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Abstract
We define generalized additive set-valued functional equations, which are related
with the following generalized additive functional equations:
f (x1 + · · · + xl) = (l – 1)f ( x1+···+xl–1

l–1 ) + f (xl),

f
( x1 + · · · + xl–1

l – 1
+ xl

)
+ f

(x1 + · · · + xl–2 + xl
l – 1

+ xl–1
)
+ · · · + f

(x2 + · · · + xl
l – 1

+ x1
)

= 2
[
f (x1) + f (x2) + · · · + f (xl)

]

for a fixed integer l with l > 1, and they prove the Hyers-Ulam stability of the
generalized additive set-valued functional equations by using the fixed point method.
MSC: Primary 39B52; 54C60; 91B44
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1 Introduction and preliminaries
After the pioneering papers were written by Aumann [] and Debreu [], set-valued func-
tions in Banach spaces have been developed in the last decades.We can refer to the papers
by Arrow and Debreu [], McKenzie [], the monographs by Hindenbrand [], Aubin and
Frankowska [], Castaing andValadier [], Klein andThompson [] and the survey byHess
[]. The theory of set-valued functions has been much related with the control theory and
the mathematical economics.
Let Y be a Banach space. We define the following:
Y : the set of all subsets of Y ;
Cb(Y ): the set of all closed bounded subsets of Y ;
Cc(Y ): the set of all closed convex subsets of Y ;
Ccb(Y ): the set of all closed convex bounded subsets of Y ;
Ccc(Y ): the set of all closed compact subsets of Y .

We can consider the addition and the scalar multiplication on Y as follows:

C +C′ =
{
x + x′ : x ∈ C,x′ ∈ C′}, λC = {λx : x ∈ C},
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where C,C′ ∈ Y and λ ∈R. Further, if C,C′ ∈ Cc(Y ), then we denote by

C ⊕C′ = C +C′.

We can easily check that

λC + λC′ = λ
(
C +C′), (λ +μ)C ⊆ λC +μC,

where C,C′ ∈ Y and λ,μ ∈R. Furthermore, when C is convex, we obtain

(λ +μ)C = λC +μC

for all λ,μ ∈R
+.

For a given set C ∈ Y , the distance function d(· ,C) and the support function s(· ,C) are,
respectively, defined by

d(x,C) = inf
{‖x – y‖ : y ∈ C

}
, x ∈ Y ,

s
(
x∗,C

)
= sup

{〈
x∗,x

〉
: x ∈ C

}
, x∗ ∈ Y ∗.

For every pair C,C′ ∈ Cb(Y ), we define the Hausdorff distance between C and C′ by

h
(
C,C′) = inf

{
λ >  : C ⊆ C′ + λBY ,C′ ⊆ C + λBY

}
,

where BY is the closed unit ball in Y .
The following proposition is related with some properties of the Hausdorff distance.

Proposition . For every C,C′,K ,K ′ ∈ Ccb(Y ) and λ > , the following properties hold:
(a) h(C ⊕C′,K ⊕K ′) ≤ h(C,K ) + h(C′,K ′);
(b) h(λC,λK ) = λh(C,K ).

Let (Ccb(Y ),⊕,h) be endowed with the Hausdorff distance h. Since Y is a Banach
space, (Ccb(Y ),⊕,h) is a complete metric semigroup (see []). Debreu [] proved that
(Ccb(Y ),⊕,h) is isometrically embedded in a Banach space as follows.

Lemma . [] Let C(BY∗ ) be the Banach space of continuous real-valued functions on BY∗

endowed with the uniform norm ‖ · ‖u. Then the mapping j : (Ccb(Y ),⊕,h)→ C(BY∗ ), given
by j(A) = s(· ,A), satisfies the following properties:
(a) j(A⊕ B) = j(A) + j(B);
(b) j(λA) = λj(A);
(c) h(A,B) = ‖j(A) – j(B)‖u;
(d) j(Ccb(Y )) is closed in C(BY∗ )

for all A,B ∈ Ccb(Y ) and all λ ≥ .

Let f : � → (Ccb(Y ),h) be a set-valued function from a complete finite measure space
(�,�,ν) into Ccb(Y ). Then f is Debreu integrable if the composition j ◦ f is Bochner
integrable (see []). In this case, the Debreu integral of f in � is the unique element
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(D)
∫
�
f dν ∈ Ccb(Y ) such that j((D)

∫
�
f dν) is the Bochner integral of j ◦ f . The set of De-

breu integrable functions from� to Ccb(Y ) will be denoted byD(�,Ccb(Y )). Furthermore,
onD(�,Ccb(Y )), we define (f + g)(ω) = f (ω)⊕ g(ω) for all f , g ∈D(�,Ccb(Y )). Then we find
that ((�,Ccb(Y )), +) is an abelian semigroup.
The stability problem of functional equations originated from a question of Ulam []

concerning the stability of group homomorphisms. Hyers [] gave a first affirmative par-
tial answer to the question of Ulam for Banach spaces. Hyers’ Theoremwas generalized by
Aoki [] for additive mappings and by Rassias [] for linear mappings by considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by
Găvruta [] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Rassias’ approach. The stability problems of several functional equations
have been extensively investigated by a number of authors and there are many interesting
results concerning this problem (see [, , –]).
Let X be a set. A function d : X × X → [,∞] is called a generalized metric on X if d

satisfies
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
Note that the distinction between the generalizedmetric and the usaul metric is that the

range of the former includes the infinity.
Let (X,D) be a generalized metric space. An operator T : X → X satisfies a Lipschitz

condition with Lipschitz constant L if there exists a constant L ≥  such that d(Tx,Ty) ≤
Ld(x, y) for all x, y ∈ X. If the Lipschitz constant is less than , then the operator T is called
a strictly contractive operator. We recall a fundamental result in the fixed point theory.

Theorem . [, ] Let (X,d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < . Then for each given element
x ∈ X, either

d
(
Jnx, Jn+x

)
=∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jnx, y) < ∞};
() d(y, y∗) ≤ 

–Ld(y, Jy) for all y ∈ Y .

In , Isac and Rassias started to use the fixed point theory for the proof of stability
theory of functional equations. Afterwards the stability problems of several functional
equations by using the fixed pointmethods have been extensively investigated by a number
of authors [, , ].
Set-valued functional equations have been studied by a number of authors and there are

many interesting results concerning this problem (see [–]). In this paper, we define
generalized additive set-valued functional equations and prove the Hyers-Ulam stability
of generalized additive set-valued functional equations by using the fixed point method.
Throughout this paper, let X be a real vector space and Y a Banach space.
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2 Stability of a generalized additive set-valued functional equation
Definition . Let f : X → Ccb(Y ) be a set-valued function. The generalized additive set-
valued functional equation is defined by

f (x + · · · + xl) = (l – )f
(
x + · · · + xl–

l – 

)
⊕ f (xl) (.)

for all x, . . . ,xl ∈ X. Every solution of the generalized additive set-valued functional equa-
tion is called a generalized additive set-valued mapping.

Theorem . Let ϕ : Xl → [,∞) be a function such that there exists an L <  with

ϕ(x, . . . ,xl) ≤ L
l
ϕ(lx, . . . , lxl) (.)

for all x, . . . ,xl ∈ X. Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying

h
(
f (x + · · · + xl), (l – )f

(
x + · · · + xl–

l – 

)
⊕ f (xl)

)
≤ ϕ(x, . . . ,xl) (.)

for all x, . . . ,xl ∈ X. Then there exists a unique generalized additive set-valued mapping
A : X → (Ccb(Y ),h) such that

h
(
f (x),A(x)

) ≤ L
l( – L)

ϕ(x, . . . ,x) (.)

for all x ∈ X.

Proof Let x = · · · = xl = x in (.). Since f (x) is a convex set, we get

h
(
f (lx), lf (x)

) ≤ ϕ(x, . . . ,x) (.)

and if we replace x by x
l in (.), then we obtain

h
(
f (x), lf

(
x
l

))
≤ ϕ

(
x
l
, . . . ,

x
l

)
≤ L

l
ϕ(x, . . . ,x) (.)

for all x ∈ X. Consider

S :=
{
g : g : X → Ccb(Y ), g() = {}}

and introduce the generalized metric on X,

d(g, f ) = inf
{
μ ∈ (,∞) : h

(
g(x), f (x)

) ≤ μϕ(x, . . . ,x),x ∈ X
}
,

where, as usual, infϕ = +∞. It is easy to show that (S,d) is complete (see [], Theo-
rem .). Now we consider the linear mapping J : S → S such that

Jg(x) := lg
(
x
l

)
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for all x ∈ X. Let g, f ∈ S be given such d(g, f ) = ε. Then

h
(
g(x), f (x)

) ≤ εϕ(x, . . . ,x)

for all x ∈ X. Hence

h
(
Jg(x), Jf (x)

)
= h

(
lg

(
x
l

)
, lf

(
x
l

))
= lh

(
g
(
x
l

)
, f

(
x
l

))
≤ εLϕ(x, . . . ,x)

for all x ∈ X. So d(g, f ) = ε implies the d(Jg, Jf ) ≤ Lε. This means that

d(Jg, Jf ) ≤ Ld(g, f )

for all g, f ∈ S. Furthermore we can have d(f , Jf ) ≤ L
l from (.). By Theorem ., there

exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
x
l

)
=

l
A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

h
(
f (x),A(x)

) ≤ μϕ(x, . . . ,x)

for all x ∈ X;
() d(Jnf ,A)→  as n→ ∞. This implies the equality

lim
n→∞ lnf

(
x
ln

)
= A(x)

for all x ∈ X;
() d(f ,A)≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,A)≤ L
l – lL

.

This implies that the inequality (.) holds. By (.),

h
(
lnf

(
x
ln

+
x
ln

+ · · · + xl
ln

)
, ln(l – )f

(
x + x + · · · + xl–

ln(l – )

)
⊕ lnf

(
xl
ln

))

≤ lnϕ
(
x
ln
,
x
ln
, . . . ,

xl
ln

)
≤ Lnϕ(x,x, . . . ,xl),

which tends to zero as n→ ∞ for all x,x, . . . ,xl ∈ X. Thus

A(x + x + · · · + xl) = (l – )A(x + · · · + xl–)⊕A(xl),

as desired. �
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Corollary . Let  > p >  and θ ≥  be real numbers, and let X be a real normed space.
Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying

h
(
f (x + · · · + xl), (l – )f

(
x + · · · + xl–

l – 

)
⊕ f (xl)

)
≤ θ

l∑
j=

‖xj‖p (.)

for all x, . . . ,xl ∈ X. Then there exists a unique generalized additive set-valued mapping
A : X → Y satisfying

h
(
f (x),A(x)

) ≤ lθ
l – lp

‖x‖p

for all x ∈ X.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xl) := θ

l∑
j=

‖xj‖p

for all x, . . . ,xl ∈ X. �

Theorem . Let ϕ : Xl → [,∞) be a function such that there exists an L <  with

ϕ(x, . . . ,xl) ≤ lLϕ

(
x
l
, . . . ,

xl
l

)
(.)

for all x, . . . ,xl ∈ X. Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying (.). Then
there exists a unique generalized additive set-valued mapping A : X → (Ccb(Y ),h) such
that

h
(
f (x),A(x)

) ≤ L
 – L

ϕ(x, . . . ,x)

for all x ∈ X.

Proof It follows from (.) that

h
(

l
f (lx), f (x)

)
≤ Lϕ

(
x
l
, . . . ,

x
l

)
(.)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let p >  and θ ≥  be real numbers, and let X be a real normed space.
Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying (.). Then there exists a unique
generalized additive set-valued mapping A : X → Y satisfying

h
(
f (x),A(x)

) ≤ lθ
lp – l

‖x‖p

for all x ∈ X.
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Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xl) := θ

l∑
j=

‖xj‖p

for all x, . . . ,xl ∈ X. �

3 Stability of a generalized Cauchy-Jensen type additive set-valued functional
equation

Definition . Let f : X → Ccb(Y ) be a set-valued function. The generalized Cauchy-
Jensen type additive set-valued functional equation is defined by

f
(
x + · · · + xl–

l – 
+ xl

)
⊕ f

(
x + · · · + xl– + xl

l – 
+ xl–

)
⊕ · · ·⊕

f
(
x + · · · + xl

l – 
+ x

)
= 

[
f (x)⊕ f (x)⊕ · · · ⊕ f (xl)

]
(.)

for all x, . . . ,xl ∈ X. Every solution of the generalized Cauchy-Jensen type additive set-
valued functional equation is called a generalized Cauchy-Jensen type additive set-valued
mapping.

Theorem . Let φ : Xl → [,∞) be a function such that there exists an L <  with

ϕ(x,x, . . . ,xl) ≤ L

ϕ(x, x, . . . , xl)

for all x,x, . . . ,xl ∈ X. Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying

h
(
f
(
x + · · · + xl–

l – 
+ xl

)
⊕ f

(
x + · · · + xl– + xl

l – 
+ xl–

)
⊕ · · ·⊕

f
(
x + · · · + xl

l – 
+ x

)
, 

[
f (x)⊕ f (x)⊕ · · · ⊕ f (xl)

]) ≤ ϕ(x,x, . . . ,xl) (.)

for all x,x, . . . ,xl ∈ X. Then

A(x) = lim
n→∞nf

(
x
n

)

exists for each x ∈ X and defines a unique generalized Cauchy-Jensen type additive set-
valued mapping A : X → (Ccb(Y ),h) such that

A
(
x + · · · + xl–

l – 
+ xl

)
⊕A

(
x + · · · + xl– + xl

l – 
+ xl–

)
⊕ · · ·⊕

A
(
x + · · · + xl

l – 
+ x

)
= 

[
A(x)⊕A(x)⊕ · · · ⊕A(xl)

]
(.)

and

h
(
f (x),A(x)

) ≤ L
l – lL

ϕ(x, . . . ,x) (.)

for all x ∈ X.

http://www.advancesindifferenceequations.com/content/2014/1/127
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Proof Let x = · · · = xl in (.). Since f (x) is a convex set, we get

h
(
lf (x), lf (x)

) ≤ ϕ(x, . . . ,x) (.)

and so

h
(
f (x), f

(
x


))
≤ 

l
ϕ

(
x

, . . . ,

x


)
≤ L

l
ϕ(x, . . . ,x) (.)

for all x ∈ X. Consider

S :=
{
g : g : X → Ccb(Y ), g() = {}}

and introduce the generalized metric on X,

d(g, f ) = inf
{
μ ∈ (,∞) : h

(
g(x), f (x)

) ≤ μϕ(x, . . . ,x),x ∈ X
}
,

where, as usual, infϕ = +∞. Then (S,d) is complete. Now we consider the linear mapping
J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X. Let g, f ∈ S be given such that d(g, f ) = ε. Then

h
(
g(x), f (x)

) ≤ εϕ(x, . . . ,x)

for all x ∈ X. Hence

h
(
Jg(x), Jf (x)

)
= h

(
g

(
x


)
, f

(
x


))
= h

(
g
(
x


)
, f

(
x


))
≤ Lεϕ(x, . . . ,x)

for all x ∈ X. So d(g, f ) = ε implies the d(Jg, Jf ) ≤ Lε. This means that

d(Jg, Jf ) ≤ Ld(g, f )

for all g, f ∈ S. It follows from (.) that d(f , Jf ) ≤ L
l . By Theorem ., there exists a map-

ping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
x


)
=


A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

h
(
f (x),A(x)

) ≤ μϕ(x, . . . ,x)

for all x ∈ X;

http://www.advancesindifferenceequations.com/content/2014/1/127
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() d(Jnf ,A)→  as n→ ∞. This implies the equality

lim
n→∞nf

(
x
n

)
= A(x)

for all x ∈ X;
() d(f ,A)≤ 

–Ld(f , Jf ), which implies the inequality

d(f ,A)≤ L
l – lL

.

This implies that the inequality (.) holds. By (.),

h
(
nf

(
x + x + · · · + xl–

n(l – )
+

xl
n

)
⊕ nf

(
x + · · · + xl– + xl

n(l – )
+
xl–
n

)
⊕ · · ·⊕

nf
(
x + · · · + xl
n(l – )

+
x
n

)
, n+

[
f
(
x
n

)
⊕ f

(
x
n

)
⊕ · · · ⊕ f

(
xl
n

)])

≤ nϕ
(
x
n

,
x
n

, . . . ,
xl
n

)
,

which tends to zero as n→ ∞ for all x,x, . . . ,xl ∈ X. Thus we can have

A
(
x + · · · + xl–

l – 
+ xl

)
⊕A

(
x + · · · + xl– + xl

l – 
+ xl–

)
⊕ · · ·⊕

A
(
x + · · · + xl

l – 
+ x

)
= 

[
A(x)⊕A(x)⊕ · · · ⊕A(xl)

]
(.)

as desired. �

Corollary . Let  > p >  and θ ≥  be real numbers, and let X be a real normed space.
Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying

h
(
f
(
x + x + · · · + xl–

(l – )
+ xl

)
⊕ f

(
x + · · · + xl– + xl

(l – )
+ xl–

)
⊕ · · ·⊕

f
(
x + · · · + xl

(l – )
+ x

)
, 

[
f (x)⊕ f (x)⊕ · · · ⊕ f (xl)

]) ≤ θ

l∑
j=

‖xj‖p (.)

for all x, . . . ,xl ∈ X. Then there exists a unique generalized Cauchy-Jensen type additive
set-valued mapping A : X → Y satisfying (.) and

h
(
f (x),A(x)

) ≤ lθ
l – lp

‖x‖p

for all x ∈ X.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xl) := θ

l∑
j=

‖xj‖p

for all x, . . . ,xl ∈ X. �
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Theorem . Let ϕ : Xl → [,∞) be a function such that there exists an L <  with

ϕ(x,x, . . . ,xl) ≤ Lϕ

(
x

,
x

, . . . ,

xl


)
(.)

for all x, . . . ,xl ∈ X. Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying (.). Then
there exists a unique generalized Cauchy-Jensen type additive set-valuedmapping A : X →
(Ccb(Y ),h) satisfying (.) and

h
(
f (x),A(x)

) ≤ L
l – lL

ϕ(x, . . . ,x)

for all x ∈ X.

Proof It follows from (.) that

h
(


f (x), f (x)

)
≤ L

l
ϕ

(
x

, . . . ,

x


)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let p >  and θ ≥  be real numbers and let X be a real normed space.
Suppose that f : X → (Ccb(Y ),h) is a mapping satisfying (.). Then there exists a unique
generalized Cauchy-Jensen type additive set-valued mapping A : X → Y satisfying (.)

h
(
f (x),A(x)

) ≤ lθ
lp – l

‖x‖p

for all x ∈ X.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xl) := θ

l∑
j=

‖xj‖p

for all x, . . . ,xl ∈ X. �
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