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1 Introduction
The largely investigated generalized hypergeometric function pFq with p numerator pa-
rameters a, . . . ,ap such that aj ∈ C (j = , . . . ,p) and q denominator parameters b, . . . ,bq
such that bj ∈ C \ Z–

 (j = , . . . ,q; Z–
 := Z ∪ {} = {,–,–, . . .}) is defined by (see, for ex-

ample [, Chapter ]; see also [, pp.-])

pFq
[

α, . . . ,αp;
β, . . . ,βq;

z
]
= pFq[α, . . . ,αp;β, . . . ,βq; z] =

∞∑
n=

(α)n · · · (αp)n
(β)n · · · (βq)n

zn

n!
(.)

(
p ≤ q and |z| <∞;p = q +  and |z| < ;p = q + , |z| =  and Re(ω) > 

)
,

where

ω :=
q∑
j=

bi –
p∑
j=

ai

and (α)n denotes the Pochhammer symbol defined, in terms of the Gamma function, by

(α)n :=
�(α + n)

�(α)
=

⎧⎨
⎩

α(α + ) · · · (α + n – ) (n ∈N;α ∈C),

 (n = ;α ∈C \ {}).

Multi-variable hypergeometric functions and their reduction formulas have also been
largely investigated (for example, see []). Let us recall the general definition of the double
hypergeometric function given by Srivastava and Panda [, p., Eq. ()]. Let (Hh) de-
notes the sequence of parameters (H,H, . . . ,Hh), and let nonnegative integers define the
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Pochhammer symbol ((Hh))n = (H)n(H)n · · · (Hh)n. Then the generalized version of the
Kampé de Fériet function is defined as follows:

Fh:a;b
g:c;d

[
(Hh) : (Aa); (Bb);
(Gg) : (Cc); (Dd);

x, y
]
=

∑
m,n≥

((Hh))m+n((Aa))m((Bb))n
((Gg))m+n((Cc))m((Dd))n

xm

m!
yn

n!
. (.)

For the numerous conditions of convergence for this function, the reader is referred to [].
Some special cases of hypergeometric function of two variables are the Appell functions

[, –] defined as

F[a;b,b; c;x, y] :=
∑
m,n≥

(a)m+n(b)m(b)n
(c)m+n

xm

m!
yn

n!
(|x| < , |y| < 

)
, (.)

F[a;b,b; c, c;x, y] :=
∑
m,n≥

(a)m+n(b)m(b)n
(c)m(c)n

xm

m!
yn

n!
(|x| + |y| < 

)
, (.)

F[a,a;b,b; c;x, y] :=
∑
m,n≥

(a)m(a)n(b)m(b)n
(c)m+n

xm

m!
yn

n!
(|x| < , |y| < 

)
, (.)

F[a;b; c, c;x, y] :=
∑
m,n≥

(a)m+n(b)m+n

(c)m(c)n
xm

m!
yn

n!
(|x|/ + |y|/ < 

)
. (.)

Other interesting special cases of hypergeometric functions of two variables are Horn’s
functions G and G studied in [, ] and defined as follows:

G(α;β,β;x, y) =
∑
m,n≥

(α)m+n(β)n–m(β)m–n

m!n!
xmyn

(|x| + |y| < 
)
, (.)

G(α,α;β,β;x, y) =
∑
m,n≥

(α)m(α)n(β)n–m(β)m–n

m!n!
xmyn

(|x|, |y| < 
)
. (.)

For the purpose of this work, we need to introduce Srivastava’s triple hypergeometric
series F ()[x, y, z] [, p.] defined by

F ()[x, y, z] = F ()
[
(a) :: (b); (b′); (b′′) : (c); (c′); (c′′);
(e) :: (g); (g ′); (g ′′) : (h); (h′); (h′′);

x, y, z
]

=
∑

m,n,p≥

�(m,n,p)
xm

m!
yn

n!
zp

p!
, (.)

where, for convenience,

�(m,n,p) =
∏A

j=(aj)m+n+p
∏B

j=(bj)m+n
∏B′

j=(b′
j)n+p

∏B′′
j=(b′′

j )m+p∏E
j=(ej)m+n+p

∏G
j=(gj)m+n

∏G′
j=(g ′

j )n+p
∏G′′

j=(g ′′
j )m+p

·
∏C

j=(cj)m
∏C′

j=(c′j)n
∏C′′

j=(c′′j )p∏H
j=(hj)m

∏H′
j=(h′

j)n
∏H′′

j=(h′′
j )p

, (.)

and (a) abbreviates the array of A parameters a, . . . ,aA with similar interpretations for
(b), (b′), (b′′), and so on.
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Finally, we also require two special cases of hypergeometric function of three variables
given by Srivastava [–]:

HA(α,β,β;γ,γ;x, y, z) =
∑

m,n,p≥

(α)m+p(β)m+n(β)n+p
(γ)m(γ)n+pm!n!p!

xmynzp

(|x| = r < , |y| = s < , |z| = t < ( – r)( – s)
)
,

(.)

HB(α,β,β;γ,γ,γ;x, y, z) =
∑

m,n,p≥

(α)m+p(β)m+n(β)n+p
(γ)m(γ)n(γ)pm!n!p!

xmynzp

(|x| = r, |y| = s, |z| = t; r + s + t + 
√
rst < 

)
.

(.)

Recently,many authors [–] obtained several transformations formulas involving hy-
pergeometric functions as well as their multi-variable analogs by using the so-called beta
integral method. The beta function B(α,β) is defined by the following integral represen-
tation:

B(α,β) =
∫ 


tα–( – t)β– dt =

�(α)�(β)
�(α + β)

(
Re(α) > ,Re(β) > 

)
. (.)

The so-called beta integral method consists essentially of integral from  to  expressions
which contain terms in the form za( – z)b to obtain new transformations formulas.
The aim of this paper is to present many new general transformations for multiple hy-

pergeometric functions. These transformations can be viewed as generalizations of some
of those obtained recently by Wei et al. []. All these transformations are obtained by
using a fractional calculus operator based on the Pochhammer contour integral. In Sec-
tion , we give the representation of the fractional derivatives based on the Pochhammer
contour of integration. Section  is devoted to the fractional calculus operator zOα

β in-
troduced by Tremblay []. Finally, in Section , we present the several transformations
involving multi-variable hypergeometric functions.

2 Pochhammer contour integral representation for fractional derivative and a
new generalized Leibniz rule

The use of a contour of integration in the complex plane provides a very powerful tool
in both classical and fractional calculus. The most familiar representation for fractional
derivative of order α of zpf (z) is the Riemann-Liouville integral [–], that is,

Dα
z z

pf (z) =


�(–α)

∫ z


f (ξ )ξp(ξ – z)–α– dξ , (.)

which is valid for Re(α) < , Re(p) >  and where the integration is done along a straight
line from  to z in the ξ -plane. By integrating by partsm times, we obtain

Dα
z z

pf (z) =
dm

dzm
Dα–m

z zpf (z). (.)

This allows one to modify the restriction Re(α) <  to Re(α) <m []. Another used rep-
resentation for the fractional derivative is the one based on the Cauchy integral formula
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Figure 1 Pochhammer’s contour.

widely used by Osler [–]. These two representations have been used inmany interest-
ing research papers. It appears that the less restrictive representation of fractional deriva-
tive according to parameters is the Pochhammer contour definition introduced in [, ]
(see also [–]).

Definition . Let f (z) be analytic in a simply connected region R. Let g(z) be regular
and univalent on R and let g–() be an interior point of R. Then if α is not a negative
integer, p is not an integer, and z is in R – {g–()}, we define the fractional derivative of
order α of g(z)pf (z) with respect to g(z) by

Dα
g(z)g(z)

pf (z) =
e–iπp�( + α)
π sin(πp)

∫
C(z+,g–()+,z–,g–()–;F(a),F(a))

f (ξ )g(ξ )pg ′(ξ )
(g(ξ ) – g(z))α+

dξ . (.)

For non-integer α and p, the functions g(ξ )p and (g(ξ ) – g(z))–α– in the integrand have
two branch lines which begin, respectively, at ξ = z and ξ = g–(), and both pass through
the point ξ = a without crossing the Pochhammer contour P(a) = {C ∪ C ∪ C ∪ C} at
any other point as shown in Figure . F(a) denotes the principal value of the integrand in
(.) at the beginning and ending point of the Pochhammer contour P(a) which is closed
on Riemann surface of the multiple-valued function F(ξ ).

Remark . In Definition ., the function f (z) must be analytic at ξ = g–(). However,
it is interesting to note here that we could also allow f (z) to have an essential singularity
at ξ = g–(), and Equation (.) would still be valid.

Remark . The Pochhammer contour never crosses the singularities at ξ = g–() and
ξ = z in (.), then we know that the integral is analytic for all p and for all α and for z in
R– {g–()}. Indeed, the only possible singularities ofDα

g(z)g(z)
pf (z) are α = –,–, . . . , and

p = ,±,±, . . . which can directly be identified from the coefficient of the integral (.).
However, integrating by parts N times the integral in (.) by two different ways, we can
show that α = –,–, . . . , and p = , , , . . . are removable singularities (see []).
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It is well known that [, p., Equation (.)]

Dα
z z

p =
�( + p)

�( + p – α)
zp–α

(
Re(p) > –

)
, (.)

but adopting the Pochhammer-based representation for the fractional derivative this last
restriction becomes p not a negative integer.

3 The well poised fractional calculus operator zOα
β

In this section, we recall some of the important properties of the fractional calculus oper-
ator zOα

β introduced by Tremblay [] as

zOα
β :=

�(β)
�(α)

z–βDα–β
z zα– (β not a negative integer). (.)

We choose to simply list them since the proofs are readily obtainable.
() Linearity

zOα
β

{
λf (z) + λg(z)

}
= λzOα

β f (z) + λzOα
βg(z). (.)

() Identity

zOα
α = I. (.)

() Reductions

zOα
β zO

β
γ = zOα

γ , (.)

zOα
β zO

γ
α = zOγ

β . (.)

() Elementary cases

zOα
β = , (.)

zOα
βz

n =
(α)n
(β)n

zn. (.)

() Useful cases

zOα
βz

λf (z) =
�(β)�(α + λ)
�(α)�(β + λ)

zλ
zOα+λ

β+λf (z), (.)

zOα
β (w – z)θ f (z)|w=z = �(β)�(β – α + θ )

�(β – α)�(β + θ )
zθ

zOα
β+θ f (z), (.)

zOα
βz

λ(w – z)θ f (z)|w=z = �(β)�(α + λ)�(β – α + θ )
�(α)�(β – α)�(β + θ + λ)

zθ+λ
zOα+λ

β+λ+θ f (z). (.)

It is worthy to mention that operator zOα
β has a lot more interesting properties and ap-

plications. Tremblay introduced this operator in order to deal with special functions more
efficiently and to facilitate the obtention of new relations such as hypergeometric trans-
formations.
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For this work, the most important property of the operator zOα
β is given by the following

relation:

B(α,β) =
�(α)�(β + γ )
�(α + β + γ ) zOα+β

β zγ
∣∣∣
z=

. (.)

This relation shows, in fact, that the so-called beta integral method consists in a fractional
derivative evaluated at the point z = .

4 Main results
In this section, we apply the fractional calculus operator zOα

β to certain transformations
involvingmulti-variable hypergeometric functions in order to obtain new transformations
more general than those obtained by means of the beta integral method. Many special
cases are also computed.

Theorem . Let b and b be two nonpositive integers or α be a nonpositive integer and
let c,β 	= ,–,–, . . . . Then the following transformation

F:;
:;

[
a : b,α; b,β – α;
c,β : –; –;

z, z
]

=
∑

m,n,k,j≥

(c – a)m+n(b)m(b)n(b +m)k(b + n)j(α)m+k(β – α)n+j
(c)m+n(β)m+n+k+j

(–z)m

m!
(–z)n

n!
zk

k!
zj

j!

(.)

holds true.

Proof We start from the following transformation of Appell function F [, p.,
Eq. (..)]:

F[a;b,b; c;x, y] = ( – x)–b ( – y)–bF
[
c – a;b,b; c;

x
x – 

,
y

y – 

]
. (.)

By making the substitutions x 
→ z and y 
→ w – z in (.), we obtain

F[a;b,b; c; z,w – z]

= ( – z)–b ( –w + z)–bF
[
c – a;b,b; c;

z
z – 

,
w – z

w – z – 

]
. (.)

Next, we apply the fractional calculus operator zOα
β on both sides of (.) with w = z after

operation. We thus have for the l.h.s.:

zOα
βF[a;b,b; c; z,w – z]|w=z =

∑
m,n≥

(a)m+n(b)m(b)n
(c)m+nm!n! zOα

βz
m(w – z)n

∣∣∣
w=z

=
∑
m,n≥

(a)m+n(b)m(α)m(b)n(β – α)n
(c)m+n(β)m+n

zm

m!
zn

n!
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/126
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We obtain for the r.h.s.:

zOα
β ( – z)–b ( –w + z)–bF

[
c – a;b,b; c;

z
z – 

,
w – z

w – z – 

]∣∣∣
w=z

=
∑
m,n≥

(c – a)m+n(b)m(b)n
(c)m+nm!n!

(–)m+n
zOα

βz
m( – z)–b–m(w – z)n( –w + z)–b–n

∣∣∣
w=z

=
∑

m,n,k,j≥

(c – a)m+n(b)m(b)n(b +m)k(b + n)j
(c)m+nm!n!k!j!

(–)m+n
zOα

βz
m+k(w – z)n+j

∣∣∣
w=z

=
∑

m,n,k,j≥

(c – a)m+n(b)m(b)n(b +m)k(b + n)j(α)m+k(β – α)n+j
(c)m+n(β)m+n+k+j

(–z)m

m!
(–z)n

n!
zk

k!
zj

j!
.

(.)

This completes the proof. �

Let us give a special case of Theorem . in which we recover a result given recently by
Wei et al. [, Theorem ].

Corollary . Let b and b be two nonpositive integers or α be a nonpositive integer and
let c,β 	= ,–,–, . . . . Then the following summation formula:

F:;
:;

[
a : b, e + b; b,d + b – e;

c,d + b + b : –; –;
, 

]

=
�(e)�(d – e)�(d + b + b)
�(d)�(e + b)�(d + b – e)

∑
m,n≥

(c – a)m+n(b)m(b)n(e)m–n

(c)m+n( + e – d)m–nm!n!
(.)

holds true.

Proof Setting z = , α = e+b and β = d+b +b in Theorem . and using twice the Gauss
summation formula []

F
[
a,b;
c;


]
=

�(c)�(c – a – b)
�(c – a)�(c – b)

(
Re(c – a – b) > 

)
(.)

gives the result. �

Theorem . Let β , c and  + a + b – c 	= ,–,–, . . . , and let Re(β – α) > . Then the
following transformation:

F:;
:;

[
α : a,b; a,b;
β : c;  + a + b – c;

z, z
]

=
∑

m,n,k≥

(α)m+n+k(a)m+n(b)m+n(–m – n)k
(β)m+n+k(c)m( + a + b – c)n

zm+n+k

m!n!k!
(.)

holds true.

http://www.advancesindifferenceequations.com/content/2014/1/126
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Proof Beginning with the following transformation formula [, Eq. ()] with x = y = z:

F
[
a;b; c,  + a + b – c; z( – z), z( – z)

]
= F

[
a,b;
c;

z
]
F

[
a,b;

 + a + b – c;
z
]

(.)

and applying the operator zOα
β on both sides of (.), we get for the l.h.s.

zOα
β

∑
m,n≥

(a)m+n(b)m+n

(c)m( + a + b – c)n
zm+n

m!
( – z)m+n

n!

= zOα
β

∑
m,n,k≥

(a)m+n(b)m+n(–m – n)k
(c)m( + a + b – c)n

zm+n+k

m!n!k!

=
∑

m,n,k≥

(a)m+n(b)m+n(–m – n)k(α)m+n+k

(c)m( + a + b – c)n(α)m+n+k

zm+n+k

m!n!k!
(.)

and for the r.h.s.

zOα
β

∑
m,n≥

(a)m(b)m(a)n(b)n
(c)m( + a + b – c)n

zm+n

m!n!

=
∑
m,n≥

(a)m(b)m(a)n(b)n
(c)m( + a + b – c)n

(α)m+n

(β)m+n

zm+n

m!n!
. (.)

Rewriting (.) into the form of (.) leads to the desired result. �

Corollary . Let β , c and  + a + b – c 	= ,–,–, . . . . Then the following formula:

F:;
:;

[
α : a,b; a,b;
β : c;  + a + b – c;

, 
]

= F:;
:;

[
α,β – α,a,b : –; –;

β

 ,
β+
 : c;  + a + b – c;



,



]
(.)

holds true.

Proof Putting z =  in Theorem ., using the Gauss summation formula (.) andmaking
elementary simplifications yields the result. �

This special case of Theorem . corresponds to a result also given by Wei et al. [,
Eq. (.)].

Corollary . Let +β

 , β , c and  + a + b – c 	= ,–,–, . . . . Then the following formula:

F:;
:;

[
 : a,b; a,b;
β : c;  + a + b – c;



,



]

=
�(β)–β

√
π

�( β

 )�(
+β

 )
F:;
:;

[
a,b,  : –; –;
+β

 : c;  + a + b – c;


,



]
(.)

holds true.

http://www.advancesindifferenceequations.com/content/2014/1/126
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Proof Letting z = 
 and α =  in Theorem . gives

F:;
:;

[
 : a,b; a,b;
β : c;  + a + b – c;



,



]

=
∑
m,n≥

(a)m+n(b)m+n()m+n

(c)m( + a + b – c)n(β)m+n

(  )
m+n

m!n! F
[
 +m + n, –m – n;

β +m + n;



]
. (.)

With the help of the well-known Bailey summation theorem []:

F
[
a,  – a;

c;



]
=

–c�(c)
√

π

�( a+c )�( c–a+ )
(.)

the result follows easily after simple calculations. �

Theorem. Let β , c, λ and +a+b–c 	= ,–,–, . . . .Then the following transformation:

F:;
:;

[
– : α,a,b; γ ,a,b;
– : β , c; λ,  + a + b – c;

x, y
]

=
∑
m,n≥

(a)m+n(b)m+n(α)m(γ )nxmynF[ –n,α +m;
β +m; x]F[ –m,γ + n;

λ + n; y]
(c)m(β)m( + a + b – c)n(λ)nm!n!

(.)

holds true.

Proof Considering the transformation formula [, Eq. ()]

F
[
a;b; c,  + a + b – c;x( – y), y( – x)

]
= F

[
a,b;
c;

x
]
F

[
a,b;

 + a + b – c;
y
]

(.)

and applying successively the operator xOα
β and the operator yOγ

λ on both sides of (.)
gives the result. �

Setting x = y =  in Theorem . and using twice the Gauss summation formula (.)
leads to a result given by Wei et al. [, p.], that is,

Corollary . Let β , c, λ and  + a + b– c 	= ,–,–, . . . , Re(β – α) >  and Re(λ– γ ) > .
Then the following transformation:

F:;
:;

[
– : α,a,b; γ ,a,b;
– : β , c; λ,  + a + b – c;

, 
]

= F:;
:;

[
a,b : α,λ – γ ; β – α,γ ;
β ,λ : c;  + a + b – c;

, 
]

(.)

holds true.

http://www.advancesindifferenceequations.com/content/2014/1/126
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Theorem . The following transformation:

F ()
[
a,α + α ::  – β – β; –;– : α;α; –;

b :: α + α; –;– :  – β;  – β; –;
– x, –x,x

]

=
∑
m,n≥

(a)m+n(α)m(α)n(β)n–m(β)m–n

(b)m+n

(–x)m+n

m!n!
(.)

holds true.

Proof We start from the following transformation formula between the Appell function
F and the Horn function G [, Eq. (.)] with x 
→ –x and y 
→ –x:

G(α,α;β,β; –x, –x)

= ( – x)–α–αF
[
 – β – β;α,α;  – β,  – β;

–x
 – x

,
–x
 – x

]
. (.)

Applying the operator xOa
b on both sides of (.) in a similar way as in the proofs of the

previous theorems gives the result. �

If we set x =  in Theorem ., we obtain the following corollary which has been given
by Wei et al. [, p.].

Corollary . Let e be a nonpositive integer. Then the following transformation:

F:;
:;

[
e,  – β – β : α; α;
 + e – d :  – β;  – β;

, 
]

=
�(d)�(α + α + d – e)
�(d – e)�(α + α + d)

∑
m,n≥

(e)m+n(α)m(α)n(β)n–m(β)m–n

(α + α + d)m+nm!n!
(.)

holds true.

Proof Making the following substitutions: a = e, b = α + α + d, (.) can be written in
the form

∑
m,n≥

( – β – β)m+n(e)m+n(α)m(α)n(–)m+n

(α + α + d)m+n( – β)m( – β)nm!n! F
[

α + α +m + n, e +m + n;
α + α + d +m + n;


]

=
∑
m,n≥

(e)m+n(α)m(α)n(β)n–m(β)m–n

(α + α + d)m+n

(–)m+n

m!n!
. (.)

Summing the hypergeometric function F in the left member of (.) with the help of
the Gauss summation formula (.) gives the result. �

Note that this result has been given recently by Wei et al. [, p.].
Let us complete this paper by giving one last transformation.
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Theorem . The following transformation:

F ()
[
a :: β; –;α : –;–;–;
b :: –;–;– : γ; –;–;

x,x,x
]

=
∑
m,n≥

(a)m+n(α + β + n)m(α)m(β)m(α + β)n
(b)m+n(α + β)m(γ)m

xm+n

m!n!
(.)

holds true.

Proof From the following identity between the triple hypergeometric functionHA and the
hypergeometric function F [, p., Eq. (.)] with y = z = x:

HA(α,β,β;γ,β;x,x,x) = ( – x)–α–β F
[

α,β;
γ;

x
( – x)

]
, (.)

if we apply the operator xOα
β on both sides (.), the result follows easily after simple

calculations. �

Corollary . Let α and β be two nonpositive integers or a be a nonpositive integer.Then
the following transformation:

F ()
[
a :: β; –;α : –;–;–;
b :: –;–;– : γ; –;–;

, , 
]

=
�(b)�(b – a – α – β)
�(b – a)�(b – α – β)

F
[

a,α,β,  – b + α + β;
γ, –b+a+α+β

 , –b+a+α+β
 ;

–


]
(.)

holds true.

Proof Putting x =  in Theorem ., we have, after simple manipulations,

F ()
[
a :: β; –;α : –;–;–;
b :: –;–;– : γ; –;–;

, , 
]

=
∑
m≥

(a)m(α)m(β)m
(b)m(γ)mm! F

[
a +m,α + β + m;

b +m;

]
. (.)

Using the Gauss summation theorem (.), the result follows easily. �

The previous corollary has been given by Wei et al. [, p.].
It is important to mention here that the fractional calculus operator zOα

β used in this
paper can provide many very general transformation formulas involving hypergeometric
functions of several variables. Tremblay [] obtainedmany new transformation formulas
with the help of this fractional calculus operator. A paper dealing with these new relations
is in preparation.
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