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Abstract
In this paper, we discuss the normality of meromorphic functions which involves
differential polynomial sharing values. We obtain two results: Let k be a positive
integer, b ( �= 0) be a complex number, and h(z) be a polynomial with degree at least 2,
and H(f , f ′, . . . , f (k)) be a differential polynomial with �

γ
|H < k + 1. Let F be a family of

meromorphic functions defined in D, all of whose zeros have multiplicity at least k + 1.
If h(z) – 1 has at least two distinct zeros, h(f (k)) + H(f , f ′, . . . , f (k)) – 1 has at most one
distinct zero in D for each f ∈ F , then F is normal in D. If h(z) – b has at least two
distinct zeros and for each pair of functions f and g in F , h(f (k)) + H(f , f ′, . . . , f (k)) and
h(g(k)) + H(g,g′, . . . ,g(k)) share b in D, then F is normal in D, too. Two examples show
that a condition in our results is necessary and our results improve Fang and Hong’s,
and Zeng’s corresponding results.
MSC: Primary 30D35; secondary 34A05

Keywords: differential polynomial; meromorphic functions; shared values; normal
families

1 Introduction andmain results
Let D be a domain in C, and F be a family of meromorphic functions defined in the do-
main D. F is said to be normal in D, in the sense of Montel, if for every sequence {fn} ⊆F
contains a subsequence {fnj} such that fnj converges spherically uniformly on compact sub-
sets of D.
F is said to be normal at a point z ∈ D if there exists a neighborhood of z in which F

is normal. It is well known that F is normal in a domain D if and only if it is normal at
each of its points.
Let f and g be meromorphic functions defined in a domain D, and a and b be complex

numbers. If g(z) = b whenever f (z) = a, we write f (z) = a ⇒ g(z) = b. If f (z) = a ⇒ g(z) = b
and g(z) = b ⇒ f (z) = a, we write f (z) = a⇐⇒ g(z) = b; If f (z) = a ⇐⇒ g(z) = a, we say that
f and g share the value a in D.
Let n,n, . . . ,nk be non-negative integers and one of them nonzero at least, and set

M
(
f , f ′, . . . , f (k)

)
= f n

(
f ′)n · · · (f (k))nk ,

γM = n + n + n + · · · + nk ,

�M = n + n + n + · · · + (k + )nk .
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M(f , f ′, . . . , f (k)) is called the differential monomial of f , γM the degree ofM(f , f ′, . . . , f (k))
and �M the weight ofM(f , f ′, . . . , f (k)).
Let M(f , f ′, . . . , f (k)),M(f , f ′, . . . , f (k)), . . . ,Mm(f , f ′, . . . , f (k)) be differential monomials

of f , and let a(z),a(z), . . . ,am(z) be analytic in D. Set

H
(
f , f ′, . . . , f (k)

)
= a(z)M

(
f , f ′, . . . , f (k)

)
+ · · · + am(z)Mm

(
f , f ′, . . . , f (k)

)
,

γH =max{γM ,γM , . . . ,γMm},
�H =max{�M ,�M , . . . ,�Mm}.

H(f , f ′, . . . , f (k)) is called a differential polynomial of f , γH the degree of H(f , f ′, . . . , f (k))
and �H the weight of H(f , f ′, . . . , f (k)). If γM = γM = · · · = γMm = t, then H(f , f ′, . . . , f (k)) is
called a homogeneous differential polynomial of degree t. Set

�

γ

∣∣∣
H
=max

{
�M

γM
,
�M

γM
, . . . ,

�Mm

γMm

}
.

The following theorem was proved by Fang and Hong [].

Theorem . [] Let F be a family of meromorphic functions defined in D, k and q (≥ )
be two positive integers, and H(f , f ′, . . . , f (k)) be a differential polynomial with �

γ
|H < k + .

If the zeros of f (z) are of multiplicity at least k +  and (f (k))q +H(f , f ′, . . . , f (k)) �=  for each
f ∈F , then F is normal in D.

It is natural to ask whether the condition in Theorem . that (f (k))q +H(f , f ′, . . . , f (k)) �= 
can be relaxed. In this paper we investigate this problem and prove the following result.

Theorem . Let F be a family of meromorphic functions defined in D, k be a positive
integer, let h(z) be a polynomial with degree at least , and H(f , f ′, . . . , f (k)) be a differential
polynomial with �

γ
|H < k + . If h(z) –  has at least two distinct zeros, the zeros of f (z) are

of multiplicity at least k +  and h(f (k)) +H(f , f ′, . . . , f (k)) –  has at most one distinct zero
in D for each f ∈F , then F is normal in D.

By the idea of shared values, very recently, Zeng [] proved the following theorem.

Theorem . [] Let k and q (≥ ) be two positive integers, b �=  be a complex number,
and let H(f , f ′, . . . , f (k)) be a differential polynomial with �

γ
|H < k + . Let F be a family of

meromorphic functions defined in D, all of whose zeros have multiplicity at least k + . If
for each pair of functions f and g inF , (f (k))q +H(f , f ′, . . . , f (k)) and (g(k))q +H(g, g ′, . . . , g(k))
share b in D, then F is normal in D.

It is natural to ask whether Theorem . can be improved. In this paper, we study this
problem and obtain the following theorem.

Theorem. Let k be a positive integer, b ( �= ) be a complex number, h(z) be a polynomial,
and let H(f , f ′, . . . , f (k)) be a differential polynomial with �

γ
|H < k + . Let F be a family of

meromorphic functions defined in D, all of whose zeros have multiplicity at least k + . If
h(z) – b has at least two distinct zeros and for each pair of functions f and g in F , h(f (k)) +
H(f , f ′, . . . , f (k)) and h(g(k)) +H(g, g ′, . . . , g(k)) share b in D, then F is normal in D.
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Example . Let D = {z : |z| < }, h(z) = zk+ +  and F := {fn(z) = nzk+}. Then

h
(
f (k)n (z)

)
+ fn(z) = n

[
nk

(
(k + )!

)k+ + 
]
zk+ + .

We can see that �
γ
|H =  < k + , h(f (k)n (z)) + fn(z) –  has only one distinct zero in D for

each function fn in F , and h(f (k)n (z)) + fn(z) and h(f (k)m (z)) + fm(z) share  in D for each pair
of functions fn and fm in F . On the other hand, fj() = , fj( 

j


k+
) = , for any j ∈ N. This

implies that the family F fails to be equicontinuous at , and thus F is not normal at .

Remark . This example shows that h(z) –  to have at least two distinct zeros (h(z) – b
to have at least two distinct zeros) is necessary in Theorem . (Theorem .).

Example . Let D = {z : |z| < }, h(z) = zk+ + zk +  and F := {fn(z) = zk+}. Then

h
(
f (k)n (z)

)
–

[
(k + )!

]k+fn(z) + f ′
n(z) =

[(
(k + )!

)k + k + 
]
zk + .

We can see that �
γ
|H =  < k +  if k ≥ , and for each pair of functions fn and fm in F ,

h(f (k)n (z))– [(k +)!]k+fn(z)+ f ′
n(z) and h(f

(k)
m (z))– [(k+)!]k+fm(z)+ f ′

m(z) share . Therefore,
F is normal in D by our Theorem ..

Remark . From this example we also know that h(f (k)n (z))–[(k+)!]k+fn(z)+ f ′
n(z)– has

only one solution inD for each fn inF . The case of shared b includes the case of �= b, that is
to say, Theorem . is a generalization of Theorem . and Theorem . is a generalization
of Theorem ..

2 Preliminary lemmas
In order to prove our results, we need the following lemmas. The first one is Zalcman’s
Theorem.

Lemma . [] Let k ∈N+, let F be a family of functions meromorphic on the unit disc �,
all of whose zeros have multiplicity at least k, and suppose that there exists A ≥  such
that |f (k)(z)| ≤ A whenever f (z) = . Then if F is not normal at z, there exist, for each
 ≤ α ≤ k,
(a) functions fn ∈F ;
(b) points zn ∈ �, zn → z, and
(c) positive numbers ρn → +

such that gn(ζ ) = ρ–α
n fn(zn + ρnζ ) → g(ζ ) locally uniformly with respect to the spherical

metric, where g is a nonconstant meromorphic function on C, all of whose zeros have mul-
tiplicity at least k, such that g#(ζ ) ≤ g#() = kA + . In particular, g has order at most .

Here g#(z) denotes the spherical derivative

g#(z) =
|g ′(z)|

 + |g(z)| .

Lemma . [] Let f (z) = anzn + an–zn– + · · · + a + q(z)/p(z), where a,a, . . . ,an are
constants with an �= , and q and p are two co-prime polynomials, neither of which vanishes

http://www.advancesindifferenceequations.com/content/2014/1/120
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identically, with degq < degp, and let k be a positive integer and b a nonzero complex
number. If f (k) �= b, and the zeros of f all have multiplicity at least k + , then

f (z) =
b(z – d)k+

k!(z – c)
,

where c and d are distinct complex numbers.

Lemma . Let g be a nonconstant meromorphic function, and h(z) be a polynomial. If
h(z) has at least two distinct zeros and all zeros of g have multiplicity at least k + , then
h(g(k)(ξ )) has at least two distinct zeros.

Proof Case . If h(g(k)(ξ )) has only one zero α, then h(g(k)(α)) = , and ξ �= α, h(g(k)(ξ )) �= .
Suppose that di (i = , ) are two distinct zeros of h(z).Without loss of generality, wemay

assume that g(k)(α) = d, then g(k)(ξ ) �= d for ξ �= α.
Firstly, we will show that g(ξ ) is not a transcendental meromorphic function. By Nevan-

linna Theory, we have

T
(
r, g(k)

) ≤ N
(
r, g(k)

)
+N

(
r,


g(k) – d

)
+N

(
r,


g(k) – d

)
+ S

(
r, g(k)

)

≤ 
k + 

N
(
r, g(k)

)
+O(log r) + S

(
r, g(k)

)

≤ 
k + 

T
(
r, g(k)

)
+O(log r) + S

(
r, g(k)

)
.

Hence, we get T(r, g(k)) =O(log r) + S(r, g(k)), it follows that g(ξ ) is not a transcendental
meromorphic function.
If g(ξ ) is a polynomial, then

h
(
g(k)(ξ )

)
= h

[
d + c(ξ – α)n

]
= (ξ – α)nQ(ξ ),

where Q is a polynomial such that Q(α) �=  and the degree of Q is not less than . Thus
there exists an α �= α, such that Q(α) = . That is to say, there exists an α �= α, such that
h(g(k)(α)) = , which is a contradiction.
Therefore g(ξ ) is rational but not a polynomial. Under the conditions of Lemma . on

the rational functions g , we have

g(ξ ) =
d(ξ – d)k+

k!(ξ – c)
,

where c and d are distinct complex numbers, d �= , and then

g(k) = d +
A

(ξ – c)k+
,

where A �=  is a complex number.
Hence g(k)(ξ ) = d has k +  distinct zeros, which contradicts g(k)(ξ ) = d having only the

zero ξ = α.
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Case . h(g(k)(ξ )) �= . Since degh≥ , by Nevanlinna Theory once more, we have

T
(
r, g(k)

) ≤ N
(
r, g(k)

)
+N

(
r,


g(k) – d

)
+N

(
r,


g(k) – d

)
+ S

(
r, g(k)

)

≤ 
k + 

N
(
r, g(k)

)
+ S

(
r, g(k)

)

≤ 
k + 

T
(
r, g(k)

)
+ S

(
r, g(k)

)
,

where di (i = , ) are two distinct zeros of h(z). Hence, we get T(r, g(k)) = S(r, g(k)), and it
follows that g(k) is a constant. This together with the fact that the zeros of g have multi-
plicity at least k +  shows that g is a constant, a contradiction. �

3 Proofs of theorems

Proof of Theorem . We show that F is normal in D. Otherwise, there exists at least
one point z ∈ D such that F is not normal at z. Then by Lemma ., we can find a
subsequence of F , which we may denote by {fn}, zn ∈ �, zn → z and ρn → + such that
gn(ξ ) = ρ–k

n fn(zn + ρnξ ) converges local uniformly with respect to the spherical metric to
a nonconstant meromorphic function g on C, all of whose zeros have multiplicity at least
k + .
It is easily seen that

H
(
fn, f ′

n, . . . , f
(k)
n

)
(zn + ρnξ )

=
m∑
i=

ai(zn + ρnξ )ρ
(k+)γMi–�Mi
n Mi

(
gn, g ′

n, . . . , g
(k)
n

)
(ξ ).

Noting that all ai(z) (i = , , . . . ,m) are analytic on D implies

∣∣ai(zn + ρnξ )
∣∣ ≤M

(
 + r


,ai(z)
)
< ∞

for sufficiently large n, we deduce from �
γ
|H < k +  that

m∑
i=

ai(zn + ρnξ )ρ
(k+)γMi–�Mi
n Mi

(
gn, g ′

n, . . . , g
(k)
n

)
(ξ )

converges uniformly to  on C.
Thus we find that

h
(
g(k)n (ξ )

)
+

m∑
i=

ai(zn + ρnξ )ρ
(k+)γMi–�Mi
n Mi

(
gn, g ′

n, . . . , g
(k)
n

)
(ξ ) – 

converges local uniformly to h(g(k)(ξ )) –  on C.
Hence, by Hurwitz’s Theorem, the hypothesis of the theorem, and Lemma ., we see

that h(g(k)(ξ ))≡  or h(g(k)(ξ )) –  has at least two distinct zeros on C.
Case . If h(g(k)(ξ ))≡  on C.

http://www.advancesindifferenceequations.com/content/2014/1/120
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Then by h(z) –  having at least two distinct zeros, we find that h(z) – c has at least two
distinct zeros except for at most one complex number c. Therefore Lemma . tells us that
h(g(k)(ξ )) – c has zero for at least two distinct c except that g(z) is a constant function. This
is also impossible.
Case . If h(g(k)(ξ )) –  has at least two distinct zeros on C.
Then, without out loss generality, let ξ and ξ	

 be two distinct zeros of h(g(k)(ξ )) – , and
choose δ (> ) small enough such thatD(ξ, δ)∩D(ξ	

 , δ) = ∅, whereD(ξ, δ) = {ξ : |ξ – ξ| <
δ}, and D(ξ	

 , δ) = {ξ : |ξ – ξ	
 | < δ}. By Hurwitz’s Theorem, there exist two sequences of

points ξn → ξ and ξ	
n → ξ	

 such that for sufficiently large n

h
(
f (k)n

)
(zn + ρnξn) +H

(
fn, f ′

n, . . . , f
(k)
n

)
(zn + ρnξn) –  = ,

h
(
f (k)n

)(
zn + ρnξ

	
n
)
+H

(
fn, f ′

n, . . . , f
(k)
n

)(
zn + ρnξ

	
n
)
–  = .

Hence, we have ξn ∈ D(ξ, δ) and ξ	
n ∈ D(ξ	

 , δ) for sufficiently large n. Thus each
h(f (k)n )(z) + H(fn, f ′

n, . . . , f
(k)
n )(z) –  has two distinct zeros for large enough n, which con-

tradicts our hypothesis.
This contradiction shows that F is normal in D and hence Theorem . is proved. �

Proof of Theorem . Suppose that F is a family meromorphic and not normal in D.
Then there exists at least one point z ∈ D such that F is not normal at the point z.
By Lemma ., there exist:
(a) functions fn ∈F ;
(b) points zn ∈ �, zn → z, and
(c) positive numbers ρn → +

such that gn(ζ ) = ρ–k
n fn(zn + ρnζ ) → g(ζ ) locally uniformly with respect to the spherical

metric, where g is a nonconstant meromorphic function on C, all of whose zeros have
multiplicity at least k + .
It is easily seen that

H
(
fn, f ′

n, . . . , f
(k)
n

)
(zn + ρnξ )

=
m∑
i=

ai(zn + ρnξ )ρ
(k+)γMi–�Mi
n Mi

(
gn, g ′

n, . . . , g
(k)
n

)
(ξ ).

Noting that all ai(z) (i = , , . . . ,m) are analytic on D implies

∣∣ai(zn + ρnξ )
∣∣ ≤M

(
 + r


,ai(z)
)
< ∞

for sufficiently large n, we deduce from �
γ
|H < k +  that

m∑
i=

ai(zn + ρnξ )ρ
(k+)γMi–�Mi
n Mi

(
gn, g ′

n, . . . , g
(k)
n

)
(ξ )

converges uniformly to  on C.
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Thus we know that

h
(
g(k)n (ξ )

)
+

m∑
i=

ai(zn + ρnξ )ρ
(k+)γMi–�Mi
n Mi

(
gn, g ′

n, . . . , g
(k)
n

)
(ξ ) – b

converges local uniformly to h(g(k)(ξ )) – b on C.
Take f ∈ {fn}, we consider two cases.
Case . [h(f (k)) +H(f , f ′, . . . , f (k))](z) �= b.
Then there exists a positive number δ >  such that

[
h
(
f (k)n

)
+H

(
fn, f ′

n, . . . , f
(k)
n

)]
(z) �= b

for all z in Dδ = {z : |z – z| < δ}, by sharing condition.
Hence, by Hurwitz’s Theorem, the hypothesis of the theorem, and Lemma ., we see

that h(g(k)(ξ )) �= b or h(g(k)(ξ ))≡ b on C.
If h(g(k)(ξ )) �= b, then by Lemma . and the hypothesis of the theorem, we see that

h(g(k)(ξ )) – b has at least two distinct zeros except that g(z) is a constant function, a con-
tradiction.
If h(g(k)(ξ )) ≡ b, the same arguments of the proof of Case  in the proof of Theorem .

implies that it does not hold.
Case . [h(f (k)) +H(f , f ′, . . . , f (k))](z) = b.
Next we consider two subcases.
Subcase .. [h(f (k)) +H(f , f ′, . . . , f (k))](z) ≡ b for all z in Dδ = {z : |z – z| < δ}. From the

discussion above, we have h(g(k)(ξ )) ≡ b in C. This is impossible.
Subcase .. There exists a δ >  such that h(f (k)) + H(f , f ′, . . . , f (k)) �= b in D

δ = {z :  <
|z – z| < δ}. By the supposition and discussion above, this means that

[
h
(
f (k)n

)
+H

(
fn, f ′

n, . . . , f
(k)
n

)]
(zn + ρnξ ) �= b

for zn + ρnξ �= z, and

[
h
(
f (k)

)
+H

(
f , f ′, . . . , f (k)

)]
(z) = b.

We claim that h(g(k)(ξ )) – b has just a unique zero.
Suppose that there exist two distinct zeros ξ and ξ	

 , choose δ (> ) small enough such
that D(ξ, δ)∩D(ξ	

 , δ) = ∅, where D(ξ, δ) = {ξ : |ξ – ξ| < δ} and D(ξ	
 , δ) = {ξ : |ξ – ξ	

 | < δ}.
By Hurwitz’s Theorem, there exist points ξn ∈ D(ξ, δ), ξ	

n ∈ D(ξ	
 , δ), such that for suffi-

ciently large j

h
(
f (k)n

)
(zn + ρnξn) +H

(
fn, f ′

n, . . . , f
(k)
n

)
(zn + ρnξn) – b = ,

h
(
f (k)n

)(
zn + ρnξ

	
n
)
+H

(
fn, f ′

n, . . . , f
(k)
n

)(
zn + ρnξ

	
n
)
– b = .

By the assumption that h(f (k)) +H(f , f ′, . . . , f (k)) and h(g(k)) +H(g, g ′, . . . , g(k)) share b in D
for each pair of functions f and g in F , we see that for any integer m

h
(
f (k)m

)
(zn + ρnξn) +H

(
fm, f ′

m, . . . , f
(k)
m

)
(zn + ρnξn) – b = ,

h
(
f (k)m

)(
zn + ρnξ

	
n
)
+H

(
fm, f ′

m, . . . , f
(k)
m

)(
zn + ρnξ

	
n
)
– b = .
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We fixm and note that zn + ρnξn → z, zn + ρnξ
	
n → z if n→ ∞. From this we deduce

h
(
f (k)m

)
(z) +H

(
fm, f ′

m, . . . , f
(k)
m

)
(z) – b = .

Since

[
h
(
f (k)n

)
+H

(
fn, f ′

n, . . . , f
(k)
n

)]
(zn + ρnξ ) �= b

if zn + ρnξ �= z, and

[
h
(
f (k)

)
+H

(
f , f ′, . . . , f (k)

)]
(z) = b,

noting that the zeros of

h
(
f (k)m

)
(z) +H

(
fm, f ′

m, . . . , f
(k)
m

)
(z) – b

have no accumulation point, for sufficiently large n, we have

zn + ρnξn = z, zn + ρnξ
	
n = z.

Hence

ξn =
z – zn

ρn
, ξ	

n =
z – zn

ρn
.

This contradicts the fact that ξn ∈ D(ξ, δ), ξ	
n ∈ D(ξ	

 , δ), and D(ξ, δ) ∩ D(ξ	
 , δ) = ∅. So

h(g(k)(ξ )) – b has just a unique zero ignoring multiplicity. This contradicts the conclusion
of Lemma . that h(g(k)(ξ )) – b has at least two distinct zeros.
Hence F is normal at z, and then F is normal in D. The proof of Theorem . is com-

plete. �
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