
Xie et al. Advances in Difference Equations 2014, 2014:131
http://www.advancesindifferenceequations.com/content/2014/1/131

RESEARCH Open Access

Robust exponential stability analysis for
delayed neural networks with time-varying
delay
Jing-Chen Xie1,2, Chin-Pin Chen2, Pin-Lin Liu3* and Yoau-Chau Jeng2

*Correspondence: lpl@ctu.edu.tw
3Department of Automation
Engineering, Institute of
Mechatronoptic Systems, Chienkuo
Technology University, Changhua,
Taiwan, ROC
Full list of author information is
available at the end of the article

Abstract
This paper considers the problems of determining the robust exponential stability
and estimating the exponential convergence rate for delayed neural networks with
parametric uncertainties and time delay. The relationship among the time-varying
delay, its upper bound, and their difference is taken into account. Theoretic analysis
shows that our result includes a previous result derived in the literature. As
illustrations, the results are applied to several concrete models studied in the
literature, and a comparison of results is given.
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1 Introduction
Timedelays are often encountered in various practical systems such as chemical processes,
neural networks, and long transmission lines in pneumatic systems. It has been shown that
the existence of time delays may lead to oscillations, divergences, or instabilities. This mo-
tivates the stability analysis problem for linear systems affected by time delays. During the
last decade, increasing research interests have been aroused in the stability analysis and
control design of time delay systems [–]. It is well known that neural networks have
been extensively studied over the past few decades and have been successfully applied
to many areas, such as signal processing, static processing, pattern recognition, combi-
natorial optimization, and so on []. So, it is important to study the stability of neural
networks. In biological and artificial neural networks, time delays often arise in the pro-
cessing of information storage and transmission.
Recently, a considerable number of sufficient conditions on the existence, uniqueness,

and global asymptotic stability of equilibrium point for neural networks with constant
delays or time-varying delays were reported under some assumptions; for example, see
[, , , , , , –] and references therein. In the design of delayed neural networks
(DNNs), however, one is interested not only in the global asymptotic stability of the neural
network, but also in some other performances. In particular, it is often desirable that the
neural network converges fast enough in order to achieve a fast response []. It is well
known that exponential stability gives a fast convergence rate to the equilibrium point.
Therefore, some researchers studied the exponential stability analysis problem for time
delay systems with constant delays or time-varying delays, and a great number of results
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on this topic have been given in the literature; for example, see [, , –, –] and ref-
erences therein. The exponential stability problems of switched positive continuous time
[] and discrete-time [, ] linear systems with time delay were considered. In [],
exponential stability criteria for DNNs with time-varying delay are derived, but the con-
straint ḣ(t) <  on a time-varying delaywas imposed. Such a restriction is very conservative
and has physical limitations.
In practical implementations, uncertainties are inevitable in neural networks because

of the existence of modeling errors and external disturbance. It is important to ensure
the neural networks system is stable under these uncertainties. Both time delays and un-
certainties can destroy the stability of neural networks in an electronic implementation.
Therefore, it is of great theoretical and practical importance to investigate the robust sta-
bility for delayed neural networks with uncertainties [].
Recently, a free-weighting matrix approach [] has been employed to study the expo-

nential stability problem for neural networks with a time-varying delay []. However, as
mentioned in [], some useful terms in the derivative of the Lyapunov functional were
ignored in [, , ]. The derivative of

∫ 
–h

∫ t
t+θ

ẋT (s)Zẋ(s)dsdθ with  ≤ h(t) ≤ h was esti-
mated as ẋT (t)hZẋ(t) –

∫ t
t–h(t) ẋ

T (s)Zẋ(s)ds and the negative term –
∫ t
t–h(t) ẋ

T (s)Zẋ(s)dswas
ignored in [], which may lead to considerable conservativeness. Although in [] and []
the negative term –

∫ t
t–h(t) ẋ

T (s)Zẋ(s)dswas retained, the other term, –
∫ t–h(t)
t–h ẋT (s)Zẋ(s)ds,

was ignored, which may also lead to considerable conservativeness. On the other hand, if
the free-weighting method introduces too many free-weighting matrices in the theoreti-
cal derivation, some of them sometimes have no effect on reducing the conservatism of
the obtained results; on the contrary, they mathematically complicate the system analysis
and consequently lead to a significant increase in the computational demand []. How to
overcome the aforementioned disadvantages of the integral inequality approach (IIA) is
an important research topic in the delay-dependent related problem and also motivates
the work of this paper on exponential stability analysis. Furthermore, the restriction of
ḣ(t) <  is released in the proposed scheme.
In this paper, a global robust exponential stability of the delayed neural networks with

time-varying delays is proposed. By constructing a suitable augmented Lyapunov func-
tional, a delay-dependent criterion is derived in terms of linear matrix inequalities (LMIs)
and the integral inequality approach (IIA), which can be solved efficiently by using the gen-
eralized eigenvalue problem (GEVP). Furthermore, examples with simulation are given to
show that the proposed stability criteria are less conservative than some recent ones in
the literature.
Notation: Throughout this paper, NT stands for the transpose of the matrix N , RN de-

notes the n-dimensional Euclidean space, P > means that thematrix P is positive definite,
I is an appropriately dimensioned identity matrix, and (diag . . .) denotes a block diagonal
matrix.

2 Problem formulations and preliminaries
Consider continuous neural networks with time-varying delays can be described by the
following state equations:

u̇i(t) = –(ci +�ci)ui(t) +
n∑
j=

(aij +�aij)fj
(
uj(t)

)
+

n∑
j=

(bij +�bij)fj
(
uj

(
t–h(t)

))
+ Ji, (.)
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or equivalently

u̇(t) = –
(
C +�C(t)

)
u(t) +

(
A +�A(t)

)
f
(
u(t)

)
+

(
B +�B(t)

)
f
(
u
(
t – h(t)

))
+ J , (.)

where u(t) = [u(t),u(t), . . . ,un(t)]T ∈ Rn is the neuron state vector, f (u(t)) = [f(u(t)),
f(u(t)), . . . , fn(un(t))]T ∈ Rn is for the activation functions, f (u(t – h(t))) = [f(u(t –
h(t))), f(u(t–h(t))), . . . , fn(un(t–h(t)))]T ∈ Rn, J = [J, J, . . . , Jn]T is a constant input vector,
C = diag(ci) is a positive diagonal matrix, A = (aij)n×n and B = (bij)n×n are the interconnec-
tion matrices representing the weight coefficients of the neurons. The matrices �C(t),
�A(t), and �B(t) are the uncertainties of the system and have the form

[
�C(t) �A(t) �B(t)

]
=DF(t)[Ec Ea Eb], (.)

where D, Ec, Ea, and Eb are known constant real matrices with appropriate dimensions
and F(t) is an unknown matrix function with Lebesgue-measurable elements bounded by

FT (t)F(t)≤ I, ∀t, (.)

where I is an appropriately dimensioned identity matrix.
The time delay h(t) is a time-varying differentiable function that satisfies

 ≤ h(t) ≤ h, ḣ(t)≤ hd, ∀t ≥ , (.)

where h and hd are constants.

Assumption  Throughout this paper, it is assumed that each of the activation functions
fj (j = , , . . . ,n) possesses the following condition:

 ≤ fi(u) – fi(v)
u – v

≤ ki, u �= v ∈ R, i = , , . . . ,n, (.)

where ki (i = , , . . . ,n) are positive constants.

Next, the equilibrium point u∗ = [u∗
 , . . . ,u∗

n]T of system (.) is shifted to the origin
through the transformation x(t) = u(t) – u∗, then system (.) can be equivalently writ-
ten as the following system:

ẋ(t) = –
(
C +�C(t)

)
x(t) +

(
A +�A(t)

)
g
(
x(t)

)
+

(
B +�B(t)

)
g
(
x
(
t – h(t)

))
, (.)

where x(·) = [x(·), . . . ,xn(·)]T , g(x(·)) = [g(x(·)), . . . , gn(xn(·))]T , gi(xi(·)) = fi(xi(·) + u∗
i ) –

fi(u∗
i ), i = , , . . . ,n. It is obvious that the function gj(·) (j = , , . . . ,n) satisfies the following

condition:

 ≤ gi(xi)
xi

≤ ki, gi() = ,∀xi �= , i = , , . . . ,n, (.)

which is equivalent to

gi(xi)
(
gi(xi) – kixi

) ≤ , gi() = ,∀xi �= , i = , , . . . ,n. (.)
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To obtain the main results, the following lemmas are needed. First, we introduce a tech-
nical lemma of the integral inequality approach (IIA), which will be used in the proof of
ours.

Lemma  [, ] For any semi-positive definite matrices

X =

⎡
⎢⎣
X X X

XT
 X X

XT
 XT

 X

⎤
⎥⎦ ≥ , (.)

the following integral inequality holds:

–
∫ t

t–h(t)
ẋT (s)Xẋ(s)ds

≤
∫ t

t–h(t)

[
xT (t) xT (t – h(t)) ẋT (s)

]
⎡
⎢⎣
X X X

XT
 X X

XT
 XT

 

⎤
⎥⎦

⎡
⎢⎣

x(t)
x(t – h(t))

ẋ(s)

⎤
⎥⎦ ds. (.)

Secondarily, we introduce the following Schur complement which is essential in the
proofs of our results.

Lemma  [] The following matrix inequality:
[
Q(x) S(x)
ST (x) R(x)

]
< , (.)

where Q(x) =QT (x), R(x) = RT (x) and S(x) depend in an affine way on x, is equivalent to

R(x) < , (.)

Q(x) <  (.)

and

Q(x) – S(x)R–(x)ST (x) < . (.)

Finally, Lemma  will be used to handle the parametrical perturbation.

Lemma  [] Given symmetric matrices � and D, E, of appropriate dimensions, we have

� +DF(t)E + ETFT (t)DT < , (.)

for all F(t) satisfying FT (t)F(t)≤ I , if and only if there exists some ε >  such that

� + εDDT + ε–ETE < . (.)

Firstly, we consider the nominal from system (.):

ẋ(t) = –Cx(t) +Ag
(
x(t)

)
+ Bg

(
x
(
t – h(t)

))
. (.)
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For the nominal system (.), we will give a stability condition by using an integral
inequality approach as follows.

Theorem  For given scalars h, α, and hd , system (.) is exponentially stable if there
exist symmetry positive-definite matrices P = PT > , Q =QT > , R = RT > , U =UT > ,
W =WT > , diagonal matrices S ≥ , � ≥ , � ≥ , and

X =

⎡
⎢⎣
X X X

XT
 X X

XT
 XT

 X

⎤
⎥⎦ ≥ 

and

Y =

⎡
⎢⎣
Y Y Y

YT
 Y Y

YT
 YT

 Y

⎤
⎥⎦ ≥ 

such that the following LMIs hold:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

� � � �  �

�T
 � �   �

�T
 �T

 � �  �

�T
  �T

 � � 
   �T

 � 
�T

 �T
 �T

   �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< , (.)

R –X ≥ , (.)

R – Y ≥ , (.)

where

K = diag{k,k, . . . ,kn},
� = –CTP – PC + eαh(Q +U) + e–αh

(
hX +X +XT


)
,

� = PA + αS –CTS +K�, � = PB,

� = e–αh
(
hX –X +XT


)
, � = –hCTR,

� = ATS + SA + eαhW – �, � = SB, � = hATR,

� = –( – hd)W – �, � = K�, � = hBTR,

� = –( – hd)Q + e–αh
(
hX –X –XT

 + hY + Y + YT


)
,

� = e–αh
(
hY – Y + YT


)
,

� = –U + e–αh
(
hY – Y – YT


)
, � = –hR.

Proof Choose the following Lyapunov-Kravoskii functional candidate:

V (t) = V(t) +V(t) +V(t), (.)
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where

V(t) = eαtxT (t)Px(t) + eαt
n∑
i=

si
∫ xi(t)


gi(s)ds,

V(t) = eαh
∫ t

t–h(t)
eαs

[
xT (s)Qx(s) + gT

(
x(s)

)
Wg

(
x(s)

)]
ds + eαh

∫ t

t–h
eαsxT (s)Ux(s)ds,

V(t) =
∫ 

–h

∫ t

t+θ

eαsẋT (s)Rẋ(s)dsdθ .

Then taking the time derivative of V (t) with respect to t along the system (.) yields

V̇ (t) = V̇(t) + V̇(t) + V̇(t). (.)

First, the derivative of V(t) is

V̇(xt) = αeαtxT (t)Px(t) + eαt ẋT (t)Px(t)

+ αeαtgT
(
x(t)

)
Sgx(t) + eαtgT

(
x(t)

)
Sẋ(t)

= eαt
[
αxT (t)Px(t) + ẋT (t)Px(t) + αgT

(
x(t)

)
Sx(t) + gT

(
x(t)

)
Sẋ(t)

]
. (.)

Second, we get the bound of differential on V(t) as

V̇(t) = eαt
{
eαh

[
xT (t)(Q +U)x(t) + gT

(
x(t)

)
Wg

(
x(t)

)]
– xT (t – h)Ux(t – h) –

(
 – ḣ(t)

)[
xT

(
t – h(t)

)
Qx

(
t – h(t)

)
+ gT

(
x
(
t – h(t)

))
Wg

(
x
(
t – h(t)

))]}
≤ eαt

{
eαh

[
xT (t)(Q +U)x(t) + gT

(
x(t)

)
Wg

(
x(t)

)]
– xT (t – h)Ux(t – h)

– ( – hd)
[
xT

(
t – h(t)

)
Qx

(
t – h(t)

)
+ gT

(
x
(
t – h(t)

))
Wg

(
x
(
t – h(t)

))]}
. (.)

Third, the bound of differential on V(t) is as follows:

V̇(t) = heαt ẋT (t)Rẋ(t) –
∫ t

t–h
eαsẋT (s)Rẋ(s)ds

≤ eαt ẋT (t)hRẋ(t) –
∫ t

t–h
eα(t–h)ẋT (s)Rẋ(s)ds

= eαt ẋT (t)hRẋ(t) – eα(t–h)
[∫ t

t–h(t)
ẋT (s)Rẋ(s)ds –

∫ t–h(t)

t–h
ẋT (s)Rẋ(s)ds

]

= eαt
{
ẋT (t)hRẋ(t) – e–αh

[∫ t

t–h(t)
ẋT (s)Rẋ(s)ds –

∫ t–h(t)

t–h
ẋT (s)Rẋ(s)ds

]}

= eαt
{
ẋT (t)hRẋ(t) – e–αh

[∫ t

t–h(t)
ẋT (s)(R –X)ẋ(s)ds

–
∫ t–h(t)

t–h
ẋT (s)(R – Y)ẋ(s)ds

–
∫ t

t–h(t)
ẋT (s)Xẋ(s)ds –

∫ t–h(t)

t–h
ẋT (s)Yẋ(s)ds

]}
. (.)
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Using Lemma , the term –
∫ t
t–h(t) ẋ

T (s)Xẋ(s)ds can be written as

–
∫ t

t–h(t)
ẋT (s)Xẋ(s)ds

≤
∫ t

t–h(t)

[
xT (t) xT (t – h(t)) ẋT (s)

]
⎡
⎢⎣
X X X

XT
 X X

XT
 XT

 

⎤
⎥⎦

⎡
⎢⎣

x(t)
x(t – h(t))

ẋ(s)

⎤
⎥⎦ ds

= xT (t)
[
hX +X +XT


]
x(t) + xT (t)

[
hX –X +XT


]
x
(
t – h(t)

)
+ xT

(
t – h(t)

)[
hXT

 –XT
 +X

]
x(t)

+ xT
(
t – h(t)

)[
hX –X –XT


]
x
(
t – h(t)

)
. (.)

Similarly, we have

–
∫ t–h(t)

t–h
ẋT (s)Yẋ(s)ds

≤ xT
(
t – h(t)

)[
hY + YT

 + Y
]
x
(
t – h(t)

)
+ xT

(
t – h(t)

)[
hY – Y + YT


]
x(t – h)

+ xT (t – h)
[
hYT

 – YT
 + Y

]
x
(
t – h(t)

)
+ xT (t – h)

[
hY – Y – YT


]
x(t – h). (.)

The operator for the term ẋT (t)hRẋ(t) is as follows:

ẋT (t)hRẋ(t)

=
[
–Cx(t) +Ag

(
x(t)

)
+ Bg

(
x
(
t – h(t)

))]T (hR)[–Cx(t) +Ag
(
x(t)

)
+ Bg

(
x
(
t – h(t)

))]
= xT (t)hCTRCx(t) – xT (t)hCTRAg

(
x(t)

)
– xT (t)hCTRBg

(
x
(
t – h(t)

))
– gT

(
x(t)

)
hATRCx(t)

+ gT
(
x(t)

)
hATRAg

(
x(t)

)
+ gT

(
x(t)

)
hATRBg

(
x
(
t – h(t)

))
– gT

(
x
(
t – h(t)

))
hBTRCx(t) + gT

(
x
(
t – h(t)

))
hBTRAg

(
x(t)

)
+ gT

(
x
(
t – h(t)

))
hBTRBg

(
x
(
t – h(t)

))
. (.)

From (.) for appropriately dimensioned diagonal matrices �i (i = , ), we have

–eαtgT
(
x(t)

)
�

[
g
(
x(t)

)
–Kx(t)

] ≥  (.)

and

–eαtgT
(
x
(
t – h(t)

))
�

[
g
(
x
(
t – h(t)

))
–Kx

(
t – h(t)

)] ≥ . (.)

Combining (.)-(.) yields

V̇ (t)≤ eαt
{
ξT (t)	ξ (t) – e–αh

[∫ t

t–h(t)
ẋT (s)(R –X)ẋ(s)ds

–
∫ t–h(t)

t–h
ẋT (s)(R – Y)ẋ(s)ds

]}
, (.)
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ξT (t) =
[
xT (t) gT (x(t)) gT (x(t – h(t))) xT (t – h(t)) xT (t – h)

]
,

	 =

⎡
⎢⎢⎢⎢⎢⎢⎣

	 	 	 	 
	T

 	 	  
	T

 	T
 	 	 

	T
  	T

 	 	

   	T
 	

⎤
⎥⎥⎥⎥⎥⎥⎦

and

	 = –CTP – PC + eαh(Q +U) + e–αh
(
hX +X +XT


)
+ hCTRC,

	 = PA + αS –CTS +K� – hCTRA, 	 = PB – hCTRB,

	 = e–αh
(
hX –X +XT


)
, 	 = ATS + SA + eαhW – � + hATRA,

	 = SB + hATRB, 	 = –( – hd)W – � + hBTRB, 	 = K�,

	 = –( – hd)Q + e–αh
(
hX –X –XT

 + hY + Y + YT


)
,

	 = e–αh
(
hY – Y + YT


)
, 	 = –U + e–αh

(
hY – Y – YT


)
,

K = diag{k,k, . . . ,kn}.

From (.) and the Schur complement, it is easy to see that V̇ (xt) <  holds if R–X ≥
, R – Y ≥ . �

3 Exponential robust stability analysis
Based on Theorem , we have the following result for uncertain neural networks with
time-varying delay (.).

Theorem  For given positive scalars h, α, and hd , the uncertain delayed neural networks
with time-varying delay (.) is exponentially robust stable if there exist symmetric positive-
definite matrices P = PT > , Q = QT > , R = RT > , U = UT > , W =WT > , diagonal
matrices S ≥ , � ≥ , � ≥ , a scalar ε >  and

X =

⎡
⎢⎣
X X X

XT
 X X

XT
 XT

 X

⎤
⎥⎦ ≥ ,

Y =

⎡
⎢⎣
Y Y Y

YT
 Y Y

YT
 YT

 Y

⎤
⎥⎦ ≥ 

such that the following LMIs are true:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� + εET
c Ec � – εET

c Ea � – εET
c Eb �  � PD

�T
 – εET

a Ec � + εET
a Ea � + εET

a Eb   � 
�T

 – εET
b Ec �T

 + εET
b Ea � + εET

b Eb �  � 
�T

  �T
 � �  

   �T
 �  

�T
 �T

 �T
   � hRD

DTP     hDTR –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<  (.)
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and

R –X ≥ , (.)

R – Y ≥ , (.)

where �ij (i, j = , . . . , ; i < j ≤ ) are defined in (.).

It is, incidentally, worth noting that the uncertain delayed neural networks with time-
varying delay (.) is exponential stable, that is, the uncertain parts of the nominal system
can be tolerated within allowable time delay h and exponential convergence rate α.

Proof Replacing A, B, and C in (.) with A + DF(t)Ea, B + DF(t)Eb, and C + DF(t)Ec,
respectively, we apply Lemma for system (.) and the result is equivalent to the following
condition:

� + 
dF(t)
e + 
T
e F(t)


T
d < , (.)

where 
d = [PD     hRD]T and 
e = [–Ec Ea Eb   ].
According to Lemma , (.) is true if there exists a scalar ε >  such that the following

inequality holds:

� + ε–
T
d 
d + ε
T

e 
e < . (.)

Applying the Schur complement shows that (.) is equivalent to (.). This completes
the proof. �

If the upper bound of the derivative of time-varying delay hd is unknown, Theorem 
can be reduced to the result with Q =  andW = , we have the following Corollary .

Corollary  For given positive scalars h and α, the system (.) is exponentially robust
stable if there exist symmetric positive-definitematrices P = PT > ,R = RT > ,U =UT > ,
diagonal matrices S ≥ , � ≥ , � ≥ , ε >  and

Y =

⎡
⎢⎣
Y Y Y

YT
 Y Y

YT
 YT

 Y

⎤
⎥⎦ ≥ 

such that the following LMIs are true:

�̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃ + εET
c Ec � – εET

c Ea � – εET
c Eb �  � PD

�T
 – εET

a Ec �̃ + εET
a Ea � + εET

a Eb   � 
�T

 – εET
b Ec �T

 + εET
b Ea �̃ + εET

b Eb �  � 
�T

  �T
 �̃ �  

   �T
 �  

�T
 �T

 �T
   � hRD

DTP     hDTR –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<  (.)
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and

R –X ≥ , (.)

R – Y ≥ , (.)

where

K = diag{k,k, . . . ,kn}, �̃ = –CTP – PC + eαhU + e–αh
(
hX +X +XT


)
,

�̃ = ATS + SA – �, �̃ = –�,

�̃ = e–αh
(
hX –X –XT

 + hY + Y + YT


)
.

Proof If the matrix Q = W =  is selected in (.). This proof can be completed in a
formulation similar to Theorem  and Theorem . �

Based on that, a convex optimization problem is formulated to find the bound on the
allowable delay time h and exponential convergence rate α which maintains the recurrent
neural network time delay with parameter uncertainties systems (.).

Remark  It is interesting to note that h and α appear linearly in (.), (.), and (.).
Thus a generalized eigenvalue problem (GEVP) as defined in Boyd et al. [] can be formu-
lated to solve the minimum acceptable /h (or /α) and therefore the maximum h (or α)
to maintain robust stability as judged by these conditions.

The lower bound of exponential convergence rate or the allowable time delay conditions
can be determined by solving the following three optimization problems.
Case : estimate the lower bound of exponential convergence rate α > .

Op:

{
maxα

s.t. condition (.) is satisfied,h and hd fixed.

Case : estimate the allowable maximum time delay h.

Op:

{
maxh

s.t. condition (.) is satisfied,α >  and hd fixed.

Case : estimate the allowable maximum change rate of time delay hd .

Op:

{
maxhd
s.t. condition (.) is satisfied,α >  and h fixed.

If the change rate of time delay is equal to , i.e., h(t) = h, then the system (.) reduces to
the neural networks with constant delay, and, consequently, Theorem  reduces to Corol-
lary .
The lower bound of exponential convergence rate or the allowable time delay conditions

can be determined by solving the following two optimization problems.

http://www.advancesindifferenceequations.com/content/2014/1/131
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Case : estimate the lower bound of exponential convergence rate α > .

Op:

{
maxα

s.t. condition (.) is satisfied,h fixed.

Case : estimate the allowable maximum time delay h.

Op:

{
maxh
s.t. condition (.) is satisfied,α >  fixed.

Remark All the above optimization problems (Op-Op) can be solved by theMATLAB
LMI toolbox. Especially, Op and Op can estimate the lower bound of the global expo-
nential convergence rate α, which means that the exponential convergence rate of any
neural network included in (.) is at least equal to α. It is useful in real-time optimal
computation.

4 Numerical examples
This section provides four numerical examples to demonstrate the effectiveness of the
presented criterion.

Example  Consider the delayed neural network (.) as follows:

ẋ(t) = –Cx(t) +Ag
(
x(t)

)
+ Bg

(
x
(
t – h(t)

))
, (.)

where

C =

[
 
 .

]
, A =

[
– .
. –

]
, B =

[
–. .
. .

]
.

The neuron activation functions are assumed to satisfy Assumption  with K = diag{, }.

Solution: It is assumed that the upper bound h is fixed as . The exponential conver-
gence rates for various hd ’s obtained from Theorem  and those in [, , ] are listed in
Table . In the following, in Tables -, ‘-’ means that the results are not applicable to the
corresponding cases, and ‘unknown hd ’ means that hd can have arbitrary values, even hd
is very large or h(t) is not differentiable.
On the other hand, if the exponential convergence rate of α is fixed as ., the upper

bounds of h for various hd ’s from Theorem  and those in [, , ] are listed in Table .
From Table , it is clear that when the delay is time-invariant, i.e., hd = , the obtained

result in Theorem  is much better than that in []. Furthermore, when the delay is time

Table 1 Maximum allowable exponential convergence rate (MAECR) α for various hd and
h = 1

hd 0 0.8 0.9 Unknown

[17] 0.25 - - -
[4] 1.15 0.7538 0.6106 0.3391
[11] 1.15 0.8643 0.8344 0.8169
Theorem 1 1.5997 1.1595 1.0526 0.9859

http://www.advancesindifferenceequations.com/content/2014/1/131


Xie et al. Advances in Difference Equations 2014, 2014:131 Page 12 of 16
http://www.advancesindifferenceequations.com/content/2014/1/131

Table 2 Maximum allowable delay bound (MADB) h for various hd and α = 0.8

hd 0.8 0.9 Unknown

[17] - - -
[4] 1.2606 0.9442 0.8310
[11] 1.2787 1.0819 1.0366
Theorem 1 2.4097 1.5995 1.1296

Figure 1 The simulation of the Example 1 for
h = 1.59 s.

varying, the theorem in [] fails to obtain the allowable exponential convergence rate of
the exponential stable neural network system, but Theorem  in this paper can also obtain
significantly better results than that in [, ], which guarantees the exponential stability
of the neural networks. Moreover, when the exponential convergence rate of α is fixed as
., the upper bounds of h for various hd ’s derived by Theorem  are also better than those
in [, , ] from Table . The reason is that, compared with [, , ], our results not
only do not ignore any useful terms in the derivative of Lyapunov-Krasovskii functional
but also consider the relationship among h, h(t), and h – h(t). Figure  shows the state
response of Example  with time delay h = ., when the initial value is [– ]T .

Example  Consider the delayed neural network (.) as follows:

ẋ(t) = –Cx(t) +Ag
(
x(t)

)
+ Bg

(
x
(
t – h(t)

))
, (.)

where

C =

⎡
⎢⎣
.  

 . 
  .

⎤
⎥⎦ , A =

⎡
⎢⎣
. . .
. . –.
–. . .

⎤
⎥⎦ ,

B =

⎡
⎢⎣
.  

 . 
  .

⎤
⎥⎦ .

The neuron activation functions are assumed to satisfyAssumption withK= diag{.,
., .}.

Solution: It is assumed that the exponential convergence rate of α is fixed as zero. The
upper bounds of h for various hd ’s from Theorem  and those in [–, ] are listed in

http://www.advancesindifferenceequations.com/content/2014/1/131


Xie et al. Advances in Difference Equations 2014, 2014:131 Page 13 of 16
http://www.advancesindifferenceequations.com/content/2014/1/131

Table 3 Maximum allowable delay bound (MADB) h for various hd and α = 0

hd 0.8 0.9 Unknown

[4, 6] 6.247 3.409 3.053
[5] 8.704 4.606 4.145
[11] 12.252 6.441 5.831
Theorem 1 21.1573 7.8999 7.8413

Table 4 Maximum allowable exponential convergence rate (MAECR) α for various h and
hd = 0.1

h 0.1 0.2 0.5 1 2 5 10

α 2.1155 0.9885 0.4742 0.3069 0.2343 0.1270 0.0805

Table . It is also clear that the obtained upper bounds of h in this paper are better than
those in [–, ], which guarantee the asymptotic stability of neural networks. The reason
is that our results do not ignore any useful negative terms in the derivative of Lyapunov-
Krasovskii functional compared with [, ], and our results also consider the relationship
among h, h(t), and h – h(t) compared with [, ].

Example  Consider the following uncertain delayed neural network:

ẋ(t) = –Cx(t) +
(
A +�A(t)

)
g
(
x(t)

)
+

(
B +�B(t)

)
g
(
x
(
t – h(t)

))
, (.)

where

C =

[
 
 

]
, A =

[
. .
. –.

]
, B =

[
. .
 .

]
,

D =

[
. 
 .

]
, Ea = Eb =

[
 
 

]
.

The neuron activation functions are assumed to satisfy Assumption  with K = diag{, }.

Solution:We let hd = . and h = . as [] did and, byTheorem,we can obtain themax-
imumallowable exponential convergence rate (MAECR) α size to be α = ..However,
applying the criteria in [], themaximumvalue of α for the above system is .. This exam-
ple demonstrates that our robust stability condition gives a less conservative result. Hence,
it is obvious that the results obtained from our simple method are less conservative than
those obtained by existing methods. The maximum allowable exponential convergence
rate (MAECR) α for various h from Theorem  are listed in Table .

Example  Consider the following delayed neural network:

ẋ(t) = –Cx(t) +Ag
(
x(t)

)
+ Bg

(
x
(
t – h(t)

))
, (.)

where

C =

⎡
⎢⎣
.  
 . 
  .

⎤
⎥⎦ , A =

⎡
⎢⎣

. –. .
–. . .
. . –.

⎤
⎥⎦ ,
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B =

⎡
⎢⎣
. –. .
. . .
. –. .

⎤
⎥⎦ .

The neuron activation functions are assumed to satisfy Assumption  with K = diag{.,
., .}.

Solution: Let hd ≥  and α = .. Using the MATLAB LMI toolbox, the conditions of
Theorem  can be met, and then we get the global robust exponential stability in this
example for h≤ . and

P =

⎡
⎢⎣

. –. –.
–. . .
–. . .

⎤
⎥⎦ , Q =

⎡
⎢⎣

. –. –.
–. . .
–. . .

⎤
⎥⎦ ,

R =

⎡
⎢⎣

. –. .
–. . .
. . .

⎤
⎥⎦ , W =

⎡
⎢⎣
. . –.
. . –.
–. –. .

⎤
⎥⎦ ,

U =

⎡
⎢⎣

. –. –.
–. . .
–. . .

⎤
⎥⎦ , X =

⎡
⎢⎣
. –. –.
–. . .
–. . .

⎤
⎥⎦ ,

X =

⎡
⎢⎣
–. . –.
. –. .
–. . –.

⎤
⎥⎦ , X =

⎡
⎢⎣
–. . –.
. –. .
. –. –.

⎤
⎥⎦ ,

X =

⎡
⎢⎣

. –. .
–. . .
. . .

⎤
⎥⎦ , X =

⎡
⎢⎣
. –. .
–. . .
. –. .

⎤
⎥⎦ ,

X =

⎡
⎢⎣

. –. .
–. . –.
. –. .

⎤
⎥⎦ , Y =

⎡
⎢⎣

. –. –.
–. . .
–. . .

⎤
⎥⎦ ,

Y =

⎡
⎢⎣

. –. .
–. . –.
. –. .

⎤
⎥⎦ , Y =

⎡
⎢⎣
–. . –.
. –. –.
–. –. –.

⎤
⎥⎦ ,

Y =

⎡
⎢⎣

. –. –.
–. . .
–. . .

⎤
⎥⎦ , Y =

⎡
⎢⎣
–. . –.
. –. .
–. . –.

⎤
⎥⎦ ,

Y =

⎡
⎢⎣
. –. .
–. . –.
. –. .

⎤
⎥⎦ , S =

⎡
⎢⎣
.  

 . 
  .

⎤
⎥⎦ ,

� =

⎡
⎢⎣
.  

 . 
  .

⎤
⎥⎦ , � =

⎡
⎢⎣
.  

 . 
  .

⎤
⎥⎦ .
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For this case, it can be verified that the stability conditions in [, ] are not applicable
when hd ≥ . This implies that for this example the stability condition in Theorem  in
this paper is less conservative than those in [, ].

Remark  In this paper, we are mainly concerned with exponential stability. For this rea-
son another practical background and other definitions have not been introduced. Among
them, exponential stability provides a usefulmeasure for the decaying rate, or convergence
speed. It is also worth pointing out that the main results in this paper can easily be ex-
tended to exponential stability for neural networks with time-varying delays by the same
approach used in []. Note that we mainly focus on the effects brought about by the maxi-
mum allowable delay bound (MADB) h and exponential convergence rate (MAECR) α in
this paper.

Remark  Some comparisons have been made with the same examples that appear in
many recent papers. Our results show them to be less conservative than those reports.

5 Conclusion
In this paper, we have proposed some new delay dependent sufficient conditions for the
global robust exponential stability analysis of a class of delayed neural networks with time-
varying delays and parameter uncertainties. We have discussed the advantage of the as-
sumption condition investigated in our paper over those in previous studies in the litera-
ture. Some global exponential stability criteria, which dependon timedelay, are derived via
the approach of the Lyapunov-Krasovskii functional. Four numerical examples are given
to show the significant improvement over some existing results in the literature. In addi-
tion, the method proposed in this paper can easily be extended to solve the stability or
exponential stability problem for delayed neural networks with distributed delay.
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