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Abstract
This note is concerned with the observer design problem for a class of nonlinear
neutral systems with time delay. The problem addressed is to design a full-order
observer that guarantees the asymptotic stability of an error dynamic system. Firstly,
some sufficient conditions for the existence of observers of a class of nonlinear
neutral systems with time-varying delay are presented. An effective algebraic matrix
equation approach is developed. Then we give a design method of the observer that
is dependent on the solution of a linear matrix inequality. Furthermore, robust
observer designs for a class of nonlinear neutral systems with time delay and
uncertainties are obtained. Finally, an example is given to show the effectiveness of
our proposed approaches.
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1 Introduction
The state estimation (or observer) problemhas beenwidely developed throughout the past
three decades. It is well known that all state variables are rarely available for direct online
measurement in most cases. There is a substantial need for the reliable estimation of state
variables, especially when they are used in the synthesis of model-based controllers or
for process-monitoring purposes (see e.g. [, ]). Various methods such as algebraic, geo-
metric, inversion approaches, generalized inverse, singular-value decomposition, and the
Kronecker canonical form techniques have been used in the observer design. Also, dif-
ferent types of state observers such as reduced and minimal-order, full-order, unknown
input, functional, disturbance decoupled, etc., have been studied. The observer technique
has shown its successful applications not only in system monitoring and regulation but
also in detecting as well as identifying failures in dynamical systems (see e.g. []). Further-
more, since the system uncertainties and exogenous disturbance input are unavoidable in
modeling, the robust state observer design problem has been studied formany years in or-
der to preserve the satisfactory observer action under system uncertainties and exogenous
disturbances (see e.g. [–]).
It is also well known that the existence of time delay in a system may cause instabil-

ity or bad system performance in closed feedback systems. The time delay phenomenon
may be encountered in many practical systems such as the AIDS epidemic, aircraft stabi-
lization, chemical engineering systems, inferred grinding model, manual control, neural
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network, nuclear reactor, population dynamic model, rolling mill, ship stabilization, and
systems with lossless transmission lines. Hence stability analysis and observer design for
time-delay systems have been investigated in recent years [–]. In the context of discrete
delay systems, Trinh and Aldeen [] proposed a memoryless state observer by the state
augmentation approach; for continuous delay systems, a general form of linear observers
was given in [] by using the factorization approach, and a necessary and sufficient condi-
tion for the existence of state functional observers for such systemswas presented. Inmany
practical systems, the systemmodels can be described by functional differential equations
of neutral type, the models of which depend on both state and state derivatives. Neutral
system examples include distributed networks, heat exchanges, and processes involving
steam. Sufficient conditions have been proposed to guarantee the stability for neutral sys-
tems (see e.g. [–]).
On the other hand, the observer design problem for nonlinear systems has received con-

siderable attention in the past years. By the coordinate transformation approach, a new
constant gain observer design methodology for a class of multi-output nonlinear systems
was proposed in [], while in [] a set of tools to design observers for nonlinear systems
was developed. Recently, the observer design problem for the class of Lipschitz nonlinear
systems without parameter uncertainty was addressed in [, ] respectively. An alge-
braic Riccati equation approach was adopted in []. In [], the problem of observer de-
sign for a class of nonlinear discrete-time systems with time delay was considered. A new
approach of nonlinear observer design was proposed for the class of systems. In [], via
state transformation and the constructive use of a Lyapunov function, the new observer
design approach was addressed by introducing a parameter in the observer. Some suffi-
cient conditions which guarantee the estimation error to asymptotically converge to zero
under adaptive conditions were given. When parameter uncertainty as well as time delay
appear simultaneously in the class of neutral nonlinear systems, it seems that little atten-
tion has been paid to the robust observer design problem so far.
In this paper, we address the observer design problem for nonlinear neutral systemswith

time-varying delay. Here, attention is focused on the design on a nonlinear observer such
that the dynamics of the estimation error is asymptotically stable, dependent on the time
delay. Some sufficient conditions are proposed to guarantee the existence of a desired ob-
server. Furthermore, robust observer designs for a class of nonlinear neutral systems with
time delay and uncertainties can be obtained. Themethod given in this notemakes the ap-
plicable class larger than that given in the literature. A linear neutral system with constant
time delay was considered in []. In this paper, we deal with the uncertain nonlinear neu-
tral system with time-varying delay. Compared with [], our results are applied in many
more fields.
This paper is organized as follows. In Section , a problem formulation and preliminaries

are stated. Observer design methodology for a class of neutral delay systems is presented
in Section , and some sufficient conditions for the existence of the proposed observer are
given. The observer design methodology for a class of uncertain nonlinear neutral delay
systems is presented in Section . An illustrative example is given in Section . Concluding
remarks are drawn in Section .
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2 Problem formulation and preliminaries
Consider nonlinear neutral delay-differential systems described by the following equation:

ẋ(t) – Jẋ(t – d) = Ax(t) +Ax
(
t – h(t)

)
+ f

(
x(t),x(t – d),x

(
t – h(t)

))
,

x(t) = ϕ(t), t ∈ [
–max{d, v}, ]

,
()

y(t) = Cx(t) +Cx
(
t – h(t)

)
, ()

where x ∈ Rn is the state, y ∈ Rp is the measurement output. d denotes the constant time
delay, h(t) is a time-varying delay in the state satisfying

 ≤ h(t) ≤ v,  ≤ ḣ(t)≤ λ < ,

where v and λ are constants. The spectrum radius of the matrix J , ρ(J) satisfies ρ(J) < . A,
A, J , C, C are known constant matrices with appropriate dimensions. f : Rn ×Rn ×Rn →
Rn is a continuous nonlinear function. ϕ(t) is a continuous vector-valued initial function.
In general, it is assumed that f satisfies

∥∥f (x(t),x(t – d),x
(
t – h(t)

))
– f

(
x̂(t), x̂(t – d), x̂

(
t – h(t)

))∥∥

≤ (
x(t) – x̂(t)

)TQ
(
x(t) – x̂(t)

)
+

(
x(t – d) – x̂(t – d)

)TQ
(
x(t – d) – x̂(t – d)

)
+

(
x
(
t – h(t)

)
– x̂

(
t – h(t)

))TQ
(
x
(
t – h(t)

)
– x̂

(
t – h(t)

))
,

∀x(t),x(t – d),x
(
t – h(t)

) ∈ Rn,

where Q, Q, and Q are known positive definite matrices.
In this note, we consider the following full-order nonlinear observer:

˙̂x(t) – J ˙̂x(t – d) = Ax̂(t) +Ax̂
(
t – h(t)

)
+ f

(
x̂(t), x̂(t – d), x̂

(
t – h(t)

))
+ L

[
y(t) –Cx̂(t) –Cx̂

(
t – h(t)

)]
, ()

where the constant matrix L is the observer parameter vector.
Let the error state be

e(t) = x(t) – x̂(t), ()

then it follows from ()-() that

ė(t) – J ė(t – d) = Ace(t) +Ade
(
t – h(t)

)
+�f , ()

where

Ac = A – LC, Ad = A – LC,

�f = f
(
x(t),x(t – d),x

(
t – h(t)

))
– f

(
x̂(t), x̂(t – d), x̂

(
t – h(t)

))
.

()

The following lemmas will be used in the development of the main results.

http://www.advancesindifferenceequations.com/content/2014/1/133


Dong et al. Advances in Difference Equations 2014, 2014:133 Page 4 of 17
http://www.advancesindifferenceequations.com/content/2014/1/133

Lemma  [] Let a ∈ Rn, b ∈ Rn, and ε > . Then we have

aTb + bTa≤ εaTa + ε–bTb.

Lemma  [] Given constant symmetric matrices S, S, S, and S = ST < , S = ST > ,
then S + SS– ST <  if and only if

[
S S
ST –S

]
< .

Lemma  [] Let D, E, and F be real matrices of appropriate dimensions with FTF ≤ I ,
then for any scalar ε > , we have the following inequality:

DFE + ETFTDT ≤ ε–DDT + εETE.

3 Observer design for a class of neutral time-delay systems
The next theorem will show that the asymptotic stability of system () is related to the
existence of a positive definite solution to an algebraic matrix equation and, therefore,
offers a key for solving the addressed observer design problem.

Theorem For given sufficiently small scalars σ,σ >  andmatrices L,S > , error system
() is asymptotically stable if there exist positive scalars εi (i = , , . . . , ) and a positive
definite matrix P satisfying the following matrix equation:

PAc +AT
c P + ε– P + εAT

c Ac + ε– P + (ε + ε)
(
Q +Q +Q/( – λ)

)
+ σI

+
(
ε– + ε– + ε–

)
JTPJ +

(
(ε + ε)/( – λ)

)
AT
d Ad +

(
σ/( – λ)

)
I + S = . ()

Proof Consider the following candidate Lyapunov-Krasovskii functional:

V
(
e(t), t

)
=

(
e(t) – Je(t – d)

)TP(
e(t) – Je(t – d)

)
+

∫ t

t–d
eT (s)Qe(s)ds

+
∫ t

t–h(t)
eT (s)Re(s)ds. ()

The derivative of V along a given trajectory is obtained as

d
dt

V
(
e(t), t

)
= 

(
e(t) – Je(t – d)

)TP(
Ace(t) +Ade

(
t – h(t)

)
+�f

)
+ eT (t)Qe(t)

– eT (t – d)Qe(t – d) + eT (t)Re(t) –
(
 – ḣ(t)

)
eT

(
t – h(t)

)
Re

(
t – h(t)

)
≤ eT (t)

(
PAc +AT

c P
)
e(t) + eT (t)PAde

(
t – h(t)

)
+ eT

(
t – h(t)

)
AT
d Pe(t)

– eT (t – d)JTPAce(t) – eT (t)AT
c PJe(t – d) – eT (t – d)JTPAde

(
t – h(t)

)
– eT

(
t – h(t)

)
AT
d PJe(t – d) + eT (t)P�f + (�f )TPe(t)

– eT (t – d)JTP�f – (�f )TPJe(t – d) + eT (t)Qe(t)

– eT (t – d)Qe(t – d) + eT (t)Re(t) – ( – λ)eT
(
t – h(t)

)
Re

(
t – h(t)

)
. ()

http://www.advancesindifferenceequations.com/content/2014/1/133


Dong et al. Advances in Difference Equations 2014, 2014:133 Page 5 of 17
http://www.advancesindifferenceequations.com/content/2014/1/133

From Lemma , we obtain

eT (t)PAde
(
t – h(t)

)
+ eT

(
t – h(t)

)
AT
d Pe(t)

≤ ε– eT (t)Pe(t) + εeT
(
t – h(t)

)
AT
d Ade

(
t – h(t)

)
, ()

–eT (t – d)JTPAce(t) – eT (t)AT
c PJe(t – d)

≤ εeT (t)AT
c Ace(t) + ε– eT (t – d)JTPJe(t – d), ()

–eT (t – d)JTPAde
(
t – h(t)

)
– eT

(
t – h(t)

)
AT
d PJe(t – d)

≤ εeT
(
t – h(t)

)
AT
d Ade

(
t – h(t)

)
+ ε– eT (t – d)JTPJe(t – d), ()

eT (t)P�f + (�f )TPe(t) ≤ ε– eT (t)Pe(t) + ε‖�f ‖, ()

–eT (t – d)JTP�f – (�f )TPJe(t – d)≤ ε– eT (t – d)JTPJe(t – d) + ε‖�f ‖. ()

Substituting ()-() into (), we have

d
dt

V
(
e(t), t

) ≤ eT (t)
(
PAc +AT

c P
)
e(t) + ε– eT (t)Pe(t) + εeT

(
t – h(t)

)
AT
d Ade

(
t – h(t)

)
+ εeT (t)AT

c Ace(t) + ε– eT (t – d)JTPJe(t – d)

+ εeT
(
t – h(t)

)
AT
d Ade

(
t – h(t)

)
+ ε– eT (t – d)JTPJe(t – d)

+ ε– eT (t)Pe(t) + ε‖�f ‖ + ε– eT (t – d)JTPJe(t – d) + ε‖�f ‖

+ eT (t)Qe(t) – eT (t – d)Qe(t – d)

+ eT (t)Re(t) – ( – λ)eT
(
t – h(t)

)
Re

(
t – h(t)

)
= eT (t)

(
PAc +AT

c P + ε– P + εAT
c Ac + ε– P +Q + R

)
e(t)

+ eT
(
t – h(t)

)(
εAT

d Ad + εAT
d Ad – ( – λ)R

)
e
(
t – h(t)

)
+ eT (t – d)

(
ε– JTPJ + ε– JTPJ

+ ε– JTPJ –Q
)
e(t – d) + (ε + ε)‖�f ‖

≤ eT (t)
(
PAc +AT

c P + ε– P + εAT
c Ac + ε– P +Q + R + (ε + ε)Q

)
e(t)

+ eT
(
t – h(t)

)(
εAT

d Ad + εAT
d Ad – ( – λ)R + (ε + ε)Q

)
e
(
t – h(t)

)
+ eT (t – d)

(
ε– JTPJ + ε– JTPJ + ε– JTPJ –Q + (ε + ε)Q

)
e(t – d).

Let

Q := ε– JTPJ + ε– JTPJ + ε– JTPJ + (ε + ε)Q + σI, ()

( – λ)R = εAT
d Ad + εAT

d Ad + (ε + ε)Q + σI. ()

Then we get

d
dt

V
(
e(t), t

) ≤ eT (t)
(
PAc +AT

c P + ε– P + εAT
c Ac + ε– P +Q + R + (ε + ε)Q

)
e(t)

– σeT
(
t – h(t)

)
e
(
t – h(t)

)
– σeT (t – d)e(t – d). ()
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For simplicity, we denote

� := PAc +AT
c P + ε– P + εAT

c Ac + ε– P +Q + R + (ε + ε)Q, ()

where Q and R are given by () and ().
From (), (), and (), we get that � = –S < .
Substituting () into () yields

d
dt

V
(
e(t), t

) ≤ eT (t)�e(t) – σeT
(
t – h(t)

)
e
(
t – h(t)

)
– σeT (t – d)e(t – d)

=

⎡
⎢⎣

e(t)
e(t – h(t)
e(t – d)

⎤
⎥⎦

T ⎢⎢⎢⎢⎣
�  
 –σI 
  –σI

⎥⎥⎥⎥⎦
⎡
⎢⎣

e(t)
e(t – h(t)
e(t – d)

⎤
⎥⎦

≤ –min
(
λmin(–�),σ,σ

)
∥∥∥∥∥∥∥
⎡
⎢⎣

e(t)
e(t – h(t)
e(t – d)

⎤
⎥⎦

∥∥∥∥∥∥∥


≤ –min
(
λmin(–�),σ,σ

)∥∥e(t)∥∥ < ,

which implies that system () is asymptotically stable. This completes the proof of Theo-
rem . �

Remark  The use of the matrix S >  is just to ensure that � < . In general, the positive-
definite matrix should be chosen sufficiently small in a matrix norm sense.

Theorem  For the given matrix L, error system () is asymptotically stable if there exist a
positive definite matrix P >  and positive scalars εi (i = , , . . . , ) satisfying the following
LMI:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� P P JTP JTP JTP
P –εI    
P  –εI   
PJ   –εI  
PJ    –εI 
PJ     –εI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ()

where

� = PAc +AT
c P + εAT

c Ac + (ε + ε)
(
Q +Q +


 – λ

Q

)
+

ε + ε

 – λ
AT
d Ad.

Proof Consider the following candidate Lyapunov-Krasovskii functional:

V
(
e(t), t

)
=

(
e(t) – Je(t – d)

)TP(
e(t) – Je(t – d)

)
+

∫ t

t–d
eT (s)Qe(s)ds

+
∫ t

t–h(t)
eT (s)Re(s)ds.
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Similar to the proof of Theorem , we have

d
dt

V
(
e(t), t

) ≤ eT (t)
(
PAc +AT

c P + ε– P + εAT
c Ac + ε– P +Q + R + (ε + ε)Q

)
e(t)

+ eT
(
t – h(t)

)(
εAT

d Ad + εAT
d Ad – ( – λ)R + (ε + ε)Q

)
e
(
t – h(t)

)
+ eT (t – d)

(
ε– JTPJ + ε– JTPJ + ε– JTPJ –Q + (ε + ε)Q

)
e(t – d).

Let

Q = ε– JTPJ + ε– JTPJ + ε– JTPJ + (ε + ε)Q,

( – λ)R = εAT
d Ad + εAT

d Ad + (ε + ε)Q.

Then

d
dt

V
(
e(t), t

) ≤ eT (t)	e(t),

where 	 = PAc +AT
c P + ε– P + εAT

c Ac + ε– P +Q + R + (ε + ε)Q.
From () and Lemma , we have 	 < , which implies that system () is asymptotically

stable. This completes the proof of Theorem . �

Consider the neutral function differential system described by the following state equa-
tion:

ẋ(t) – Jẋ(t – d) = Ax(t) +Ax(t – d) + f
(
t,x(t),x(t – d)

)
, ()

y(t) = Cx(t) +Cx(t – d), ()

where x ∈ Rn is the state, y ∈ Rp is the measurement output. d denotes the constant time
delay. A, A, J , C, C are known constant matrices with appropriate dimensions. f : R ×
Rn×Rn → Rn is a continuous nonlinear function, and there exist positive definitematrices
T and T such that

∥∥f (t,x(t),x(t – d)
)
– f

(
t, x̂(t), x̂(t – d)

)∥∥

≤ (
x(t) – x̂(t)

)TT
(
x(t) – x̂(t)

)
+

(
x(t – d) – x̂(t – d)

)TT
(
x(t – d) – x̂(t – d)

)
. ()

We consider the following full-order nonlinear observer:

˙̂x(t) – J ˙̂x(t – d) = Ax̂(t) +Ax̂(t – d) + f
(
t, x̂(t), x̂(t – d)

)
+ L

[
y(t) –Cx̂(t) –Cx̂(t – d)

]
, ()

where the constant matrix L is the observer parameter vector.
Let the error state be

e(t) = x(t) – x̂(t).
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Then it follows from ()-() that

ė(t) – J ė(t – d) = Ace(t) +Ade(t – d) +�f , ()

where Ac = A – LC, Ad = A – LC, �f = f (t,x(t),x(t – d)) – f (t, x̂(t), x̂(t – d)).

Corollary  For given sufficiently small scalar σ >  and matrices L,S > , error system
() is asymptotically stable if there exist positive scalars εi (i = , , . . . , ) and a positive
definite matrix P satisfying the following matrix equation:

PAc +AT
c P + ε– P + εAT

c Ac + ε– P + (ε + ε)(T + T) + σI

+ εAT
d Ad + ε– JTPJ + ε– JTPJ + ε– JTPJ + εAT

d Ad + S = . ()

Proof Similar to the proof of Theorem , condition () in Corollary  can be obtained
and the detailed proof is omitted. �

Corollary  For the given matrix L, error system () is asymptotically stable if there exist
a positive definitematrix P >  and positive scalars εi (i = , , . . . , ), satisfying the following
LMI:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̄ P P JTP JTP JTP
P –εI    
P  –εI   
PJ   –εI  
PJ    –εI 
PJ     –εI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< , ()

where

�̄ = PAc +AT
c P + εAT

c Ac + (ε + ε)(T + T) + (ε + ε)AT
d Ad.

Proof Similar to the proof of Theorem , condition () in Corollary  can be obtained
and the detailed proof is omitted. �

4 Observer design for an uncertain neutral function differential system
Consider an uncertain neutral function differential systemdescribed by the following state
equation:

ẋ(t) – Jẋ(t – d) =
(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d) + f

(
t,x(t),x(t – d)

)
,

x(t) = ϕ(t), t ∈ [–d, ],
()

y(t) = Cx(t), ()

where x ∈ Rn is the state vector, y ∈ Rp is the measurement output. d denotes the constant
time delay. The spectrum radius of thematrix J , ρ(J) satisfies ρ(J) < .A,Ad , J ,C are known
constant matrices with appropriate dimensions. ϕ(t) is a continuous vector-valued initial

http://www.advancesindifferenceequations.com/content/2014/1/133
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function. f : R× Rn × Rn → Rn is a continuous nonlinear function satisfying f (t, , ) = ,
and there exist positive definite matrices T and T such that

∥∥f (t,x(t),x(t – d)
)
– f

(
t, x̂(t), x̂(t – d)

)∥∥

≤ (
x(t) – x̂(t)

)TT
(
x(t) – x̂(t)

)
+

(
x(t – d) – x̂(t – d)

)TT
(
x(t – d) – x̂(t – d)

)

for t ∈ R, x(t),x(t – d) ∈ Rn. �A(t), �Ad(t), and �B(t) are time-varying uncertainties,
which satisfy the following conditions:

�A(t) =DF(t)E, �Ad(t) =DdF(t)Ed, ()

where D, E, Dd , Ed are real constant matrices of appropriate dimensions, and F(t) is an
unknown time-varying matrix with FT (t)F(t)≤ I .
In this note, we consider the following full-order nonlinear observer:

˙̂x(t) – J ˙̂x(t – d) = Ax̂(t) +Adx̂(t – d) + f
(
t, x̂(t), x̂(t – d)

)
+ L

(
y(t) –Cx̂(t)

)
, ()

where the constant matrix L is the observer parameter vector.
Let the error state be

e(t) = x(t) – x̂(t). ()

Then it follows from ()-() that

ė(t) – J ė(t – d) = Ace(t) +�A(t)x(t) +�Ad(t)x(t – d) +Ade(t – d) +�f , ()

where Ac = A – LC, �f = f (t,x(t),x(t – d)) – f (t, x̂(t), x̂(t – d)).
Consider the following nonlinear system:

ẋ(t) – Jẋ(t – d) =
(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d) + f

(
t,x(t),x(t – d)

)
,

ė(t) – J ė(t – d) = Ace(t) +�A(t)x(t) +�Ad(t)x(t – d) +Ade(t – d) +�f .
()

In the following theorem, a sufficient condition is derived so as to guarantee the asymp-
totic stability for system ().

Theorem  For given sufficiently small positive scalars δ, δ and matrix L, and positive
definite matrices R, R, system () is asymptotically stable if there exist positive scalars
εi (i = , , . . . , ) and positive definite matrices P and P satisfying the following matrix
equations:

PAc +AT
c P + PDDTP +

(
ε– + ε–

)
P
 + PDdDT

d P + εAT
c Ac + (ε + ε)T

+ (ε + ε)AT
d Ad +

(
ε– + ε– + ε–

)
JTP

 J + JTPDDTPJ

+ JTPDdDT
d PJ + (ε + ε)T + δI + R = , ()

http://www.advancesindifferenceequations.com/content/2014/1/133
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PA +ATP + ETE + PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P
T


+ εATA + (ε + ε)T + ET
d Ed + (ε + ε)AT

d Ad

+
(
ε– + ε– + ε–

)
JTP

J + JTPDDTPJ

+ JTPDdDT
d PJ + (ε + ε)T + δI + R = . ()

Proof Consider the following candidate Lyapunov-Krasovskii functional:

V (t) =
(
e(t) – Je(t – d)

)TP
(
e(t) – Je(t – d)

)
+

∫ t

t–d
eT (s)Qe(s)ds

+
(
x(t) – Jx(t – d)

)TP
(
x(t) – Jx(t – d)

)
+

∫ t

t–d
xT (s)Qx(s)ds.

Taking the time derivative of V (t) for () yields

V̇ (t) = 
(
e(t) – Je(t – d)

)TP
[
Ace(t) +�A(t)x(t) +�Ad(t)x(t – d) +Ade(t – d) +�f

]
+ eT (t)Qe(t) – eT (t – d)Qe(t – d) + xT (t)Qx(t) – xT (t – d)Qx(t – d)

+ 
(
x(t) – Jx(t – d)

)TP
[(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x(t – d)

+ f
(
t,x(t),x(t – d)

)]
= eT (t)

(
PAc +AT

c P
)
e(t) + eT (t)P�A(t)x(t) + xT (t)�AT (t)Pe(t)

+ eT (t)P�Ad(t)x(t – d) + xT (t – d)�AT
d (t)Pe(t) + eT (t)PAde(t – d)

+ eT (t – d)AT
d Pe(t) + eT (t)P�f +�f TPe(t) – eT (t – d)JTPAce(t)

– eT (t)AT
c PJe(t – d) – eT (t – d)JTP�A(t)x(t) – xT (t)�AT (t)PJe(t – d)

– eT (t – d)JTP�Ad(t)x(t – d)

– xT (t – d)�AT
d (t)PJe(t – d) – eT (t – d)JTPAde(t – d)

– eT (t – d)AT
d PJe(t – d)

+ xT (t)Qx(t) – eT (t – d)JTP�f –�f TPJe(t – d) + eT (t)Qe(t)

– eT (t – d)Qe(t – d)

– xT (t – d)Qx(t – d) + xT (t)
(
PA +ATP

)
x(t) + xT (t)P�A(t)x(t)

+ xT (t)�A(t)TPx(t)

+ xT (t)PAdx(t – d) + xT (t – d)AT
d Px(t) + xT (t)P�Adx(t – d)

+ xT (t – d)�AT
d Px(t)

+ xT (t)Pf + f TPx(t) – xT (t – d)JTPAx(t) – xT (t)ATPJx(t – d)

– xT (t – d)JTP�Ax(t) – xT (t)�ATPJx(t – d) – xT (t – d)JTPAdx(t – d)

– xT (t – d)AT
d PJx(t – d) – xT (t – d)JTP�Adx(t – d)

– xT (t – d)�AT
d PJx(t – d) – xT (t – d)JTPf – f TPJx(t – d). ()
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From Lemma  and Lemma , we have

eT (t)P�A(t)x(t) + xT (t)�AT (t)Pe(t)

= eT (t)PDFEx(t) + xT (t)ETFTDTe(t)≤ eT (t)PDDTPT
 e(t) + xT (t)ETEx(t),

eT (t)P�Ad(t)x(t – d) + xT (t – d)�AT
d (t)Pe(t)

≤ eT (t)PDdDT
d P

T
 e(t) + xT (t – d)ET

d Edx(t – d),

–eT (t – d)JTP�A(t)x(t) – xT (t)�AT (t)PJe(t – d)

≤ xT (t)ETEx(t) + eT (t – d)JTPDDTPJe(t – d),

–eT (t – d)JTP�Ad(t)x(t – d) – xT (t – d)�AT
d (t)PJe(t – d)

≤ xT (t – d)ET
d Edx(t – d) + eT (t – d)JTPDdDT

d PJe(t – d), ()

eT (t)PAde(t – d) + eT (t – d)AT
d Pe(t) ≤ ε– eT (t)P

 e(t) + εeT (t – d)AT
d Ade(t – d),

–eT (t – d)JTPAce(t) – eT (t)AT
c PJe(t – d)

≤ ε– eT (t – d)JTP
 Je(t – d) + εeT (t)AT

c Ace(t),

eT (t)P�f +�f TPe(t)≤ ε– eT (t)P
 e(t) + ε‖�f ‖,

–eT (t – d)JTP�A(t)x(t) – xT (t)�AT (t)PJe(t – d)

≤ xT (t)ETEx(t) + eT (t – d)JTPDDTPJe(t – d),

–eT (t – d)JTP�Ad(t)x(t – d) – xT (t – d)�AT
d (t)PJe(t – d)

≤ eT (t – d)JTPDdDT
d PJe(t – d) + xT (t – d)ET

d Edx(t – d), ()

–eT (t – d)JTP�A(t)x(t) – xT (t)�AT (t)PJe(t – d)

≤ xT (t)ETEx(t) + eT (t – d)JTPDDTPJe(t – d),

–eT (t – d)JTP�f –�f TPJe(t – d) ≤ ε– eT (t – d)JTP
 Je(t – d) + ε‖�f ‖,

xT (t)PAdx(t – d) + xT (t – d)AT
d Px(t)≤ ε– xT (t)P

x(t) + εxT (t – d)AT
d Adx(t – d),

–eT (t – d)JTP�Ad(t)x(t – d) – xT (t – d)�AT
d (t)PJe(t – d)

≤ eT (t – d)JTPDdDT
d PJe(t – d) + xT (t – d)ET

d Edx(t – d),

xT (t)P�A(t)x(t) + xT (t)�A(t)TPx(t)≤ xT (t)PDDTPx(t) + xT (t)ETEx(t), ()

xT (t)P�Adx(t – d) + xT (t – d)�AT
d Px(t)

≤ xT (t)PDdDT
d P

T
 x(t) + xT (t – d)ET

d Edx(t – d),

xT (t)Pf + f TPx(t)≤ ε– xT (t)P
x(t) + ε‖f ‖,

–xT (t – d)JTPAx(t) – xT (t)ATPJx(t – d)

≤ ε– xT (t – d)JTP
Jx(t – d) + εxT (t)AT (t)A(t)x(t),

–xT (t – d)JTP�A(t)x(t) – xT (t)�AT (t)PJx(t – d)

≤ xT (t)ETEx(t) + xT (t – d)JTPDDTPJx(t – d),

http://www.advancesindifferenceequations.com/content/2014/1/133
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–xT (t – d)JTP�Adx(t – d) – xT (t – d)�AT
d PJx(t – d)

≤ xT (t – d)ET
d Edx(t – d) + xT (t – d)JTPDdDT

d PJx(t – d),

–xT (t – d)JTPf – f TPJx(t – d) ≤ ε– xT (t – d)JTP
Jx(t – d) + ε‖f ‖. ()

Substituting ()-() into (), we have

V̇ (t)≤ eT (t)
(
PAc +AT

c P
)
e(t) + eT (t)PDDTPT

 e(t) + xT (t)ETEx(t)

+ eT (t)PDdDT
d P

T
 e(t)

+ xT (t – d)ET
d Edx(t – d) + ε– eT (t)P

 e(t) + εeT (t – d)AT
d Ade(t – d)

+ ε– eT (t)P
 e(t)

+ ε‖�f ‖ + ε– eT (t – d)JTP
 Je(t – d) + εeT (t)AT

c Ace(t)

+ eT (t – d)JTPDDTPJe(t – d)

+ xT (t)ETEx(t) + eT (t – d)JTPDdDT
d PJe(t – d) + xT (t – d)ET

d Edx(t – d)

– eT (t – d)JTPAde(t – d) – eT (t – d)AT
d PJe(t – d)

+ ε– eT (t – d)JTP
 Je(t – d) + ε‖�f ‖

+ eT (t)Qe(t) – eT (t – d)Qe(t – d) + xT (t)Qx(t) – xT (t – d)Qx(t – d)

+ xT (t)
(
PA +ATP

)
x(t) + xT (t)PDDTPx(t) + xT (t)ETEx(t) + ε– xT (t)P

x(t)

+ εxT (t – d)AT
d Adx(t – d) + xT (t)PDdDT

d P
T
 x(t) + xT (t – d)ET

d Edx(t – d)

+ ε– xT (t)P
x(t) + ε‖f ‖ + ε– xT (t – d)JTP

Jx(t – d) + εxT (t)ATAx(t)

+ xT (t – d)JTPDDTPJx(t – d) + xT (t)ETEx(t) – xT (t – d)JTPAdx(t – d)

– xT (t – d)AT
d PJx(t – d) + xT (t – d)JTPDdDT

d PJx(t – d)

+ xT (t – d)ET
d Edx(t – d) + ε– xT (t – d)JTP

Jx(t – d) + ε‖f ‖

= eT (t)
(
PAc +AT

c P + PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P + εAT
c Ac +Q

)
e(t)

+ xT (t)
[
PA +ATP + ETE +Q + PDDTP +

(
ε– + ε–

)
P


+ PDdDT
d P

T
 + εATA

]
x(t)

+ xT (t – d)
[
ET

d Ed –Q + εAT
d Ad +

(
ε– + ε–

)
JTP

J

+ JTPDDTPJ – JTPAd –AT
d PJ

+ JTPDdDT
d PJ

]
x(t – d) + (ε + ε)‖�f ‖ + (ε + ε)‖f ‖ + eT (t – d)

[
εAT

d Ad

+
(
ε– + ε–

)
JTP

 J + JTPDDTPJ + JTPDdDT
d PJ – JTPAd

–AT
d PJ –Q

]
e(t – d). ()

From Lemma  and (), we get

V̇ (t)≤ eT (t)
(
PAc +AT

c P + PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P + εAT
c Ac

+Q + (ε + ε)T
)
e(t)

http://www.advancesindifferenceequations.com/content/2014/1/133
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+ xT (t)
[
PA +ATP + ETE +Q

+ PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P
T
 + εATA

+ (ε + ε)T
]
x(t) + xT (t – d)

[
ET

d Ed –Q + (ε + ε)AT
d Ad

+
(
ε– + ε– + ε–

)
JTP

J

+ JTPDDTPJ + JTPDdDT
d PJ + (ε + ε)T

]
x(t – d)

+ eT (t – d)
[
(ε + ε)AT

d Ad

+
(
ε– + ε– + ε–

)
JTP

 J + JTPDDTPJ + JTPDdDT
d PJ

+ (ε + ε)T –Q
]
e(t – d).

Let

Q = ET
d Ed + (ε + ε)AT

d Ad +
(
ε– + ε– + ε–

)
JTP

J + JTPDDTPJ

+ JTPDdDT
d PJ + (ε + ε)T + δI,

Q = (ε + ε)AT
d Ad +

(
ε– + ε– + ε–

)
JTP

 J + JTPDDTPJ

+ JTPDdDT
d PJ + (ε + ε)T + δI.

()

Then we get

V̇ (t)≤ eT (t)
(
PAc +AT

c P + PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P + εAT
c Ac +Q

+ (ε + ε)T
)
e(t) + xT (t)

[
PA +ATP + ETE +Q + PDDTP

+
(
ε– + ε–

)
P
 + PDdDT

d P
T
 + εATA + (ε + ε)T

]
x(t)

– δxT (t – d)x(t – d) – δeT (t – d)e(t – d). ()

For simplicity, we denote

� = PAc +AT
c P + PDDTP +

(
ε– + ε–

)
P
 + PDdDT

d P

+ εAT
c Ac +Q + (ε + ε)T,

� =PA +ATP + ETE +Q + PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P
T


+ εATA + (ε + ε)T,

()

where Q and Q are given by (). Then (), (), and () indicate that

� = –R < , � = –R < .

Substituting () into () yields

V̇ (t)≤ eT (t)�e(t) + xT (t)�x(t) – δxT (t – d)x(t – d) – δeT (t – d)e(t – d)

=

⎡
⎢⎢⎢⎣

e(t)
x(t)

e(t – d)
x(t – d)

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

�   
 �  
  –δ 
   –δ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

e(t)
x(t)

e(t – d)
x(t – d)

⎤
⎥⎥⎥⎦
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≤ –min
(
λmin(–�),λmin(–�), δ, δ

)∥∥(
eT (t) xT (t) eT (t – d) xT (t – d)

)∥∥

≤ –min
(
λmin(–�),λmin(–�), δ, δ

)(∥∥e(t)∥∥ +
∥∥x(t)∥∥) < ,

which implies that system () is asymptotically stable. This completes the proof of The-
orem . �

Theorem  For the given matrix L, system () is asymptotically stable if there exist posi-
tive scalars γi (i = , , , ) and positive definite matrices P and P such that the following
LMIs hold:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 PD P PDd JTP JTPD JTPDd

DTP –I     
P  –γI    

DT
d P   –I   
PJ    –γI  

DTPJ     –I 
DT

d PJ      –I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 PD P PDd JTP JTPD JTPDd

DTP –I     
P  –γI    

DT
d P   –I   
PJ    –γI  

DTPJ     –I 
DT

d PJ      –I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< ,

()

where

 = PAc +AT
c P + γAT

c Ac + (γ + γ)(T + T) + (γ + γ)AT
d Ad,

 = PA +ATP + ETE + γATA + (γ + γ)
(
T + T +AT

d Ad
)
+ ET

d Ed.

Proof Consider the following candidate Lyapunov-Krasovskii functional:

V (t) =
(
e(t) – Je(t – d)

)TP
(
e(t) – Je(t – d)

)
+

∫ t

t–d
eT (s)Qe(s)ds

+
(
x(t) – Jx(t – d)

)TP
(
x(t) – Jx(t – d)

)
+

∫ t

t–d
xT (s)Qx(s)ds.

Time derivative of V (t) along the trajectory of () yields

V̇ (t)≤ eT (t)
(
PAc +AT

c P + PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P + εAT
c Ac +Q

+ (ε + ε)T
)
e(t) + xT (t)

[
PA +ATP + ETE +Q + PDDTP

+
(
ε– + ε–

)
P
 + PDdDT

d P
T
 + εATA + (ε + ε)T

]
x(t)

+ xT (t – d)
[
ET

d Ed –Q + (ε + ε)AT
d Ad

+
(
ε– + ε– + ε–

)
JTP

J + JTPDDTPJ + JTPDdDT
d PJ + (ε + ε)T

]
x(t – d)
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+ eT (t – d)
[
(ε + ε)AT

d Ad +
(
ε– + ε– + ε–

)
JTP

 J + JTPDDTPJ

+ JTPDdDT
d PJ + (ε + ε)T –Q

]
e(t – d). ()

Let

Q = ET
d Ed + (ε + ε)AT

d Ad +
(
ε– + ε– + ε–

)
JTP

J + JTPDDTPJ

+ JTPDdDT
d PJ + (ε + ε)T,

Q = (ε + ε)AT
d Ad +

(
ε– + ε– + ε–

)
JTP

 J + JTPDDTPJ

+ JTPDdDT
d PJ + (ε + ε)T.

()

Substituting () into () yields

V̇ (t)≤ eT (t)
(
PAc +AT

c P + PDDTP +
(
ε– + ε–

)
P
 + PDdDT

d P + εAT
c Ac +Q

+ (ε + ε)T
)
e(t) + xT (t)

[
PA +ATP + ETE +Q + PDDTP

+
(
ε– + ε–

)
P
 + PDdDT

d P
T
 + εATA + (ε + ε)T

]
x(t)).

Let ε = ε = γ, ε = ε = ε = γ, ε = ε = γ, ε = ε = ε = γ. From Lemma , ()
implies that V̇ < , which implies that system () is asymptotically stable. This completes
the proof of Theorem . �

Remark  It is well known that if system () is asymptotically stable, then both systems
() and () are asymptotically stable.

5 Numerical example
In this section, we demonstrate the theory developed in this paper by means of a simple
example.
Consider nonlinear neutral delay system ()-() with

A =

(
– –
 –

)
, A =

(
 
  +

√


)
, C = ( –), C = ( ),

J = .I, f
(
t,x(t),x(t – )

)
=

(

 cos tx(t) +


 sin tx(t – )


 sin tx(t)

)
.

It is easy to obtain that

f
(
t,x(t),x(t – )

)
– f

(
t, x̂(t), x̂(t – )

)
=

(

 cos t(x(t) – x̂(t)) + 

 sin t(x(t – ) – x̂(t – ))

 sin t(x(t) – x̂(t))

)
.

So,

∥∥f (t,x(t),x(t – )
)
– f

(
t, x̂(t), x̂(t – )

)∥∥ ≤ 

∥∥x(t) – x̂(t)

∥∥ +



∥∥x(t – ) – x̂(t – )
∥∥,
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i.e., T = 
 I , T = 

 I . Let L =
( 


)
, then

Ac = A – LC =

(
– –
 –

)
–

(



)
( –) =

(
– 
– –

)
,

Ad = A – LC =

(
 
  +

√


)
–

(



)
( ) =

(
 


√


)
.

Taking ε = ε = , ε = ε = ε = , one can easily verify that linear matrix inequality
() has a solution

P =

(
 
 

)
.

According to Corollary , system () is asymptotically stable.

6 Conclusion
In this paper, the problem of observer design for a class of nonlinear neutral systems with
time delay is discussed. Firstly, we present some sufficient conditions for the existence of
observers of a class of nonlinear neutral systems with time-varying delay. An effective al-
gebraic matrix equation approach is developed. Then a design method of the observer,
which is dependent on the solution of the linear matrix inequality, is proposed. Further-
more, we consider robust observer designs for a class of nonlinear neutral systems with
time delay and uncertainties. The sufficient conditions which guarantee that the observer
error converges asymptotically to zero are given. Finally, a numerical example is provided
to show the applicability of the developed results.
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