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Abstract
For a transcendental entire function f (z) in the complex plane, we study its divided
differences Gn(z). We partially prove a conjecture posed by Bergweiler and Langley
under the additional condition that the lower order of f (z) is smaller than 1

2 .
Furthermore, we prove that if zero is a deficient value of f (z), then δ(0,G) < 1, where
G(z) = (f (z + c) – f (z))/f (z).
MSC: 30D35
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1 Introduction andmain results
In this paper, we assume that the reader is familiar with the standard notations of Nevan-
linna theory of meromorphic functions (see [, ] or []). In particular, for a meromor-
phic function f (z) in the complex plane C, we use ρ(f ) and μ(f ) to denote its order and
lower order respectively, and λ(f ) to denote the exponent of the convergence of the zero-
sequences.
Let f (z) be a transcendentalmeromorphic function inC. The forward differences�nf (z)

are defined in the standard way by

�f (z) = f (z + ) – f (z), �n+f (z) = �nf (z + ) –�nf (z), n = , , . . . . (.)

The divided differences are defined by

G(z) =
�f (z)
f (z)

, Gn(z) =
�nf (z)
f (z)

, n = , , . . . . (.)

Recently, a number of papers including [–] have focused on the complex difference
equations and differences. In [] Bergweiler andLangley investigated the existence of zeros
of�f (z) andG(z). Their resultmay be viewed as discrete analogs of the following theorem
on the zeros of f ′(z).

Theorem A ([–]) Let f (z) be transcendental and meromorphic in the complex plane
with

lim inf
r→∞

T(r, f )
r

= . (.)

Then f ′ has infinitely many zeros.
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Theorem A is sharp, as shown by ez , tan z and examples of arbitrary order greater than 
constructed in []. For f (z) as in the hypotheses of Theorem A, it follows from Hurwitz’s
theorem that, if z is a zero of f ′(z) then f (z + c) – f (z) has a zero near z for all sufficiently
small c ∈ C\{}. Thus it is natural to ask, for such functions f (z), whether f (z + c) – f (z)
must always have infinitely many zeros or not. In [], Bergweiler and Langley answered
this problem and obtained Theorem B and Theorem C.

Theorem B ([]) Let f (z) be a transcendental entire function of order ρ(f ) < 
 . If Gn(z)

defined by (.) is transcendental, then Gn(z) has infinitely many zeros. In particular, if
ρ(f ) <min{ 

n ,

 }, then Gn(z) is transcendental and has infinitely many zeros.

Remark  Recently, Theorem B was extended by Langley to the case ρ(f ) = 
 in []. We

only state the following situation which was proved in [].

Theorem C ([]) There exists δ ∈ (,  ) with the following property. Let f (z) be a tran-
scendental entire function with order ρ(f ) ≤ ρ < 

 + δ < . Then G(z) defined by (.) has
infinitely many zeros.

In [], Bergweiler and Langley conjecture that the conclusion of Theorem C holds for
ρ(f ) < . In this paper, we will prove this conjecture under the additional condition that
μ(f ) < 

 .

Theorem  Let n ∈ N and let f be a transcendental entire function of order ρ(f ) < . If
μ(f ) < 

 and μ(f ) �= 
n ,


n , . . . ,

[ n ]
n , then Gn(z) defined by (.) is transcendental and has in-

finitely many zeros.

Using Theorem , we easily obtain the following corollary.

Corollary  Let n ∈ N and let f be a transcendental entire function of order ρ(f ) < . If
μ(f ) <min{  , n }, then Gn(z) is transcendental and has infinitely many zeros.

In [], Bergweiler and Langley also proved that, for a transcendental meromorphic f (z)
of order ρ(f ) < , if f (z) has finitely many poles zj, zk such that zj – zk = c, then g(z) = f (z +
c)– f (z) has infinitelymany zeros (see [], Theorem .). Furthermore, for a transcendental
entire function f of order ρ(f ) < , Chen and Shon proved that λ(g) = ρ(g) = ρ(f ), and if
f (z) has finitely many zeros zj, zk such that zj – zk = c, then G(z) = g(z)/f (z) has infinitely
many zeros and λ(G) = ρ(G) = ρ(f ) (see []). This result implies that zero is not the Borel
exceptional value of G(z).
In [], Langley investigated the deficiency of divided difference G(z) defined by (.).

He obtained that if f (z) is a transcendental entire function of order ρ(f ) <  and μ(G) < 
 ,

then δ(,G) < . In particular, if ρ(f ) < 
 , then δ(,G) <  (see [], Theorem .). The

proof of his result depends on cosπρ theorem which is invalid for μ(G) ≥ 
 .

In this paper, we consider some more general cases. For c ∈C\{}, we define

g(z) = f (z + c) – f (z), G(z) =
g(z)
f (z)

. (.)

We get the following results on the deficiency δ(,G).
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Theorem Let f (z) be a transcendental entire function of order ρ(f ) < . Suppose that f (z)
has at most finitely many zeros zj, zk such that zj – zk = c. If G(z) is defined by (.), then
the following two statements hold:

(i) If δ(,G) = , then there exists a set E ⊂ (,∞) of positive upper logarithmic density
such that m(r, f ) = o(logM(r, f )), as r → ∞, r ∈ E, where M(r, f ) =max|z|=r |f (z)|.

(ii) If zero is a deficient value of f (z), then δ(,G) < .

It is clear that, for a given transcendental entire function f (z), all but countably many
c ∈ C such that f (z) has at most finitely many zeros zj, zk such that zj – zk = c. Furthermore,
we know that, for an entire function f (z), if f (z) has a finite deficient value then μ(f ) > 

 .
Hence, Theorem  implies that, for some particular functions f (z) of order ρ(f ) > 

 , we
obtain a similar conclusion.

Example There is an example for Theorem . Let 
 < μ < . Set

f (z) =
∞∏
k=

(
 +

z

k

μ

)
.

Then μ(f ) = ρ(f ) = μ and δ(, f ) =  – sinμπ >  (see [, p.]). If we let c = , then it
follows from Theorem  that δ(,G) < .

The paper is organized as follows. In Section , we shall collect some notations and give
some lemmaswhichwill be used later. In Section , we shall proveTheorem . In Section ,
we shall prove Theorem .

2 Preliminaries and lemmas
Let f (z) =

∑∞
k= akzk be an entire function in the complex plane. Then (see [, p.]) we

have

ρ(f ) = lim sup
r→∞

log logM(r)
log r

= lim sup
r→∞

log logμ(r)
log r

= lim sup
r→∞

logν(r)
log r

and

μ(f ) = lim inf
r→∞

log logM(r)
log r

= lim inf
r→∞

log logμ(r)
log r

= lim inf
r→∞

logν(r)
log r

,

whereM(r) =max{|f (z)| : |z| = r}, μ(r) =max≤n<∞ |an|rn is the maximum term and ν(r) =
max{m : |am|rm = μ(r)} is the central index. It is well known that ν(r) is a nondecreasing
and right continuous function. Furthermore, if f (z) is transcendental entire, then ν(r) →
∞ as r → ∞.
For a setE ⊂ [,∞), we define its Lebesguemeasure bym(E) and its logarithmicmeasure

by ml(E) =
∫
E

dt
t .

We also define the upper and lower logarithmic density of E ⊂ [,∞), respectively, by

logdensE = lim
r→∞

ml(E ∩ [, r])
log r

,

http://www.advancesindifferenceequations.com/content/2014/1/128
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and

logdensE = lim
r→∞

ml(E ∩ [, r])
log r

.

Following Hayman [, pp.-], we say that a set E is an ε-set if E is a countable union
of open discs not containing the origin and subtending angles at the origin whose sum
is finite. If E is an ε-set, then the set of r ≥  for which the circle S(, r) meets has finite
logarithmic measure and hence zero upper logarithmic density. Moreover, for almost all
real θ , the intersection of E with the ray arg z = θ is a bounded set.
The following lemma contains a basic property ofmeromorphic functions of finite order.

Lemma . ([]) Let f (z) be a meromorphic function with ρ(f ) < ∞. Then, for given real
constants c >  and H (> ρ(f )), there exists a set E ⊂ (,∞) such that logdensE ≥  – ρ(f )

H ,
where E = {t|T(tec, f ) ≤ ekT(r, f )} and k = cH .

The following lemma is a version of the celebrated cosπρ theorem of [].

Lemma . ([]) Let f (z) be a transcendental entire function with lower order  ≤
μ(f ) < . Then, for each α ∈ (μ(f ), ), there exists a set E ⊂ [,∞) such that logdensE ≥
 – μ(f )

α
, where E = {r ∈ [,∞) : A(r) > B(r) cosπα}, A(r) = inf|z|=r log |f (z)|, and B(r) =

sup|z|=r log |f (z)|.

We collect some important properties of the differences of meromorphic functions in
the following lemmas.

Lemma . ([]) Let f (z) be a transcendental meromorphic function in C which satisfies
(.). Then, with the notation (.) and (.), �f (z) and G(z) are both transcendental.

Lemma . ([]) Let f (z) be a meromorphic function of finite order ρ(f ) = ρ and let c be a
non-zero finite complex number. Then, for each ε > , we have

m
(
r,
f (z + c)
f (z)

)
+m

(
r,

f (z)
f (z + c)

)
=O

(
rρ–+ε

)
(.)

and

T
(
r, f (z + c)

)
= T(r, f ) +O

(
rρ–+ε

)
+O(log r). (.)

Lemma . ([]) Let n ∈ N and let f (z) be a transcendental meromorphic function of order
smaller than  in the complex plane C. Then there exists an ε-set En such that

�nf (z) ∼ f (n)(z), z → ∞, z ∈C\En. (.)

3 Proof of Theorem 1
In order to prove Theorem , we need one more lemma. This lemma can be proved in a
similar way to the proof of Lemma  in []; we shall omit the proof.

http://www.advancesindifferenceequations.com/content/2014/1/128
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Lemma . Let T(r) (> ) be a nonconstant increasing function of finite lower order μ in
r ∈ (,∞), i.e.

lim inf
r→∞

logT(r)
log r

= μ < ∞. (.)

For any given μ >  such that μ < μ, define

E(μ) =
{
r ≥  : T(r) < rμ

}
.

Then logdensE(μ) > .

Proof of Theorem  Since f is a transcendental entire function of order ρ(f ) < , by
Lemma ., we know that there exists an ε-set En, such that

�nf (z) ∼ f (n)(z), z → ∞, z ∈C\En. (.)

From the Wiman-Valiron theory ([] or []), there is a subset F ⊂ [,∞) withml(F) < ∞
such that for all z satisfying |z| = r /∈ F and |f (z)| =M(r, f ),

f (n)(z)
f (z)

=
(

ν(r)
z

)n(
 + o()

)
, |z| = r → ∞. (.)

Set H = {|z| = r : z ∈ En}. We know that ml(H) < ∞. Therefore, by (.) and (.), for all z
satisfying |z| = r /∈ (F ∪H) and |f (z)| =M(r, f ), we get

Gn(z) =
(

ν(r)
z

)n(
 + o()

)
, |z| = r → ∞. (.)

Nowwe divide the proof into two steps. Firstly, we prove thatGn(z) is transcendental. To
do this, we assume contrarily that Gn(z) is a rational function and seek a contradiction. By
using Lemma . to ν(r) with lower orderμ(f ), we see that, for any given ε,  < ε < –μ(f ),
there exists a sequence {tj} ∈ E(ε)\(F ∪H) such that the following inequalities:

t(μ(f )––ε)n
j <

(
ν(tj)
tj

)n

< t(μ(f )–+ε)n
j (.)

hold for all sufficiently large j, where E(ε) = {r ≥  : ν(r) < rμ(f )+ε}. Since (μ(f ) –  + ε)n < 
and Gn(z) is a rational function, we deduce from (.) and (.) that

Gn(z) = βz–k
(
 + o()

)
, z → ∞, (.)

where β ( �= ) is a constant and k is a positive integer. By using (.), (.) and (.), we get

t(nμ(f )+k–n–nε)
j < |β|∣∣ + o()

∣∣ < t(nμ(f )+k–n+nε)
j , tj → ∞.

Since ε can be arbitrary small, we must have nμ(f ) + k – n = , i.e.,

μ(f ) =  –
k
n
.

http://www.advancesindifferenceequations.com/content/2014/1/128
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This contradicts the assumption that μ(f ) �= 
n ,


n , . . . ,

[ n ]
n . Thus Gn(z) must be transcen-

dental.
In the second step, we prove that Gn(z) has infinitely many zeros. If this is not true,

assume thatGn(z) has only finitely many zeros. Then /Gn(z) is also transcendental having
finitely many poles. By using (.) and the Jensen formula, for  < ε <  – ρ(f ), we have

T(r,Gn) ≤ (n + )T(r, f ) + o() +O(log r), r → ∞. (.)

Thus, It follows from (.) that μ( 
Gn

) < 
 . Using Lemma . to 

Gn
, we deduce that there

exists a subset F ⊂ [,∞) with logdensF >  such that

log |Gn| < –cT(r,Gn) < –n log r, |z| = r ∈ F, (.)

where c is a positive real number. Hence, by (.) and (.), we get

∣∣Gn(z)
∣∣|z|n = (

ν(r)
)n∣∣ + o()

∣∣ < , |z| = r ∈ F\(F ∪H). (.)

Since ν(r) → ∞ as r → ∞, (.) gives a contradiction. Therefore, Gn(z) must have in-
finitely many zeros and the proof of Theorem  is completed. �

4 Proof of Theorem 2
To prove Theorem , we first prove the following lemma.

Lemma . Let f (z) be a transcendental entire function of order ρ(f ) < . Suppose that
f (z) has at most finitely many zeros zk , zj satisfying zk – zj = c and the deficiency δ(,G) = .
Then, for any given  < ε < –ρ(f ), there exists a constant r(ε) (> ) such that the following
inequalities:

( – ε)T(r,G) ≤m(r, f ) –m
(
r,

f

)
≤ ( + ε)T(r,G) (.)

hold for all r ≥ r(ε).

Proof Let ε >  such that ρ(f ) + ε < . Using (.), we get

m
(
r,
f (z + c)
f (z)

)
=O(), r → ∞. (.)

Hence, it follows from (.), (.) and the Jensen formula that

m(r,G) =O(), T(r,G) =N(r,G) +O(), r → ∞. (.)

So, by (.) and the Jensen formula, we get

T(r,G) ≤N
(
r,

f

)
+O(), T(r,G) ≤m(r, f ) –m

(
r,

f

)
+O(), r → ∞. (.)

http://www.advancesindifferenceequations.com/content/2014/1/128
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It follows from Theorem  in [] that G(z) is transcendental. Hence, we obtain

( – ε)T(r,G) ≤m(r, f ) –m
(
r,

f

)
, for all r ≥ r(ε). (.)

On the other hand, from our hypothesis, we can easily deduce that

n
(
r,


G

)
= n

(
r,

g

)
+O(). (.)

Hence, by (.), we have

∣∣∣∣N
(
r,


G

)
–N

(
r,

g

)∣∣∣∣ =
∣∣∣∣N

(
r,


G

)
–N

(
r,


g

)∣∣∣∣ =O() (.)

for sufficiently large r. Since δ(,G) = , we have

N
(
r,


G

)
= o

(
T(r,G)

)
, r → ∞. (.)

Since

N(r, g )
T(r,G)

≤ N(r, 
G )

T(r,G)
·

N(r, g )

N(r, g ) –O()
(.)

and g(z) is transcendental of order ρ(g) <  (see [] and (.)), we get

lim
r→∞N

(
r,

g

)
=∞, N

(
r,

g

)
= o

(
T(r,G)

)
, r → ∞. (.)

Hence, by using (.), (.) and the Jensen formula, we see that the following inequalities

N
(
r,

f

)
=m(r, f ) –m

(
r,

f

)
+O() ≤ ( + ε)T(r,G) (.)

hold for all r ≥ r(ε). Let r =max{r(ε), r, r(ε)}. By (.) and (.), we see that (.) holds
for all r ≥ r. The proof of Lemma . is completed. �

Proof of Theorem  Firstly, we prove that (i) holds. Assume that δ(,G) = . Let  < ε <
 – ρ(f ) be a given constant. Since N(r,G) = N(r, f ) + O(), by using (.) and (.), we
get

N
(
r,

g

)
= o

(
N

(
r,

f

))
. (.)

Rotate the zeros of f (z) and g(z) to the negative axis and form the canonical products f(z)
and g(z). Obviously, ρ(f) = λ(f) = λ(f ) = ρ(f ) < . For an entire function h(z), define

m(r,h) =min|z|=r
∣∣h(z)∣∣.

http://www.advancesindifferenceequations.com/content/2014/1/128
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By using the standard estimates for entire functions (see [] or []), we have

logm(r, g) ≤ logm(r, g) ≤ logM(r, g) ≤ logM(r, g), (.)

logm(r, f) + logM(r, f) ≤ logm(r, f ) + logM(r, f ), (.)

and

logM(r, g) = r
∫ ∞



N(t, g )
(r + t)

dt, logM(r, f) = r
∫ ∞



N(t, f )
(r + t)

dt. (.)

Hence, by (.), (.) and (.), we see that

logM(r, g) = o
(
logM(r, f)

)
, r → ∞. (.)

To finish the proof of (i), we need to consider the following two cases.
Case . μ(f) < 

 . By Lemma ., there exists a set E ⊂ (,∞) with logdensE ≥  – μ(f)
α

,

α =
μ(f)+ 


 , such that

cosπα logM(r, f) < logm(r, f) (.)

holds for all r ∈ E. Set E = E. It follows from (.) and (.) that

logM(r, f) ≤  logM(r, f ), r ∈ E. (.)

Case . 
 ≤ μ(f) < . By Lemma ., there exists a set E ⊂ (,∞) with logdensE ≥

 – μ(f)
α

such that

– logm(r, f) < c logM(r, f), r ∈ E, (.)

where  < c = – cosπα <  and α = μ(f)+
 . Set E = E. It follows from (.) and (.)

that

logM(r, f) ≤ 
 – c

logM(r, f ), r ∈ E. (.)

Hence, by using (.), (.) and (.), we deduce that there exists a set E ⊂ (,∞) with
logdensE > , such that

logM(r, g) = o
(
logM(r, f )

)
, r → ∞, r ∈ E. (.)

Using (.) and noting that T(r, f ) – T(r, g) – O() ≤ T(r,G), we see that the following
inequalities

m
(
r,

f

)
– ( – ε)O()≤ εT(r, f ) + ( – ε)T(r, g) (.)

http://www.advancesindifferenceequations.com/content/2014/1/128
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hold for all r ≥ r(ε). Hence, there exists a constant r(ε) > r(ε) satisfyingM(r, f ) >  and
M(r, g) > . By using (.) and (.), we deduce that

m
(
r,

f

)
– ( – ε)O()≤ ε logM(r, f ) + ( – ε)

(
o
(
logM(r, f )

))
(.)

hold for r ∈ E and r ≥ r(ε). As ε can be arbitrarily small, we get

m
(
r,

f

)
= o

(
logM(r, f )

)
, r → ∞, r ∈ E. (.)

This gives (i).
In order to prove (ii), we suppose contrarily that δ(,G) =  and seek a contradiction.

From (i), we know that there exists a set E ⊂ (,∞) with logdensE >  satisfying (.).
Assume that the zero is a deficient value of f (z) with deficiency δ(, f ) = δ > . It follows
from definition of deficiency, we easily find that, for all sufficiently large r

m
(
r,

f

)
>

δ


m(r, f ). (.)

By (.) and (.), we have

T(r, f ) =m(r, f ) = o
(
logM(r, f )

)
, r → ∞, r ∈ E. (.)

Obviously, for an entire function f (z), the following inequalities (see [] or [])

T(r, f )≤ logM(r, f ) ≤ T(r, f ) (.)

hold for all sufficiently large r. Set

E =
{
t|T(t, f ) ≤ HT(r, f )

}
. (.)

By using Lemma ., we have

logdensE ≥  –
ρ(f )
H

,

where H = (logdensE)–ρ(f ) +  > ρ(f ). Set E = E ∩ E. By a simple computation, we can
get

logdensE ≥ logdensE –
ρ(f )
H

> .

Hence, by (.), (.) and (.), we obtain

≤ Ho(), r → ∞, r ∈ E. (.)

Obviously, (.) gives a contradiction and the proof of Theorem  is completed. �

http://www.advancesindifferenceequations.com/content/2014/1/128
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