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Abstract
In this paper, the second order of accuracy difference scheme approximately solving
the initial value problem for an integral-differential equation of the hyperbolic type in
a Hilbert space H is presented. The stability estimates for the solution of this difference
scheme are obtained. Theoretical results are supported by numerical examples.
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1 Introduction
We consider the initial value problem

{
du(t)
dt +Au(t) =

∫ t
–t B(ρ)u(ρ)dρ + f (t), – ≤ t ≤ ,

u() = u, u′() = u′
,

()

for an integral-differential equation in a Hilbert spaceH with unbounded linear operators
A and B(t) in H with dense domain D(A)⊂D(B(t)) and

∥∥B(t)A–∥∥
H→H ≤M, –≤ t ≤ . ()

It is well known that various initial-boundary value problems for the integral-differential
equation of the hyperbolic type with two dependent limits can be reduced to the initial
value problem () in a Hilbert space H ; see [–].
A function u(t) is called a solution of the problem () if the following conditions are

satisfied:
(i) u(t) is twice continuously differentiable on [–, ]. The derivative at the endpoints

of the segment are understood as the appropriate unilateral derivatives.
(ii) The element u(t) belongs to D(A) for all t ∈ [–, ], and the function Au(t) is

continuous on [–, ].
(iii) u(t) satisfies the equations and the initial conditions ().
A solution of the problem () defined in this manner will from now on be referred to as

a solution of the problem () in the space C(H) = C([–, ],H) of all continuous functions
ϕ(t) defined on [–, ] with values in H equipped with the norm

‖ϕ‖C(H) = max
–≤t≤

∥∥ϕ(t)
∥∥
H .
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We consider the problem () under the assumption that A is a positive definite self-adjoint
operator with A≥ δI , where δ > δ > .

Theorem  [] Suppose that u ∈ D(A), u′
 ∈ D(A/) and f (t) is a continuously differen-

tiable function on [–, ].Then there is a unique solution of the problem () and the stability
inequalities

max
–≤t≤

∥∥∥∥du(t)
dt

∥∥∥∥
H
+ max

–≤t≤

∥∥Au(t)∥∥H

≤M∗
[
‖Au‖H +

∥∥A/u′

∥∥
H +

∥∥f ()∥∥H +
∫ 

–

∥∥f ′(s)
∥∥
H ds

]
()

hold, where M∗ does not depend on u, u′
, and f (t), t ∈ [–, ].

In [] the first order of accuracy difference scheme

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk+–uk+uk–
τ

+Auk+ =
∑k

j=–k Bjujτ + fk , k = , . . . ,N – ,
uk+–uk+uk–

τ
+Auk– = –

∑–k
j=k Bjujτ + fk , k = –N + , . . . , ,

τ = 
N , Bk = B(tk), fk = f (tk), tk = kτ , k = –N , . . . ,N ,

u = u(), (I + τ A) u–u
τ

= u′


()

for approximate solutions of the problem () was considered.

Theorem  [] Suppose that the requirements of Theorem  are satisfied. Then for the
solution of difference scheme () the stability inequalities

max
–N+≤k≤N–

∥∥∥∥uk+ – uk + uk–
τ 

∥∥∥∥
H
+ max

–N≤k≤N
‖Auk‖H

≤M∗
[
‖Au‖H +

∥∥A/u′

∥∥
H + ‖f‖H +

N∑
k=–N+

‖fk – fk–‖H
]

()

hold, where M∗ does not depend on u′
, u, and fk , k = –N , . . . ,N .

In this paper, we consider the second order of accuracy difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+–uk+uk–
τ

+ 
Auk +


A(uk+ + uk–)

= τ
∑k

j=–k+ Bj– 

( uj+uj– ) + fk , k = , . . . ,N – ,

uk+–uk+uk–
τ

+ 
Auk +


A(uk+ + uk–)

= –τ
∑–k

j=k+ Bj– 

( uj+uj– ) + fk , k = –N + , . . . , –,

τ = 
N , fk = f (tk), tk = kτ , k = –N , . . . ,N ,

Bk– 

= B(tk – τ

 ), k = –N + , . . . ,N ,
u() = u, (I + τ A)( u–u

τ
) = τ

 (f –Au) + u′
,

(I + τ A)( u–u–
τ

) = τ
 (Au – f) + u′

,

()

for approximate solutions of the problem (). The paper is organized as follows. In Sec-
tion we obtain the stability estimates for the solution of difference scheme (). Numerical
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illustrations for the simple test problem are provided in Section . The paper is concluded
with remarks in Section .

2 The stability estimates for the solution of difference scheme
Theorem Suppose that the requirements of Theorem  are satisfied.Then for the solution
of difference scheme () the stability inequalities

max
–N+≤k≤N–

∥∥∥∥uk+ – uk + uk–
τ 

∥∥∥∥
H
+ max

–N+≤k≤N

∥∥∥∥A(uk + uk–)


∥∥∥∥
H

≤M∗
[
‖Au‖H +

∥∥A/u′

∥∥
H + ‖f‖H +

N∑
k=–N+

‖fk – fk–‖H
]

()

hold, where M∗ does not depend on u′
, u, and fk , k = –N , . . . ,N .

Proof By [], the second order of accuracy difference scheme

{
uk+–uk+uk–

τ
+ 

Auk +

A(uk+ + uk–) = ψk , k = , . . . ,N – ,

(I + τ A) u–u
τ

= τ
 (ψ –Au) + u′

, u = u()
()

has the solution

u =
(
I + τ A

)–[(
I +

τ 


A

)
u + τu′

 +
τ 


ψ

]
,

uk =
[
Rk +


i
A–/

(
I –

iτA/



)(
Rk – R̃k)

×
{(

I +
iτA/



)
τ


A – iA/(I + τ A

)}(
I + τ A

)–]u
+

i

A–/

(
I –

iτA/



)(
Rk – R̃k)(I + τ A

)–(I + iτA/



)
u′


+
i

A–/

(
I –

iτA/



)(
Rk – R̃k)(I + τ A

)–(I + iτA/



)
τ


ψ

–
k–∑
j=

τ

i
A–/(Rk–j – R̃k–j)ψj, k = , . . . ,N ,

where R = (I – iτA/

 )(I + iτA/

 )–, R̃ = (I + iτA/

 )(I – iτA/

 )–. By putting ψ = f, ψk =
τ

∑k
s=–k+ Bs– 


( us+us– ) + fk , k = , . . . ,N – , we obtain

Auk =
[
Rk +


i
A–/

(
I –

iτA/



)(
Rk – R̃k)

×
{(

I +
iτA/



)
τ


A – iA/(I + τ A

)}(
I + τ A

)–]Au
+

i

A/

(
I –

iτA/



)(
Rk – R̃k)(I + τ A

)–(I + iτA/



)
u′


+
i

A/

(
I –

iτA/



)(
Rk – R̃k)(I + τ A

)–(I + iτA/



)
τ


f
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–
k–∑
j=

τ 

i
A/(Rk–j – R̃k–j) j∑

s=–j+

Bs– 


(
us + us–



)

–
k–∑
j=

τA/

i
(
Rk–j – R̃k–j)fj, k = , . . . ,N . ()

Since iτA/ = (I – iτA/

 )(R̃ – I) = (I + iτA/

 )(I – R), we have

k–∑
j=s

τA/

i
(
Rk–j – R̃k–j) = 



(
I –

iτA/



)
Rk–s +




(
I +

iτA/



)
R̃k–s – I,

k–∑
j=–s+

τA/

i
(
Rk–j – R̃k–j) = 



(
I +

iτA/



)
Rk+s +




(
I –

iτA/



)
R̃k+s – I.

Thus,

k–∑
j=

τ A/

i
(
Rk–j – R̃k–j) j∑

s=–j+

Bs– 


(
us + us–



)

=
k–∑
s=

k–∑
j=s

τA/

i
(
Rk–j – R̃k–j)Bs– 



(
us + us–



)
τ

+
∑

s=–k+

k–∑
j=–s+

τA/

i
(
Rk–j – R̃k–j)Bs– 



(
us + us–



)
τ

=



k–∑
s=

[(
I –

iτA/



)
Rk–s +

(
I +

iτA/



)
R̃k–s – I

]
Bs– 



(
us + us–



)
τ

+



∑
s=–k+

[(
I +

iτA/



)
Rk+s +

(
I –

iτA/



)
R̃k+s – I

]
Bs– 



(
us + us–



)
τ . ()

Furthermore,

k–∑
j=

τA/

i
(
Rk–j – R̃k–j)fj

= –fk– +



[(
I –

iτA/



)
Rk– +

(
I +

iτA/



)
R̃k–

]
f

+



k–∑
j=

[(
I –

iτA/



)
Rk–j +

(
I +

iτA/



)
R̃k–j

]
(fj – fj–). ()

Putting ()-() in (), we get

Auk =
[
Rk +


i
A–/

(
I –

iτA/



)(
Rk – R̃k)

×
{(

I +
iτA/



)
τ


A – iA/(I + τ A

)}(
I + τ A

)–]Au
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+
i

A/

(
I –

iτA/



)(
Rk – R̃k)(I + τ A

)–(I + iτA/



)
u′


+
i

A/

(
I –

iτA/



)(
Rk – R̃k)(I + τ A

)–(I + iτA/



)
τ


f

+ fk– –



[(
I –

iτA/



)
Rk– +

(
I +

iτA/



)
R̃k–

]
f

–



k–∑
j=

[(
I –

iτA/



)
Rk–j +

(
I +

iτA/



)
R̃k–j

]
(fj – fj–)

+



k–∑
s=

[
I –

(
I –

iτA/



)
Rk–s –

(
I +

iτA/



)
R̃k–s

]
Bs– 



(
us + us–



)
τ

+



∑
s=–k+

[
I –

(
I +

iτA/



)
Rk+s –

(
I –

iτA/



)
R̃k+s

]
Bs– 



(
us + us–



)
τ ,

k = , . . . ,N . ()

Using I + R– = (I – iτA/

 )– and I + R̃– = (I + iτA/

 )–, from () we obtain

A(uk + uk–)


=
[
Rk

(
I –

iτA/



)–

+
A–/

i
(
Rk – R̃k–)

×
{(

I +
iτA/



)
τA


– iA/(I + τ A
)}(

I + τ A
)–]Au

+
iA/


(
Rk – R̃k–)(I + τ A

)–(I + iτA/



)
u′


+
iA/


(
Rk – R̃k–)(I + τ A

)–(I + iτA/



)
τ


f

+
(
I –

Rk– + R̃k–



)
f +

k–∑
j=

(
I –

Rk–j + R̃k–j



)
(fj – fj–)

+
k–∑
s=

(
I –

Rk–s + R̃k–s



)
Bs– 



(
us + us–



)
τ

+
∑

s=–k+

(
I –

Rk+s– + R̃k+s–



)
Bs– 



(
us + us–



)
τ ,

k = , . . . ,N . ()

Then, using () and the following estimates:

‖R‖H→H ≤ , ‖R̃‖H→H ≤ ,
∥∥∥∥
(
I ± iτA/



)–∥∥∥∥
H→H

≤ ,

∥∥(
I ± iτA/)–∥∥

H→H ≤ ,
∥∥τA/(I ± iτA/)–∥∥

H→H ≤ 
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yields

∥∥∥∥A(uk + uk–)


∥∥∥∥
H

≤ 

‖Au‖H +

∥∥A/u′

∥∥
H +



‖f‖H

+ 
N∑

j=–N+

‖fj – fj–‖H + Mτ

k–∑
j=–k+

∥∥∥∥A(uj + uj–)


∥∥∥∥
H
, ()

where k = , . . . ,N . Furthermore, we have

A(u + u)


=
[
I +

(
I + τ A

)–(I + τ A


)]
Au


+
τA


(
I + τ A

)–u′
 +

τ A


(
I + τ A

)–f,
which gives us

∥∥∥∥A(u + u)


∥∥∥∥
H

≤ ‖Au‖H +


∥∥A/u′


∥∥
H +




‖f‖H . ()

In a similar way, one can prove that

∥∥∥∥A(uk + uk–)


∥∥∥∥
H

≤ 

‖Au‖H +

∥∥A/u′

∥∥
H +



‖f‖H

+ 
N∑

j=–N+

‖fj – fj–‖H + Mτ

–k–∑
j=k+

∥∥∥∥A(uj + uj–)


∥∥∥∥
H

()

holds for k = –N + , . . . , – and

∥∥∥∥A(u + u–)


∥∥∥∥
H

≤ ‖Au‖H +


∥∥A/u′


∥∥
H +




‖f‖H . ()

Using ()-() and the theorem about the discrete analog of a Gronwall type integral
inequality with two dependent limits [, ], we obtain

max
–N+≤k≤N

∥∥∥∥A(uk + uk–)


∥∥∥∥
H

≤ M̃

[
‖Au‖H +

∥∥A/u′

∥∥
H + ‖f‖H +

N∑
k=–N+

‖fk – fk–‖H
]
. ()

Finally, using the triangle inequality in () we complete the proof of the estimates ().
�

3 Numerical example
We consider the initial-boundary value problem

⎧⎪⎨
⎪⎩

∂u(t,x)
∂t – ∂u(t,x)

∂x =
∫ t
–t

∂u(s,x)
∂x ds + (t + t + ) sinx, –≤ t ≤ ,  < x < π ,

u(,x) = , ut(,x) = ,  ≤ x≤ π ,
u(t, ) = , u(t,π ) = , –≤ t ≤ ,

()

http://www.advancesindifferenceequations.com/content/2014/1/132
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Table 1 The errors between the exact solution of the problem (19) and the numerical
solutions computed by using the first order and the second order of accuracy difference
schemes (20) and (21), respectively

N =M = 16 N =M = 32 N =M = 64

First order of accuracy difference scheme (20) 0.0765 0.0384 0.0192
Second order of accuracy difference scheme (21) 0.0016 0.0004 0.0001

which has the exact solutionu(t,x) = t sinx. Applying the first order of accuracy difference
scheme () to the problem () yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+n –ukn+uk–n
τ

– uk+n+–u
k+
n +uk+n–
h = τ

∑k
i=–k

uin+–u
i
n+uin–

h + ( t

k
 + tk + ) sinxn,

n = , . . . ,M – ,k = , . . . ,N – ,
uk+n –ukn+uk–n

τ
– uk–n+–u

k–
n +uk–n–
h = –τ

∑–k
i=k

uin+–u
i
n+uin–

h + ( t

k
 + tk + ) sinxn,

n = , . . . ,M – ,k = –N + , . . . , ,
τ = /N , h = π/M, tk = kτ , k = –N , . . . ,N ,
xn = nh, n = , . . . ,M,
un = un = , n = , . . . ,M, uk = ukM = , k = –N , . . . ,N .

()

Similarly, applying the second order of accuracy difference scheme () to the problem (),
we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+n –ukn+uk–n
τ

– ukn+–u
k
n+ukn–

h – uk+n+–u
k+
n +uk+n–

h – uk–n+–u
k–
n +uk–n–

h

= ( t

k
 + tk + ) sinxn + τ

∑k
i=–k+(

uin+–u
i
n+uin–

h + ui–n+–u
i–
n +ui–n–

h )
n = , . . . ,M – ,k = , . . . ,N – ,

uk+n –ukn+uk–n
τ

– ukn+–u
k
n+ukn–

h – uk+n+–u
k+
n +uk+n–

h – uk–n+–u
k–
n +uk–n–

h

= ( t

k
 + tk + ) sinxn – τ

∑–k
i=k+(

uin+–u
i
n+uin–

h + ui–n+–u
i–
n +ui–n–

h )
n = , . . . ,M – ,k = –N + , . . . , –,

τ = /N , h = π/M, tk = kτ , k = –N , . . . ,N ,
xn = nh, n = , . . . ,M,
un = , un = u–n = τ  sinxn, n = , . . . ,M,
uk = ukM = , k = –N , . . . ,N .

()

The difference schemes () and () are implemented by using the Gauss Elimination
Method in Matlab. The errors are computed by

E = max
–N≤k≤N
≤n≤M

∣∣u(tk ,xn) – ukn
∣∣,

where ukn represents the numerical solution of the difference schemes at (tk ,xn). Table 
shows the errors between the exact solution and the numerical solutions computed by
using the first order and the second order of accuracy difference schemes () and (),
respectively. Table  is constructed using numerical solutions of the difference schemes
for different values of N andM. We observe that both schemes converge with the correct
order.
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4 Conclusion
In this paper we have studied the second order of accuracy difference scheme approx-
imately solving the initial value problem () for an integral-differential equation of the
hyperbolic type in a Hilbert space H . The stability estimates for the solution of this differ-
ence scheme have been obtained. We have been able to confirm the correct order of the
difference scheme by a numerical illustration for the simple test problem.
The aim of our future work is to apply high order of approximation two-step difference

schemes [–] for an approximate solution of the initial value problem ().
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