J = [, ],  = t < t < · · · < tm <
tm+ = , J ′ = J \ {t, t, . . . , tm}, �u(tk) = u(t+k ) – u(t–k ), u(t

+
k ) = limh→+ u(tk + h) and u(t–k ) =

limh→– u(tk +h) represent the right and left limits of u(t) at t = tk , k = , . . . ,m. �u′(tk) has
a similar meaning for u′(t).
Evidently, problem (.) not only includes the boundary value problems mentioned

above [] but also extends them to a much wider case. Our main tools are the nonlin-
ear alternative of Leray-Schauder type and the Krasnoselskii fixed point theorem. Some
recent results in [–] are generalized and significantly improved (see Remark .).
The remainder of this article is organized as follows. In Section , we provide some basic

definitions, preliminaries facts, and various lemmas which will be used throughout this
paper. In Section , we give two main results of problem (.). The last section is devoted
to an example illustrating the applicability of the imposed conditions.
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2 Preliminaries and lemmas
Let J = [, t], J = (t, t], . . . , Jp– = (tp–, tp], Jp = (tp, ], and let us introduce the spaces:
L(J ,R) denotes the Banach space of measurable functions u : J 	→ R which are Bochner
integrable, equipped with the norm ‖u‖L :=

∫
J ‖u(t)‖dt; PC(J ,R) = {u : J → R : u ∈

C(Jk),k = , , . . . ,m, and u(t+k ) exists,k = , . . . ,m} is a Banach spacewith the norm ‖u‖PC :=
supt∈J ‖u(t)‖, and PC(J ,R) = {u : J → R : u ∈ C(Jk),k = , , . . . ,m, and u(t+k ),u′(t+k ) exists,
k = , . . . ,m} is a Banach space with the norm ‖u‖PC :=maxt∈J{‖u‖,‖u′‖}.

Definition . [] The Riemann-Liouville fractional integral of order r for a continuous
function h is defined as

Irh(t) =
∫ t



(t – s)r–

�(r)
h(s)ds, r > ,

provided the integral exists.

Definition . [] For an at least n-times continuously differentiable function h : [,
∞) → R, the Caputo derivative of fractional order r is defined as

cDrh(t) =


�(n – r)

∫ t


(t – s)n–r–h(n)(s)ds, n –  < r < n,n = [r] + ,

where [r] denotes the integer part of the real number r.

Lemma . Let r > , h ∈ C[, ] ∩ L(, ), then the differential equation cDrh(t) =  has
solutions

h(t) = c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , , . . . ,n – , n = [r] + .

Lemma . Assume that h ∈ C[, ] ∩ L(, ) with a derivative of order r that belongs to
C[, ]∩ L(, ). Then

Ir+
cDr

+h(t) = h(t) + c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , , . . . ,n – , n = [r] + .

Lemma. [] For a given h ∈ C[, ], a function u is a solution of the following impulsive
boundary value problem:

⎧⎪⎨
⎪⎩

cDqu(t) = h(t),  < q ≤ , t ∈ J ′,
�u(tk) = Ik(u(t–k )), �u′(tk) = Ik(u(t–k )), k = , . . . ,m,
au() – bu′() = x, cu() + du′() = x,

(.)
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if and only if u is a solution of the impulsive fractional integral equation

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


�(q)

∫ t
 (t – s)q–h(s)ds +C +Ct, if t ∈ J,


�(q)

∫ t
tk
(t – s)q–h(s)ds + 

�(q)
∑k

i=
∫ ti
ti–

(ti – s)q–h(s)ds

+ 
�(q–)

∑k
i=(t – tk)

∫ ti
ti–

(ti – s)q–h(s)ds

+ 
�(q–)

∑k–
i= (tk – ti)

∫ ti
ti–

(ti – s)q–h(s)ds

+
∑k

i= Ii(y(t–i )) +
∑k

i=(t – tk)Ii(u(t–i ))

+
∑k–

i= (tk – ti)Ii(u(t–i )) +C +Ct, if t ∈ Jk ,

(.)

where

C = –

{m+∑
i=

bc
δ�(q)

∫ ti

ti–
(ti – s)q–h(s)ds +

m∑
i=

bc( – tm)
δ�(q – )

∫ ti

ti–
(ti – s)q–h(s)ds

+
m–∑
i=

bc(tm – ti)
δ�(q – )

∫ ti

ti–
(ti – s)q–h(s)ds +

m+∑
i=

bd
δ�(q – )

∫ ti

ti–
(ti – s)q–h(s)ds

+
m∑
i=

bc
δ
Ii
(
u
(
t–i

))
+

m∑
i=

bc( – tp)
δ

Ii
(
u
(
t–i

))
+

m–∑
i=

bc(tp – ti)
δ

Ii
(
u
(
t–i

))

+
m∑
i=

bd
δ
Ii
(
u
(
t–i

))
+
(bc – δ)x – abx

aδ

}
,

C = –

{m+∑
i=

ac
δ�(q)

∫ ti

ti–
(ti – s)q–h(s)ds +

m∑
i=

ac( – tm)
δ�(q – )

∫ ti

ti–
(ti – s)q–h(s)ds

+
m–∑
i=

ac(tm – ti)
δ�(q – )

∫ ti

ti–
(ti – s)q–h(s)ds +

m+∑
i=

ad
δ�(q – )

∫ ti

ti–
(ti – s)q–h(s)ds

+
m∑
i=

ac
δ
Ii
(
u
(
t–i

))
+

m∑
i=

ac( – tp)
δ

Ii
(
u
(
t–i

))
+

m–∑
i=

ac(tp – ti)
δ

Ii
(
u
(
t–i

))

+
m∑
i=

ad
δ
Ii
(
u
(
t–i

))
+
cx – ax

aδ

}
.

Nowwe state somewell-known fixed point theoremswhich are needed to prove the existence
of solutions for equation (.).

Lemma . [] (the nonlinear alternative of Leray-Schauder) Let E be a Banach space,C
a convex subset of E,U an open subset of C and  ∈U . Suppose F :U → C (here U denotes
the closure of U in C) is a continuous, compact map. Then either
(A) F has a fixed point in U ; or
(A) there exists u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Lemma . [] (Krasnoselskii fixed point theorem) Let D be a closed convex and
nonempty subset of a Banach space X. Let A, A be the operators such that

(i) Ax +Ay ∈D whenever x, y ∈D;
(ii) A is completely continuous;

http://www.advancesindifferenceequations.com/content/2014/1/12
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(iii) A is a contraction mapping.
Then there exists z ∈D such that z =Az +Az.

3 Main results
Define an operatorA : PC(J ,R) → PC(J ,R) as

(Au)(t) =


�(q)

∫ t

tk
(t – s)q–f

(
s,u(s)

)
ds +


�(q)

k∑
i=

∫ ti

ti–
(ti – s)q–f

(
s,u(s)

)
ds

+


�(q – )

k∑
i=

(t – tk)
∫ ti

ti–
(ti – s)q–f

(
s,u(s)

)
ds

+


�(q – )

k–∑
i=

(tk – ti)
∫ ti

ti–
(ti – s)q–f

(
s,u(s)

)
ds +

k∑
i=

Ii
(
u
(
t–i

))

+
k∑
i=

(t – tk)Ii
(
u
(
t–i

))
+

k–∑
i=

(tk – ti)Ii
(
u
(
t–i

))
+M +Mt, (.)

where

M = –

{m+∑
i=

∫ ti

ti–

bc(ti – s)q–

δ�(q)
f
(
s,u(s)

)
ds +

m∑
i=

∫ ti

ti–

bc( – tm)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m–∑
i=

∫ ti

ti–

bc(tm – ti)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds +

m+∑
i=

∫ ti

ti–

bd(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m∑
i=

bc
δ
Ii
(
u
(
t–i

))
+

m∑
i=

bc( – tp)
δ

Ii
(
u
(
t–i

))
+

m–∑
i=

bc(tp – ti)
δ

Ii
(
u
(
t–i

))

+
m∑
i=

bd
δ
Ii
(
u
(
t–i

))
+
(bc – δ)x – abx

aδ

}
, (.)

M = –

{m+∑
i=

∫ ti

ti–

ac(ti – s)q–

δ�(q)
f
(
s,u(s)

)
ds +

m∑
i=

∫ ti

ti–

ac( – tm)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m–∑
i=

∫ ti

ti–

ac(tm – ti)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds +

m+∑
i=

∫ ti

ti–

ad(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m∑
i=

ac
δ
Ii
(
u
(
t–i

))
+

m∑
i=

ac( – tp)
δ

Ii
(
u
(
t–i

))
+

m–∑
i=

bc(tp – ti)
δ

Ii
(
u
(
t–i

))

+
m∑
i=

ad
δ
Ii
(
u
(
t–i

))
+
cx – ax

aδ

}
. (.)

Lemma . [] Let f ∈ C(I ×R,R), Ik , Ik : C(R,R), then A : PC(J ,R) → PC(J ,R) is com-
pletely continuous.

Theorem . Assume that the following conditions hold.
(H) The function f ∈ C(I ×R,R), Ik , Ik :R →R is continuous.

http://www.advancesindifferenceequations.com/content/2014/1/12
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(H) There exist φf ∈ C(J , [, +∞)) and ϕ : [, +∞)→ [, +∞) continuous and
nondecreasing such that

∣∣f (t,u)∣∣ ≤ φf (t)ϕ
(|u|), (t,u) ∈ J ×R.

(H) There exist ϕ
,ϕ
 : [, +∞)→ [, +∞) continuous and nondecreasing such that

∣∣Ik(u)∣∣ ≤ ϕ

(|u|), ∣∣Ik(u)∣∣ ≤ ϕ


(|u|), u ∈R.

(H) There exists a number M >  such that

M
Aφ

f ϕ(M) + Bϕ
(M) +Cϕ
(M) +D
> , (.)

where

A =
(m + )[c(a + b) + δ]

δ�(q + )
+
(m – )[c(a + b) + δ] + (m + )(a + b)d

δ�(q)
,

B =
m[c(a + b) + δ]

δ
,

C =
(m – )[c(a + b) + δ] +md(a + b)

δ
, D =

(c + d)|x| + (a + b)|x|
δ

.

Then problem (.) has at least one solution on J .

Proof Consider the operatorA defined by (.). By Lemma ., it can easily be shown that
A is continuous and completely continuous. For ≤ λ ≤ , let u be such that for each t ∈ J
we have u(t) = λ(Au)(t). Then from (H)-(H) we have for each t ∈ J ,

|M| ≤
m+∑
i=

∫ ti

ti–

bc(ti – s)q–

δ�(q)
∣∣f (s,u(s))∣∣ds + m∑

i=

∫ ti

ti–

bc( – tm)(ti – s)q–

δ�(q – )
∣∣f (s,u(s))∣∣ds

+
m–∑
i=

∫ ti

ti–

bc(tm – ti)(ti – s)q–

δ�(q – )
∣∣f (s,u(s))∣∣ds

+
m+∑
i=

∫ ti

ti–

bd(ti – s)q–

δ�(q – )
∣∣f (s,u(s))∣∣ds

+
m∑
i=

bc
δ

∣∣Ii(u(ti))∣∣ + m∑
i=

bc( – tp)
δ

∣∣Ii(u(ti))∣∣ + m–∑
i=

bc(tp – ti)
δ

∣∣Ii(u(ti))∣∣

+
m∑
i=

bd
δ

∣∣Ii(u(ti))∣∣ + (c + d)|x| + b|x|
δ

≤
m+∑
i=

∫ ti

ti–

bc(ti – s)q–

δ�(q)
φf (s)ϕ

(∣∣u(s)∣∣)ds + m∑
i=

bc
δ

ϕ

(∣∣u(ti)∣∣)

+
m∑
i=

∫ ti

ti–

bc( – tm)(ti – s)q–

δ�(q – )
φf (s)ϕ

(∣∣u(s)∣∣)ds + m∑
i=

bc( – tp)
δ

ϕ

(∣∣u(ti)∣∣)

http://www.advancesindifferenceequations.com/content/2014/1/12


Zhou and Liu Advances in Difference Equations 2014, 2014:12 Page 7 of 12
http://www.advancesindifferenceequations.com/content/2014/1/12

+
m–∑
i=

∫ ti

ti–

bc(tm – ti)(ti – s)q–

δ�(q – )
φf (s)ϕ

(∣∣u(s)∣∣)ds + m–∑
i=

bc(tp – ti)
δ

ϕ

(∣∣u(ti)∣∣)

+
m+∑
i=

∫ ti

ti–

bd(ti – s)q–

δ�(q – )
φf (s)ϕ

(∣∣u(s)∣∣)ds + m∑
i=

bd
δ

ϕ

(∣∣u(ti)∣∣)

+
(c + d)|x| + b|x|

δ

≤
[
(m + )bc
δ�(q + )

+
mbc
δ�(q)

+
(m – )bc

δ�(q)
+
(m + )bd

δ�(q)

]
φ
f ϕ

(‖u‖∞
)
+
mbc
δ

ϕ

(‖u‖∞

)

+
[
mbc
δ

+
(m – )bc

δ
+
mbd

δ

]
ϕ


(‖u‖∞
)
+
(c + d)|x| + b|x|

δ
. (.)

Similarly, we have

|M| ≤
m+∑
i=

∫ ti

ti–

ac(ti – s)q–

δ�(q)
φf (s)ϕ

(∣∣u(s)∣∣)ds + m∑
i=

bc
δ

ϕ

(∣∣u(ti)∣∣)

+
m∑
i=

∫ ti

ti–

ac( – tm)(ti – s)q–

δ�(q – )
φf (s)ϕ

(∣∣u(s)∣∣)ds + m∑
i=

ac( – tp)
δ

ϕ

(∣∣u(ti)∣∣)

+
m–∑
i=

∫ ti

ti–

ac(tm – ti)(ti – s)q–

δ�(q – )
φf (s)ϕ

(∣∣u(s)∣∣)ds + m–∑
i=

ac(tp – ti)
δ

ϕ

(∣∣u(ti)∣∣)

+
m+∑
i=

∫ ti

ti–

ad(ti – s)q–

δ�(q – )
φf (s)ϕ

(∣∣u(s)∣∣)ds + m∑
i=

ad
δ

ϕ

(∣∣u(ti)∣∣) + c|x| + a|x|

δ

≤
[
(m + )ac
δ�(q + )

+
mac
δ�(q)

+
(m – )ac

δ�(q)
+
(m + )ad

δ�(q)

]
φ
f ϕ

(‖u‖∞
)
+
mac
δ

ϕ

(‖u‖∞

)

+
[
mac
δ

+
(m – )ac

δ
+
mbd

δ

]
ϕ


(‖u‖∞
)
+
c|x| + a|x|

δ
. (.)

Therefore

∣∣u(t)∣∣ ≤ 
�(q)

∫ t

tk
(t – s)q–

∣∣f (s,u(s))∣∣ds + 
�(q)

k∑
i=

∫ ti

ti–
(ti – s)q–

∣∣f (s,u(s))∣∣ds

+


�(q – )

k∑
i=

(t – tk)
∫ ti

ti–
(ti – s)q–

∣∣f (s,u(s))∣∣ds

+


�(q – )

k–∑
i=

(tk – ti)
∫ ti

ti–
(ti – s)q–

∣∣f (s,u(s))∣∣ds + k∑
i=

∣∣Ii(u(
t–i

))∣∣

+
k∑
i=

(t – tk)
∣∣Ii(u(

t–i
))∣∣ + k–∑

i=

(tk – ti)
∣∣Ii(u(

t–i
))∣∣ + |M| + |M|

≤
[∫ t

tk

(t – s)q–

�(q)
ds +

m∑
i=

∫ ti

ti–

(ti – s)q–

�(q)
ds + |M| + |M|

+
m∑
i=

∫ ti

ti–

(t – tk)(ti – s)q–

�(q – )
ds +

m–∑
i=

∫ ti

ti–

(tk – ti)(ti – s)q–

�(q – )
ds

]
φ
f ϕ

(‖u‖∞
)

http://www.advancesindifferenceequations.com/content/2014/1/12
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+
m∑
i=

ϕ

(∣∣u(tk)∣∣) + m∑

i=

(t – tk)ϕ

(∣∣u(tk)∣∣) + m–∑

i=

(tk – ti)ϕ

(∣∣u(tk)∣∣)

≤ (m + )[c(a + b) + δ]
δ�(q + )

φ
f ϕ

(‖u‖∞
)

+
(m – )[c(a + b) + δ] + (m + )(a + b)d

δ�(q)
φ
f ϕ

(‖u‖∞
)

+
m[c(a + b) + δ]

δ
ϕ


(‖u‖∞
)
+
(m – )[c(a + b) + δ] +md(a + b)

δ
ϕ


(‖u‖∞
)

+
(c + d)|x| + (a + b)|x|

δ
, (.)

which implies that

‖u‖∞
Aφ

f ϕ(‖u‖∞) + Bϕ
(‖u‖∞) +Cϕ
(‖u‖∞) +D
≤ . (.)

Then by the condition (.) there existsM such that ‖u‖∞ �=M.
Let

U =
{
u ∈ PC(J ,R) : ‖u‖∞ <M

}
.

The operator A : U → PC(J ,R) is continuous and completely continuous. From the
choice of U , there is no u ∈ ∂U such that u = λA(u) for some λ ∈ [, ]. As a consequence
of the nonlinear alternative of Leray-Schauder type [] we deduce thatA has a fixed point
u in U which is a solution of problem (.). This completes the proof. �

Remark . Compared with Theorem . in [–], our Theorem . does not need
conditions |f (t,u)| ≤ L, |Ik(u)| ≤ L, |Ik(u)| ≤ L, clearly, these conditions are very strong.
Thus, the results of the above-mentioned works are generalized and significantly im-
proved.

Theorem . Let f ∈ C(I ×R,R), Ik , Ik : C(R,R), and they satisfy
(H) there exists a positive constant γ > , such that

∣∣f (t,u) – f (t, v)
∣∣ ≤ γ|u – v|, ∀t ∈ J ,u, v ∈ R; (.)

(H) there exist positive constants γ,γ,γ,γ > , for ∀u, v ∈R, such that

∣∣Ik(u) – Ik(v)
∣∣ ≤ γ|u – v|, ∣∣Ik(u) – Ik(v)

∣∣ ≤ γ|u – v|,∣∣Ik(u)∣∣ ≤ γ,
∣∣Ik(u)∣∣ ≤ γ, k = , . . . ,m;

(.)

(H) for (t,x) ∈ J ×R and μ ∈ PC(J ,R+), one has

∣∣f (t,x(t))∣∣ ≤ μ(t),

http://www.advancesindifferenceequations.com/content/2014/1/12
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and

λ :=
m[c(a + b) + δ]

δ
γ +

(m – )[c(a + b) + δ] +md(a + b)
δ

γ

+
(c + d)|x| + (a + b)|x|

δ
< . (.)

Then problem (.) has at least one solution.

Proof Let us fix

r ≥
{
(m + )[c(a + b) + δ]

δ�(q + )
+
(m – )[c(a + b) + δ] + (m + )(a + b)d

δ�(q)

}
‖μ‖PC

+
m[c(a + b) + δ]

δ
γ +

(m – )[c(a + b) + δ] +md(a + b)
δ

γ

+
(c + d)|x| + (a + b)|x|

δ
.

Let C = PC(J ,R), and consider Br = {u ∈ C : ‖u‖ ≤ r}; then Br is a bounded, closed,
convex set in C.
Now define the operators A and A on Br as

(Au)(t)

=


�(q)

∫ t

tk
(t – s)q–f

(
s,u(s)

)
ds +


�(q)

m∑
i=

∫ ti

ti–
(ti – s)q–f

(
s,u(s)

)
ds

+


�(q – )

m∑
i=

(t – tk)
∫ ti

ti–
(ti – s)q–f

(
s,u(s)

)
ds

+


�(q – )

m–∑
i=

(tk – ti)
∫ ti

ti–
(ti – s)q–f

(
s,u(s)

)
ds

–

{m+∑
i=

∫ ti

ti–

bc(ti – s)q–

δ�(q)
f
(
s,u(s)

)
ds +

m∑
i=

∫ ti

ti–

bc( – tm)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m–∑
i=

∫ ti

ti–

bc(tm – ti)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m+∑
i=

∫ ti

ti–

bd(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

}

–

{m+∑
i=

∫ ti

ti–

ac(ti – s)q–

δ�(q)
f
(
s,u(s)

)
ds +

m∑
i=

∫ ti

ti–

ac( – tm)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m–∑
i=

∫ ti

ti–

ac(tm – ti)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

+
m+∑
i=

∫ ti

ti–

ad(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

}
t (.)

http://www.advancesindifferenceequations.com/content/2014/1/12
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and

(Au)(t) =
m∑
i=

Ii
(
u
(
t–i

))
+

m∑
i=

(t – tk)Ii
(
u
(
t–i

))
+

m–∑
i=

(tk – ti)Ii
(
u
(
t–i

))

–

{ m∑
i=

bc
δ
Ii
(
u
(
t–i

))
+

m∑
i=

bc( – tp)
δ

Ii
(
u
(
t–i

))

+
m–∑
i=

bc(tp – ti)
δ

Ii
(
u
(
t–i

))
+

m∑
i=

bd
δ
Ii
(
u
(
t–i

))
+
(bc – δ)x – abx

aδ

}

–

{ m∑
i=

ac
δ
Ii
(
u
(
t–i

))
+

m∑
i=

ac( – tp)
δ

Ii
(
u
(
t–i

))

+
m–∑
i=

bc(tp – ti)
δ

Ii
(
u
(
t–i

))
+

m∑
i=

ad
δ
Ii
(
u
(
t–i

))
+
cx – ax

aδ

}
t. (.)

For u, v ∈ Br , by (H), we find that

‖Au +Av‖

≤
{
(m + )[c(a + b) + δ]

δ�(q + )
+
(m – )[c(a + b) + δ] + (m + )(a + b)d

δ�(q)

}
‖μ‖PC

+
m[c(a + b) + δ]

δ
γ +

(m – )[c(a + b) + δ] +md(a + b)
δ

γ

+
(c + d)|x| + (a + b)|x|

δ

≤ r.

Thus, ‖Au +Av‖ ≤ r, so Au +Av ∈ Br .
For ∀u, v ∈ Br and for each t ∈ J , it follows from the assumption (H) that A is a con-

traction mapping for λ < . Continuity of f implies that the operator A is continuous.
Also, A is uniformly bounded on Br . In fact,

‖Ax‖ ≤
{
(m + )[c(a + b) + δ]

δ�(q + )

+
(m – )[c(a + b) + δ] + (m + )(a + b)d

δ�(q)

}
‖μ‖PC .

On the other hand, for ∀t ∈ Jk , ≤ k ≤m, we have

∣∣(Au)′(t)
∣∣

≤ 
�(q – )

∫ t

tk
(t – s)q–

∣∣f (s,u(s))∣∣ds + 
�(q – )

m∑
i=

∫ ti

ti–
(ti – s)q–

∣∣f (s,u(s))∣∣ds

+

∣∣∣∣∣
{m+∑

i=

∫ ti

ti–

ac(ti – s)q–

δ�(q)
f
(
s,u(s)

)
ds +

m∑
i=

∫ ti

ti–

ac( – tm)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

http://www.advancesindifferenceequations.com/content/2014/1/12
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+
m–∑
i=

∫ ti

ti–

ac(tm – ti)(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds +

m+∑
i=

∫ ti

ti–

ad(ti – s)q–

δ�(q – )
f
(
s,u(s)

)
ds

}∣∣∣∣∣
≤

{
(m + )ac
δ�(q + )

+
(m – )ac + (m + )(ad + δ)

δ�(q)

}
‖μ‖PC :=M. (.)

If t, t ∈ Jk , and t < t, ≤ k ≤m, then

∣∣(Au)(t) – (Au)(t)
∣∣ ≤

∫ t

t

∣∣(Au)′(s)
∣∣ds≤M(t – t).

Thus, A is equicontinuous. Using the fact that f maps bounded subsets into relatively
compact subsets, it follows thatA is relatively compact onBr . Hence, by theAscoli-Arzelà
theorem,A is compact on Br . Thus all the assumptions of Lemma . are satisfied. Hence,
by the conclusion of Lemma ., the impulsive fractional boundary value problem (.) has
at least one solution on J . �

In the sequel we present an example which illustrates Theorem ..

4 An example
Example . Consider the following boundary value problem:

⎧⎪⎨
⎪⎩

cDq
+u(t) =

sin t
(t+)

|u(t)|
+|u(t)| ,  ≤ t ≤ , t �= 

 ,
�u(  ) =


(t+)

|u(t)|
+|u(t)| , �u′(  ) =


(t+)

|u(t)|
+|u(t)| ,

u() – u′() = ., u() + u′() = .,
(.)

where q = 
 , a = , b = , c = , d = , m = , δ = ac + ad + bc = . Clearly γ = 

 , γ =

 ,

γ = 
 , γ =


 , γ =


 , x = ., x = ..

Moreover, we have

λ :=
m[c(a + b) + δ]

δ
γ +

(m – )[c(a + b) + δ] +md(a + b)
δ

γ

+
(c + d)|x| + (a + b)|x|

δ
≈ . < . (.)

Thus, all the assumptions of Theorem . are satisfied. Hence, by the conclusion of The-
orem ., the impulsive fractional boundary value problem (.) has at least one solution
on J .
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