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Abstract
This paper investigates drive-response robust synchronization of chaotic systems with
disturbance, time-varying delay and input saturation via state feedback control.
Sufficient conditions for achieving the synchronization of two chaotic systems are
derived on the basis of the Lyapunov theory and the linear matrix inequality (LMI)
technique, which is not only to guarantee the asymptotic synchronization but also to
attenuate the effects of the perturbation on the overall error system to a prescribed
level. Finally, an illustrative numerical simulation is also given to demonstrate the
effectiveness of the proposed scheme.
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1 Introduction
In , Lorenz found the first chaotic attractor in a three-dimensional autonomous sys-
tem when he studied the atmosphere convection []. Since then, more chaotic systems
have been constructed, such as Chua’s circuit, logistic map, Chen system, and generalized
Lorenz system (see [–]), and their complex behaviors have also been widely studied.
Nowadays, there has been considerable interest in the control of chaos in nonlinear dy-
namical systems, and many different techniques, such as OGY method [], PC technique
[], backstepping approach [], adaptive control [], fuzzy control [], digital control
[], state feedback control [], time-delay feedback control [], sampled driving signals
[], and observer-based approach [], have been proposed to control chaos. Since the
pioneering work by Pecora and Carroll [] who originally proposed the drive-response
concept for achieving the synchronization of coupled chaotic systems, chaotic synchro-
nization has received considerable attention due to its potential applications in physics,
biology, and engineering and has become an important topic in control theory [, ].
However, all of these works and many others in the literature have focused on the study

of chaotic synchronization between two chaotic systems without model uncertainties and
external disturbance. In real physical systems, some noise or disturbance always exists,
which may cause instability and poor performance. Therefore, how to reduce the effect
of the noise or disturbance in synchronization process for chaotic systems has become
an important issue, see [–]. On the other hand, there has been increasing interest
in time-delay chaotic systems since the chaos phenomenon in time-delay systems was
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first found by Mackey and Glass []. For chaotic systems with time-delay and distur-
bance, several works have proposed the problem for various chaotic systems in the lit-
erature [–]. In [], an adaptive control law was derived and applied to achieve the
state lag-synchronization of twononidentical time-delayed chaotic systemswith unknown
parameters. In [], an output coupling and feedback scheme were proposed to achieve
the robust synchronization of noise-perturbed chaotic systems withmultiple time-delays.
An impulse control was proposed by Qian and Cao [] to synchronize two nonidentical
chaotic systems with time-varying delay. Most of them are based on the fact that the time-
delay is a constant, while, in real world applications, the time-delay is also varying over
time. Hence the study of chaotic synchronization with time-varying delay is an important
topic.
Besides, in a practical chaos system, there exist not only disturbance and varying-time

delay but also the input saturation. Many literature works are based on the assumption
that the actuator will not be saturated during the control process, but actuator will saturate
due to its physical limitations in practice. Due to its high sensitivity to system parameters,
the presence of saturation of control input may cause serious influence on system stability
and performance. Hence, the derivation of controller with input saturation is an important
problem. In [], an adaptive sliding mode control scheme for Lorenz chaos subject satu-
rating input was presented. Rehan studied the synchronization and anti-synchronization
of chaotic oscillators under input saturation via simple state feedback control in [], and
the design of dynamic controller and static anti-windup compensator for Lipschitz nonlin-
ear systems under input saturation was described in [] and []. However, most of them
studied the normal chaotic system without time-delay and the inner uncertainty and the
external disturbance. Motivated by the above discussion, in this paper we investigate the
synchronization of chaotic systems with disturbance and varying time-delay under input
saturation. Based on the Lyapunov stability theory, a robust controller is designed and its
robustness and stability are analytically proved. Finally, we present a numerical simulation
to demonstrate the feasibility and usefulness.
This paper is organized as follows. Section  provides the system description. In Sec-

tion , LMI-based conditions for chaotic synchronization are developed. In Section ,
a numerical example is given to illustrate the main result. Finally, conclusion is made in
Section .
Standard notation is used in this paper. For a matrix M, the ith row is denoted by M(i).

For a vector u ∈ Rm, sat(u) = sign(u(i))min(ū(i), |u(i)|) represents the classical nonlinear sat-
uration function, where ū(i) >  denotes the ith bound on the saturation.

2 System description and preliminaries
Consider a class of uncertain chaotic systems with time-varying delay which is described
by

dx
dt

= (A +�A)x(t) + (B +�B)x
(
t – τ (t)

)
+ f (x), ()

where x ∈ Rn is the state vector. The vector f (·) ∈ Rn is a continuous nonlinear vector
function satisfying the Lipschitz condition ‖f (x) – f (x)‖ ≤ ρ‖x – x‖ (a), where ρ is a
positive constant. τ (t) denotes the varying time-delay. A and B are known real constant
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matrices with suitable dimensions. �A and �B are perturbation matrices representing
parametric uncertainties and are assumed to be of the following form:

�A =HF(t)E, �B =HF(t)E, ()

where H, H, E, and E are known real constant matrices with appropriate dimensions,
F(t) ∈ Rn×n is an unknown real and possibly time-varying matrix satisfying

FT (t)F(t)≤ I. ()

The uncertainties �A and �B are said to be admissible if both () and () hold. Eq. () is
considered as the drive system and the controlled response system is given by the following
differential Eq. ():

dy
dt

= (A +�A)y(t) + (B +�B)y
(
t – τ (t)

)
+ f (y) +C sat(u) +w(t), ()

where y(t) ∈ Rn, u ∈ Rm and w(t) ∈ Rn are the state, the input, and the external disturbance
vectors for the response system, respectively, and sat(u) ∈ Rm represents the saturated
input. C ∈ Rn×m represents a constant matrix.
Define the synchronization error as e(t) = (x(t) – y(t)) ∈ Rn. Subtracting the drive system

() from the response system () yields the dynamical system

de
dt

= (A +�A)e(t) + (B +�B)e
(
t – τ (t)

)
+ f (x) – f (y) –C sat(u) –w(t). ()

This paper aims at designing the controller to not only asymptotically synchronize be-
tween the drive and the response systems but also to guarantee a prescribed performance
of the external perturbation attenuation γ .
Before presenting the main result, we introduce the following definition.

Definition [] For the synchronization error system (), it is said to have the H∞ syn-
chronization with the external perturbation attenuation γ if the following conditions are
satisfied:

(i) With w(t) = , the dynamics error system () is asymptotically stable.
(ii) Given a desired positive scalar γ and under the zero-initial condition, the following

performance index is satisfied:

J =
∫ ∞



(
eT (t)e(t) – γ wT (t)w(t)

)
dt ≤ . ()

For a positive definite diagonal matrix W ∈ Rm×m, the saturation nonlinearity satisfies
the classical global sector condition [] given by

φT (u)W
(
u – φ(u)

) ≥ , ()

where φ(u) = u – sat(u) represents the dead zone nonlinearity. This sector condition can
be used to design a global controller for synchronization of nonlinear systems under input
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saturation. However, if global results cannot be achieved, a more general sector condition
can be utilized to design a local synchronization controller. Define the following associated
set:

S(ū) =
{
v ∈ Rm; –ū≤ u – v≤ ū

}
, ()

where ū ∈ Rm represents the bound on saturation. If () holds, the local sector condition

φT (u)W
(
v – φ(u)

) ≥  ()

is satisfied.

In dealing with this study, the following assumptions and lemmas are necessary for the
sake of convenience.

Assumption  The time-delay τ (t) is a bounded and continuously differentiable function
such that  ≤ τ (t)≤ μ and  < τ̇ (t)≤ μ < .

Lemma  [] Given any vector x, y of appropriate dimensions and a positive number ε,
the following inequality holds:

xTy≤ 
ε
xTx + εyTy. ()

Lemma  [] Let S be a regular n× n matrix, S can be an n× q matrix, and S is a
regular matrix. Let a Hermitian matrix S be represented as S =

( S S
ST S

)
.

Then the matrix S is positive definite if and only if the matrices S and S – STS– S
are positive definite.

3 Chaotic synchronization
To synchronize the drive-response systems () and (), the following state feedback control
law is considered:

u = Fe, ()

where F ∈ Rm×n. By using φ(u) = u – sat(u), () and (), the overall closed-loop system
becomes

de
dt

= (A –CF +�A)e(t) + (B +�B)e
(
t – τ (t)

)
+ f (x) – f (y) +Cφ(u) –w(t). ()

Theorem  Consider the drive-response systems () and () satisfying Assumption  and
condition (a). Given a scalar γ >  and a matrix Q =QT > , if there exist a matrix X =
XT
 >  ∈ Rn×n, a matrix R = RT >  ∈ Rn×n, a diagonal matrix U ∈ Rm×m, a matrix X ∈

Rm×n, a matrix X ∈ Rm×n, and scalars εi >  (i = , , ) satisfying the following linear
matrix inequalities (LMIS):

–Q + R < , ()
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[
X (X(i) –X(i))T

*
ū(i)
δ

]
≥ , i = , , . . . ,n, ()

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	 BX XT
 + BU –X H H XQ X XET


* –R + εET

 E       
* * –U      
* * * –γ I     
* * * * – 

ε
I    

* * * * * – 
ε
I   

* * * * * * –( –μ)Q  
* * * * * * * –I + ερ

I 
* * * * * * * * –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 

()

with 	 = XAT +AX –CX –X
TCT + 

ε
I , then the overall closed-loop system with Eq. ()

is H∞ synchronized with the disturbance attenuation level γ .

Proof Choose the following Lyapunov functional candidate:

V (t) = V(t) +V(t),

where V(t) = eT (t)Pe(t), V(t) = 
–μ

∫ t
t–τ (t) e

T (s)Re(s)ds, P = PT , R = RT .
First, evaluating the time derivative of V(t) along the trajectory given in Eq. () gives

V(t) = ėT (t)Pe(t) + eT (t)Pė(t)

= eT (t)
(
ATP + PA – FTCTP – PCF

)
e(t)

+ eT (t)
(
�ATP + P�A

)
e(t)

+ eT
(
t – τ (t)

)
BTPe(t) + eT (t)PBe

(
t – τ (t)

)
+ eT

(
t – τ (t)

)
�BTPe(t) + eT (t)P�Be

(
t – τ (t)

)
+

(
f (x) – f (y)

)TPe(t) + eT (t)P
(
f (x) – f (y)

)
+ φT (u)CTPe(t) + eT (t)PCφ(u) –wT (t)Pe(t) – eT (t)Pw(t). ()

By using Lemma  and the Lipschitz condition, we have

eT (t)
(
�ATP + P�A

)
e(t) ≤ 

ε
eT (t)PHH

TPe(t) + εeT (t)ET
 Ee(t), ()

eT
(
t – τ (t)

)
�BTPe(t) + eT (t)P�Be

(
t – τ (t)

)
≤ 

ε
eT (t)PHH

TPe(t) + εeT
(
t – τ (t)

)
ET
 Ee

(
t – τ (t)

)
, ()

(
f (x) – f (y)

)TPe(t) + eT (t)P
(
f (x) – f (y)

) ≤ eT (t)
(


ε
PP + ερI

)
e(t). ()

Substituting Eqs. (), (), and () into Eq. () results in

V̇(t) ≤ eT (t)
(
ATP + PA – FTCTP – PCF

)
e(t)

+ eT (t)
(

εET
 E +


ε
PHH

TP +

ε
PHH

TP +

ε
PP + ερI

)
e(t)
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+ εeT
(
t – τ (t)

)
ET
 Ee

(
t – τ (t)

)
+ eT

(
t – τ (t)

)
BTPe(t) + eT (t)PBe

(
t – τ (t)

)
+ φT (u)CTPe(t) + eT (t)PCφ(u)

–wT (t)Pe(t) – eT (t)Pw(t). ()

By using u = Fe, we take v =Ge, then the local sector conditions () and () can be rewritten
as

S(ū) =
{
v ∈ Rn; –ū ≤ (F –G)e ≤ ū

}
, ()

φT (u)W
(
Ge – φ(u)

) ≥ . ()

Consider the set ε(P, δ) = {e(t) ∈ Rn; eT (t)Pe(t) ≤ δ}, then LMI () is obtained by including
the region eT (t)Pe(t) ≤ δ into S(ū). Hence the region S(ū) in () remains valid, which
further implies that the sector condition () is satisfied. By using (), we have

V̇(t) ≤ eT (t)
(
ATP + PA – FTCTP – PCF

)
e(t)

+ eT (t)
(

εET
 E +


ε
PHH

TP +

ε
PHH

TP +

ε
PP + ερI

)
e(t)

+ εeT
(
t – τ (t)

)
ET
 Ee

(
t – τ (t)

)
+ eT

(
t – τ (t)

)
BTPe(t) + eT (t)PBe

(
t – τ (t)

)
+ eT (t)

(
PC +GTW

)
φ(u) + φT (u)

(
WG +CTP

)
e(t) – φT (u)Wφ(u)

–wT (t)Pe(t) – eT (t)Pw(t). ()

By using Assumption , we have

V̇(t)≤ 
 –μ

eT (t)Re(t) – eT
(
t – τ (t)

)
Re

(
t – τ (t)

)
. ()

In order to obtain LMI (), we give a matrix Q = QT such that the following inequality
holds:

–Q + R < . ()

Then we have

V̇ (t) = V̇(t) + V̇(t)

≤ eT (t)
(
ATP + PA – FTCTP – PCF

)
e(t)

+ eT (t)
(


 –μ

Q + εET
 E +


ε
PHH

TP +

ε
PHH

TP +

ε
PP + ερI

)
e(t)

+


 –μ
eT (t)(–Q + R)e(t) + eT

(
t – τ (t)

)(
–R + εET

 E
)
e
(
t – τ (t)

)
+ eT

(
t – τ (t)

)
BTPe(t) + eT (t)PBe

(
t – τ (t)

)
+ eT (t)

(
PC +GTW

)
φ(u) + φT (u)

(
WG +CTP

)
e(t) – φT (u)Wφ(u)
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–wT (t)Pe(t) – eT (t)Pw(t)

≤ eT (t)
(
ATP + PA – FTCTP – PCF

)
e(t)

+ eT (t)
(


 –μ

Q + εET
 E +


ε
PHH

TP +

ε
PHH

TP +

ε
PP + ερI

)
e(t)

+ eT
(
t – τ (t)

)(
–R + εET

 E
)
e
(
t – τ (t)

)
+ eT

(
t – τ (t)

)
BTPe(t) + eT (t)PBe

(
t – τ (t)

)
+ eT (t)

(
PC +GTW

)
φ(u) + φT (u)

(
WG +CTP

)
e(t) – φT (u)Wφ(u)

–wT (t)Pe(t) – eT (t)Pw(t). ()

Define a functional J(e(t),w(t)) as follows:

J
(
e(t),w(t)

)
= V̇ (t) + eT (t)e(t) – γ wT (t)w(t). ()

Substituting () into () yields

J
(
e(t),w(t)

) ≤

⎛
⎜⎜⎜⎝

e(t)
e(t – τ (t))

φ(u)
w(t)

⎞
⎟⎟⎟⎠

T




⎛
⎜⎜⎜⎝

e(t)
e(t – τ (t))

φ(u)
w(t)

⎞
⎟⎟⎟⎠ ,

where


 =

⎡
⎢⎢⎢⎣


 PB GTW + PC P
* –R + εET

 E  
* * –W 
* * * –γ I

⎤
⎥⎥⎥⎦ ,


 = ATP + PA – FTCTP – PCF

+


 –μ
Q + εET

 E +

ε
PHH

TP +

ε
PHH

TP +

ε
PP + ερI + I.

From the above, if the following inequality holds:


 =

⎡
⎢⎢⎢⎣


 PB GTW + PC P
* –R + εET

 E  
* * –W 
* * * –γ I

⎤
⎥⎥⎥⎦ < , ()

where


 = ATP + PA – FTCTP – PCF

+


 –μ
Q + εET

 E +

ε
PHH

TP +

ε
PHH

TP +

ε
PP + ερI + I.

Applying the Schur complement and congruence transform by using diag (P–, I,W–, I, I,
I, I, I, I, I), and further, substituting P– = X, W– = U , X = FX, X = GX, LMI () is
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Figure 1 Chaotic behavior of the Lorenz systemwith time-delays.

obtained. Then integrating the function in () yields

V (∞) –V () +
∫ ∞



(
eT (t)e(t) – γ wT (t)w(t)

)
dt ≤ .

With the zero-initial condition, we have

∫ ∞



(
eT (t)e(t) – γ wT (t)w(t)

)
dt ≤ ,

which completes the proof of Theorem . �

4 Examples and simulation results
To demonstrate the validity of the proposed synchronization approach with input satura-
tion and time-delays, we consider the Lorenz chaotic system with:

A =

⎡
⎢⎣
–  
 – 
  –/

⎤
⎥⎦ , B =

⎡
⎢⎣
  
 – 
  /

⎤
⎥⎦ , C =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ ,

H =

⎡
⎢⎣
.  .
 . 
.  .

⎤
⎥⎦ , H =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ , E =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ ,

E =

⎡
⎢⎣
.  
 . 
  .

⎤
⎥⎦ , f (x) =

⎛
⎜⎝


–xx
xx

⎞
⎟⎠ , ū =

⎛
⎜⎝




⎞
⎟⎠ .

The Lipschitz constant is chosen as ρ = , and the parameter δ is given as δ = . The
disturbance is selected as w(t) = (. sin t . sint . sint)T . For convenience,
we choose τ (t) = .
The chaotic behavior of Lorenz system with time-delays is shown in Figures  and .
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Figure 2 Chaotic behavior of the Lorenz systemwith time-delays and disturbance.

Figure 3 Synchronization error of the Lorenz systemwithout the disturbance w(t).

By applying the conditions in Theorem  with ε = 
 , ε =


 , ε =


 , and the disturbance

attenuation γ = ., we can obtain the following matrices:

F =

⎡
⎢⎣
. . .
. . .
. . .

⎤
⎥⎦ , G =

⎡
⎢⎣
. . .
. . .
. . .

⎤
⎥⎦ ,

P =

⎡
⎢⎣
. . .
. . .
. . .

⎤
⎥⎦ , R =

⎡
⎢⎣

. –. .
–. . –.
. –. .

⎤
⎥⎦ .
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Figure 4 Synchronization error of the Lorenz systemwith the disturbance w(t).

Applying the controller u = Fe without the disturbance signal, the synchronization er-
ror between the drive system and the response system with the initial conditions x =
(  )T and y = (. . .)T , respectively, is shown in Figure , which implies
that the synchronization error converges to zero. Figure  shows that the effect of the dis-
turbance w(t) on the dynamic error system has been reduced within a prescribed level to
γ = . by the control gain F .

5 Conclusions
The problem of robust H∞ synchronization for an uncertain chaotic system with time-
varying delay and input saturation has been presented. Based on the Lyapunov theory and
the LMI technique, the sufficient condition has been derived not only to guarantee the
asymptotic synchronization but also to ensure a prescribed perturbation attenuation per-
formance. Finally, a simulation example is presented to verify the validity of the proposed
method.
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