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Abstract
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theorem in cones.
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1 Introduction
In this paper, we will consider the existence of positive solutions for boundary value prob-
lems of second order impulsive functional differential equations of the form

⎧⎪⎨
⎪⎩
(ρ(t)u′(t))′ + f (t,ut) = , t ∈ J , t �= tk ,k = , . . . ,m,
–�u′(tk) = Ik(utk ), k = , , . . . ,m,
u = ϕ, u(T) = A,

(.)

where J = [,T], f : J ×Cτ → R is a continuous function, ϕ ∈ Cτ (Cτ be given in Section ),
τ ≥ , ρ(t) ∈ C(J , (,∞)), ut ∈ Cτ , ut(θ ) = u(t + θ ), θ ∈ [–τ , ]. Ik ∈ C(Cτ ,R),  = t < t <
t < · · · < tm < tm+ = T , J ′ = (,T)\{t, . . . , tm}.�u′(tk) = u′(t+k )–u′(t–k ), u′(t+k ) (u′(t–k )) denote
the right limit (left limit) of u′(t) at t = tk , and A ∈ R = (–∞, +∞).
Impulsive differential equations describe processes which experience a sudden change

of their state at certain moments. The theory of impulse differential equations has been
a significant development in recent years and played a very important role in modern
applied mathematical models of real processes arising in phenomena studied in physics,
population dynamics, chemical technology and biotechnology; see [–].
Many papers have been published about the existence analysis of periodic boundary

value problems of first and second order for ordinary or functional or integro-differential
equations with impulsive. We refer the readers to the papers [–]. For instance, in [],
He and Yu investigated the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u′(t) = f (t,u(t),ut), t �= tk ,  < t < T ,
�u(tk) = Ik(u(tk)), k = , , . . . ,m,
u(t) = u(), t ∈ [–τ , ),
u() = u(T).
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Byusing the coincidence degree, Dong [] studied the following periodic boundary value
problems (PBVP) for first-order functional differential equations with impulse:

⎧⎪⎨
⎪⎩
u′(t) = f (t,ut), t �= tk ,  < t < T ,
�u(tk) = Ik(u(tk)), k = , , . . . ,m,
u() = u(T).

(.)

It is remarkable that the author required u(t) = u(t + ) for t ∈ [–τ , ]. The author also
obtained the existence of one solution of PBVP (.).
To study periodic boundary value problems for first and second order functional dif-

ferential equations with impulse, the approaches used in [, –, –, –] are the
monotone iterative technique and the method of upper and lower solutions. What they
obtained is the existence of at least one solution if there is a pair of upper and lower solu-
tions. However, in some cases it is difficult to find upper and lower solutions for general
differential equations.
As we know, the fixed point theorem of cone expression and compression is extensively

used to study the existence of multiple solutions of boundary value problems for second-
order differential equations. In paper [], Ma considers the following periodic boundary
value problem:

{
u′′(t) + f (t,ut) = ,  < t < T ,
u = ϕ, u(T) = A,

(.)

and he obtained some sufficient conditions for the existence of at least one positive solu-
tion of the PBVP (.).
In [], by applying the fixed point theorem of cone expression and compression, Liu

investigates the existence of multiple positive solutions of the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u′(t) = f (t,ut), t �= tk , t ∈ (,T),
�u(tk) = Ik(u(tk)), k = , , . . . ,m,
u(t) = ϕ(t), t ∈ [–τ , ],
u() = u(T).

Motivated by the results in [, , ], the aim of this paper is to consider the existence
of multiple positive solutions for the PBVP (.) by using some properties of the Green
function and the fixed point index theorem in cones.
This paper will be divided into three sections. In Section , we provide some preliminar-

ies and establish several lemmas which will be used throughout Section . In Section ,
we shall give the existence theorems of multiplicity positive solutions of PBVP (.).

2 Preliminary and lemmas
Let Cτ := {ϕ : [–τ , ] → R; ϕ(t) is continuous everywhere except for a finite number of
points t̄ at which ϕ(t̄+) and ϕ(t̄–) exist and ϕ(t̄–) = ϕ(t̄)}, then Cτ is a normed space with
the norm

‖ϕ‖[–τ ,] = sup
θ∈[–τ ,]

∣∣ϕ(θ )∣∣, ∀ϕ ∈ Cτ .
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Let J∗ = [–τ ,T], C(J∗) and C(J∗) represent the set of a continuous and continuously
differentiable on J∗, respectively. Moreover, for u ∈ C(J∗) we define ‖u‖J∗ = supt∈J∗ |u(t)|.
Furthermore, we denote:

PC(J∗) = {u : u(t) is a map from J∗ into R such that u(t) is continuous at t �= tk , and
u(t+k ), u(t

–
k ) exist and u(t–k ) = u(tk) for k = , , . . . ,m; u(t) = ϕ(t) for t ∈ [–τ , ]}.

PC(J∗) = {u ∈ PC(J∗) : u|(tk ,tk+) ∈ C(tk , tk+), u′(t–k ) and u′(t+k ) exist; and u′(t–k ) = u′(tk)
for k = , , . . . ,m}. PC+(J∗) = {u ∈ PC(J∗) : u(t) ≥ , t ∈ [–τ ,T]}.

Clearly, PC(J∗) is a Banach space with the norm ‖u‖J∗ = supt∈J∗ |u(t)| for u(t) ∈ PC(J∗).
PC(J∗) is also a Banach space with the norm ‖u‖ =max{‖u‖J∗ ,‖u′‖J∗}.
We need to assume the following conditions:
(A)  –

∫ T
 G(s, s)ds > ; ϕ(θ )≥  for θ ∈ [–τ , ], and A ≥ φ();

(A) f (t,u) ≥  for t ∈ [,T] and u ∈ PC+(J∗);
(A) Ik (k = , , . . . ,m) are continuous and Ik(u) ≥  for u ∈ PC+(J∗).

Lemma . (see []) Let E be a Banach spaces and K ⊂ E be a cone in E. Let r >  and
�r = {x ∈ K : ‖x‖ < r}. Assume that S : �r → K is a completely continuous operator such
that Sx �= x for x ∈ ∂�r .

(i) If ‖Sx‖ ≤ ‖x‖ for x ∈ ∂�r , then i(S,�r ,K ) = .
(ii) If ‖Sx‖ ≥ ‖x‖ for x ∈ ∂�r , then i(S,�r ,K ) = .

Lemma . For any y,ak ∈ PC(J ,R), and η,A ∈ R. Then the problem

⎧⎪⎨
⎪⎩
(ρ(t)u′(t))′ + y(t) = , t ∈ J , t �= tk ,k = , , . . . ,m,
–�u′(tk) = ak , k = , , . . . ,m,
u() = η, u(T) = A

(.)

has a unique solution

u(t) = η +
(A – η)
φ(T)

φ(t) +
∫ T


G(t, s)y(s)ds +

∑
<tk<T

G(t, tk)ρ(tk)ak , (.)

where

G(t, s) =


φ(T)

{
(φ(T) – φ(t))φ(s),  ≤ s ≤ t ≤ T ,
φ(t)(φ(T) – φ(s)), ≤ t ≤ s ≤ T ,

φ(t) =
∫ t



ds
ρ(s)

< +∞. (.)

Proof Integrating the first equation of (.) over the interval [, t] for t ∈ [,T), we get

u(t) = u() + ρ()u′()φ(t) –
∫ t



[
φ(t) – φ(s)

]
y(s)ds –

∑
<tk<t

[
φ(t) – φ(tk)

]
ρ(tk)ak . (.)

It follows from the boundary conditions u() = η, u(T) = A and (.) that

u′() =


ρ()φ(T)

[
(A – η) +

∫ T



[
φ(T) – φ(s)

]
y(s)ds +

∑
<tk<T

[
φ(T) – φ(tk)

]
ρ(tk)ak

]
.

Together with (.), we obtain (.). �

By the standard discussion, we have the following lemma which will be used later.
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Lemma . The Green function G(t, s) defined in (.) has the following properties:
(i) G(t, s)≥ , ∀t, s ∈ [,T];
(ii) G(t, s)≤G(s, s) < +∞, ∀t, s ∈ [,T];
(iii)  < σG(s, s)≤G(t, s), ∀t ∈ [α,β], s ∈ [,T], where α ∈ (, t], β ∈ [tm,T), and

 < σ :=min

{
φ(T) – φ(β)
φ(T) – φ(α)

,
φ(α)
φ(β)

}
< .

Form Lemma ., the problem (.) is equivalent to the integral equation:

(Su)(t) := u(t) =

⎧⎪⎨
⎪⎩

ϕ() + (A–ϕ())
φ(T) φ(t) +

∫ T
 G(t, s)f (s,us)ds

+
∑

<tk<T G(t, tk)ρ(tk)Ik(utk ), t ∈ [,T],
ϕ(t), t ∈ [–τ , ].

(.)

Definition . A function u ∈ PC(J∗) ∩ C(J) is called a positive solution of PBVP (.),
if it satisfies the PBVP (.) and u(t) ≥  on J∗, and u(t) �≡  on J .
Define a cone K in PC(J∗) as follows:

K =
{
x ∈ PC

(
J∗

)
: x ≥  on J∗ and x(t)≥ σ‖x‖[,T],∀t ∈ [α,β]

}
. (.)

Lemma . The operator S : K → K is completely continuous.

Proof It is easy to show that S(K ) ⊆ K holds. Let B be a bounded subset in PC(J∗). By
virtue of the Ascoli-Arzela theorem, we only show that S(B) is bounded in PC(J∗) and
S(B) is equicontinuous. For any u ∈ Cτ and θ ∈ [–τ , ], t ∈ [,T], we have ut(θ ) = u(t + θ ).
Therefore, the set {ut : u ∈ B, t ∈ [,T]} is uniformly bounded with respect to t ∈ [,T] on
Cτ . Then there exist two constants L > , L >  such that

max
u∈B,s∈[,T]

{∣∣f (s,us)∣∣} < L, max
u∈B,<tk<T

{∣∣Ik(utk )∣∣} < L, k = , , . . . ,m. (.)

Taking

L = max
t,s∈[,T]

{∣∣G(t, s)∣∣}, L = max
t,tk∈[,T]

{∣∣G(t, tk)∣∣}, k = , , . . . ,m. (.)

It follows from (.), (.), and (.) that S(B) is bounded in PC(J∗).
Let u ∈ B and t, t′ ∈ [–τ ,T] with t < t′. There are three possibilities:
Case I. If  ≤ t < t′ ≤ T , then

∣∣(Su)(t) – (Su)
(
t′
)∣∣ ≤

∫ T



∣∣G(t, s) –G
(
t′, s

)∣∣f (s,us)ds
+
A – φ()

φ(T)
∣∣φ(t) – φ

(
t′
)∣∣

+
∑

<tk<T

∣∣G(t, tk) –G
(
t′, tk

)∣∣ρ(tk)Ik(utk ).

Case II. If –τ ≤ t < t′ ≤ , then we have |(Su)(t) – (Su)(t′)| = |ϕ(t) – ϕ(t′)|.

http://www.advancesindifferenceequations.com/content/2014/1/134
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Case III. If –τ ≤ t <  < t′ ≤ T , then

∣∣(Su)(t) – (Su)
(
t′
)∣∣ ≤ ∣∣(Su)(t′) – (Su)()

∣∣ + ∣∣(Su)() – (Su)(t)
∣∣

≤
∫ T



∣∣G(
t′, s

)
–G(, s)

∣∣f (s,us)ds
+
A – ϕ()

φ(T)
∣∣φ(t) – 

∣∣ + ∣∣ϕ() – ϕ(t)
∣∣

+
∑

<tk<T

∣∣G(
t′, tk

)
–G(, tk)

∣∣ρ(tk)Ik(utk ).
Clearly, in either case, it follows from the continuity of G(t, s) and the uniform continu-
ity of ϕ in [–τ , ] that for any ε > , there exists a positive constant δ, independent of t,
t′ and u, whenever |t – t′| < δ, such that |(Su)(t) – S(u)(t′)| ≤ ε holds. Therefore, S(B) is
equicontinuous. �

3 Themain results
In this section, we shall consider the existence of multiple positive solutions for the peri-
odic boundary value problems (.).
For convenience sake, we set

f∞ := lim
v∈PC+,‖v‖[–τ ,]→∞

f (t, v)
‖v‖[–τ ,]

, I∞k := lim
v∈PC+,‖v‖[–τ ,]→∞

Ik(v)
‖v‖[–τ ,]

, k = , , . . . ,m.

For the first theorem we need the following hypotheses:
(C) There exists a constant a >  such that for v ∈ PC+(J∗) : ‖v‖[–τ ,] ≤ a,

f (t, v)≥Mmax
{‖v‖[–τ ,],‖ϕ‖[–τ ,]

}
, ∀t ∈ [,T],

Ik(v)≥Mk max
{‖v‖[–τ ,],‖ϕ‖[–τ ,]

}
, k = , , . . . ,m,

whereM andMk are two positive constants satisfying:

σ

{
M

∫ β

α

G
(


, s

)
ds +

∑
α<tk<β

G
(


, tk

)
ρ(tk)Mk

}
≥ . (.)

(C) There exists a constant b >  satisfying:

b >max
{‖ϕ‖[–τ ,],a, ( –D)–A

} (
D be given in (.)

)
such that

f (t, v)≤M∗
‖v‖[–τ ,], ∀t ∈ [,T] and Ik(v)≤M∗

k‖v‖[–τ ,], k = , , . . . ,m

for v ∈ PC+(J∗) : ‖v‖[–τ ,] ≤ b, whereM∗
 > ,M∗

k >  are constants satisfying:

D := max
t∈[,T]

{
M∗



∫ T


G(t, s)ds +

m∑
k=

G(t, tk)ρ(tk)M∗
k

}
< . (.)

Theorem . Assume that (C), (C), f∞ = ∞, and I∞k = ∞ hold. Then PBVP (.) has at
least two positive solutions u∗, u∗∗ with  < ‖u∗‖[–τ ,T] < b < ‖u∗∗‖[–τ ,T].

http://www.advancesindifferenceequations.com/content/2014/1/134
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Proof For any u ∈ K , we have u(t) ≥ σ‖u‖[,T], t ∈ [α,β]. It follows from the definitions of
PC(J∗) and ut that

‖us‖[–τ ,] = sup
θ∈[–τ ,]

∣∣u(s + θ )
∣∣ ≥ u(s) ≥ σ‖u‖[,T].

Then for u ∈ K with ‖u‖[–τ ,T] = a, it follows from (.) and assumption (C) that

(Su)
(



)
= ϕ() +

(A – ϕ())
φ(T)

φ

(



)
+

∫ T


G

(


, s

)
f (s,us)ds

+
∑

<tk<T

G
(


, tk

)
ρ(tk)Ik(utk )

≥
∫ T


G

(


, s

)
f (s,us)ds +

∑
<tk<T

G
(


, tk

)
ρ(tk)Ik(utk )

≥
∫ T


G

(


, s

)
Mmax

{‖us‖[–τ ,],‖ϕ‖[–τ ,]
}
ds

+
∑

<tk<T

G
(


, tk

)
ρ(tk)Mk max

{‖utk‖[–τ ,],‖ϕ‖[–τ ,]
}

(.)

≥
∫ β

α

G
(


, s

)
Mmax

{‖us‖[–τ ,],‖ϕ‖[–τ ,]
}
ds

+
∑

α<tk<β

G
(


, tk

)
ρ(tk)Mk max

{‖utk‖[–τ ,],‖ϕ‖[–τ ,]
}

≥
∫ β

α

G
(


, s

)
Mmax

{
σ‖u‖[,T],‖ϕ‖[–τ ,]

}
ds

+
∑

α<tk<β

G
(


, tk

)
ρ(tk)Mk max

{
σ‖u‖[,T],‖ϕ‖[–τ ,]

}

≥ σ

{
M

∫ β

α

G
(


, s

)
ds +

∑
α<tk<β

G
(


, tk

)
ρ(tk)Mk

}
‖u‖[–τ ,T]

≥ ‖u‖[–τ ,T] = a. (.)

Now if we set �a = {u ∈ K : ‖u‖[–τ ,T] < a}, then (.) shows that ‖Su‖[–τ ,T] ≥ ‖u‖[–τ ,T] for
u ∈ ∂�a . Thus, Lemma . yields

i(S,�a ,K ) = . (.)

For u ∈ K with ‖u‖[–τ ,T] = b, from (.) and assumption (C), we have

∣∣Su(t)∣∣ =
⎧⎪⎨
⎪⎩

|ϕ() + (A–ϕ())
φ(T) φ(t) +

∫ T
 G(t, s)f (s,us)ds

+
∑

<tk<T G(t, tk)ρ(tk)Ik(utk )|, t ∈ [,T],
|ϕ(t)|, t ∈ [–τ , ]

≤
{∫ T

 G(t, s)M∗
‖us‖[–τ ,] ds +

∑
<tk<T G(t, tk)ρ(tk)M

∗
k‖utk‖[–τ ,] +A,

‖ϕ‖[–τ ,]

http://www.advancesindifferenceequations.com/content/2014/1/134
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≤

⎧⎪⎨
⎪⎩
maxt∈[,T]{M∗


∫ T
 G(t, s)‖us‖[–τ ,] ds

+
∑

<tk<T G(t, tk)ρ(tk)M
∗
k‖utk‖[–τ ,]} +A,

‖ϕ‖[–τ ,]

≤
{
Db +A,
‖ϕ‖[–τ ,]

< b. (.)

Set �b = {u ∈ K : ‖u‖[–τ ,T] < b}. Then (.) shows that ‖Su‖[–τ ,T] < ‖u‖[–τ ,T] for u ∈ ∂�b .
Hence, Lemma . implies that

i(S,�b ,K ) = . (.)

According to f∞ =∞ and I∞k =∞, choose a constant b∗ such that

b∗ >max
{‖ϕ‖[–τ ,],b

}
(.)

and

f (t, v)≥ M‖v‖[–τ ,], ∀t ∈ [,T],∀v ∈ PC+(J∗),σb∗ ≤ ‖v‖[–τ ,],

Ik(v)≥ Mk‖v‖[–τ ,], ∀v ∈ PC+(J∗),σb∗ ≤ ‖v‖[–τ ,],k = , , . . . ,m,

whereM > ,Mk >  are constants satisfying:

σ

{
M

∫ β

α

G
(


, s

)
ds +

∑
α<tk<β

G
(


, tk

)
ρ(tk)Mk

}
> . (.)

For u ∈ K with ‖u‖[–τ ,T] = b∗, from (.), Lemma . and (.), by using the samemethod
to get (.), we can get

(Su)
(



)
= ϕ() +

(A – ϕ())
φ(T)

φ

(



)
+

∫ T


G

(


, s

)
f (s,us)ds

+
∑

<tk<T

G
(


, tk

)
ρ(tk)Ik(utk )

≥
∫ β

α

G
(


, s

)
M‖us‖[–τ ,] ds +

∑
α<tk<β

G
(


, tk

)
ρ(tk)Mk‖utk‖[–τ ,]

≥ σ

{∫ β

α

G
(


, s

)
M ds +

∑
α<tk<β

G
(


, tk

)
ρ(tk)Mk

}
‖u‖[–τ ,T] > b∗. (.)

Now if we set �b∗ = {u ∈ K : ‖u‖[–τ ,T] < b∗}. Then (.) shows that ‖Su‖[–τ ,T] > ‖u‖[–τ ,T]

for u ∈ ∂�b∗ . Thus, an application of Lemma . again shows that

i(S,�b∗ ,K ) = . (.)

Since a < b < b∗, it follows from (.), (.), (.), and the additivity of the fixed index
that

i(S,�b\�a ,K ) = , i(S,�b∗\�b ,K ) = –.

http://www.advancesindifferenceequations.com/content/2014/1/134
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Thus, S has a fixed point u∗ in�b\�a , and a fixed point u∗∗ in�b∗\�b . They are positive
solutions of the PBVP (.) and

 < ‖u∗‖[–τ ,T] < b < ‖u∗∗‖[–τ ,T].

The proof is complete. �

For the second theorem we need the following hypotheses:
(C) There exists a constant a >  satisfying

a >max
{‖ϕ‖[–τ ,],

(
 –D∗)–A} (

D∗is given in (.)
)
,

such that for v ∈ PC+(J∗) : ‖v‖[–τ ,] ≤ a,

f (t, v)≤ λ∗
‖v‖[–τ ,], ∀t ∈ [,T] and Ik(v)≤ λ∗

k‖v‖[–τ ,], k = , , . . . ,m,

where λ∗
, λ∗

k are positive constants satisfying:

D∗ := max
t∈[,T]

{
λ∗


∫ T


G(t, s)ds +

m∑
k=

G(t, tk)ρ(tk)λ∗
k

}
< . (.)

(C) Hk : R+ → R+ (k = , , . . . ,m) are continuous nonincreasing functions such that
|Ik(v)| ≤Hk(‖v‖[–τ ,]) for v ∈ PC+(J∗).
(C) There exists a constant b with b > a such that for any v ∈ PC+(J∗) : σb ≤

‖v‖[–τ ,] ≤ b,

f (t, v)≥ λmax
{‖v‖[–τ ,],‖ϕ‖[–τ ,]

}
, ∀t ∈ [,T]

and

Ik(v)≥ λk max
{‖v‖[–τ ,],‖ϕ‖[–τ ,]

}
, k = , , . . . ,m,

where λ > , λk > , and

σ

{
λ

∫ β

α

G
(


, s

)
ds +

∑
α<tk<β

G
(


, tk

)
ρ(tk)λk

}
≥ .

Theorem . Assume that (C)-(C), and f∞ =  hold. Then PBVP (.) has at least two
positive solutions u∗, u∗∗ with  < ‖u∗‖[–τ ,T] < b < ‖u∗∗‖[–τ ,T].

Proof For any u ∈ K with ‖u‖[–τ ,T] = a. According to (.) and assumption (C), we have

∣∣Su(t)∣∣ =
⎧⎪⎨
⎪⎩

|ϕ() + (A–ϕ())
φ(T) φ(t) +

∫ T
 G(t, s)f (s,us)ds

+
∑

<tk<T G(t, tk)ρ(tk)Ik(utk )|, t ∈ [,T],
|ϕ(t)|, t ∈ [–τ , ],

≤

⎧⎪⎨
⎪⎩
maxt∈[,T]{λ∗


∫ T
 G(t, s)‖us‖[–τ ,] ds

+
∑

<tk<T G(t, tk)ρ(tk)λ
∗
k‖utk‖[–τ ,]} +A,

‖ϕ‖[–τ ,],
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≤
{
D∗a +A,
‖ϕ‖[–τ ,]

< a. (.)

Set �a = {u ∈ K : ‖u‖[–τ ,T] < a}. Then (.) shows that ‖Su‖[–τ ,T] < ‖u‖[–τ ,T] for u ∈
∂�a . Thus Lemma . implies

i(S,�a ,K ) = . (.)

On the other hand, it follows from (.) and assumption (C) that

(Su)
(



)
= ϕ() +

(A – ϕ())
φ(T)

φ

(



)
+

∫ T


G

(


, s

)
f (s,us)ds

+
∑

<tk<T

G
(


, tk

)
ρ(tk)Ik(utk )

≥
∫ T


G

(


, s

)
λmax

{‖us‖[–τ ,],‖ϕ‖[–τ ,]
}
ds

+
∑

<tk<T

G
(


, tk

)
ρ(tk)λk max

{‖utk‖[–τ ,],‖ϕ‖[–τ ,]
}

≥
∫ β

α

G
(


, s

)
λmax

{
σ‖u‖[,T],‖ϕ‖[–τ ,]

}
ds

+
∑

α<tk<β

G
(


, tk

)
ρ(tk)λk max

{
σ‖u‖[,T],‖ϕ‖[–τ ,]

}

≥ σ

{
λ

∫ β

α

G
(


, s

)
ds +

∑
α<tk<β

G
(


, tk

)
ρ(tk)λk

}
‖u‖[–τ ,T]

≥ ‖u‖[–τ ,T] = b for any u ∈ K with ‖u‖[–τ ,T] = b. (.)

Set �b = {u ∈ K : ‖u‖[–τ ,T] < b}. Then (.) implies that ‖Su‖[–τ ,T] ≥ ‖u‖[–τ ,T] for u ∈
∂�b . Thus an application of Lemma . again shows that

i(S,�b ,K ) = . (.)

In view of assumption (C) and f∞ = , there are two possibilities:
Case . Suppose that f is unbounded, then there exists a constant d satisfying:

d >max
{‖ϕ‖[–τ ,],b

}
,

such that

f (t, v)≤ ε‖v‖[–τ ,] for v ∈ PC+(J∗) : ‖v‖[–τ ,] ≥ d,∀t ∈ [,T] (.)

and

∣∣Ik(v)∣∣ ≤Hk
(‖v‖[–τ ,]

) ≤Hk(d), k = , , . . . ,m,
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where ε is a positive constant satisfying

max
t∈[,T]

{
εd

∫ T


G(t, s)ds +

m∑
k=

G(t, tk)ρ(tk)Hk(d)

}
+A≤ d. (.)

If u ∈ K with ‖u‖[–τ ,T] = d, then it follows from (.), (.), and (.) that

∣∣Su(t)∣∣ ≤
{
maxt∈[,T]{εd

∫ T
 G(t, s)ds +

∑
<tk<T G(t, tk)ρ(tk)Hk(d)} +A,

‖ϕ‖[–τ ,]

≤ d. (.)

Case . Suppose that f is bounded. Then there exists a constant N such that

∣∣f (t, v)∣∣ ≤N , t ∈ [,T],∀v ∈ PC+(J∗).
Taking

d ≥max

{
‖ϕ‖[–τ ,], max

t∈[,T]

{
N

∫ T


G(t, s)ds +

∑
<tk<T

G(t, tk)ρ(tk)Hk()
}
+A,b

}
.

For u ∈ K and ‖u‖[–τ ,T] = d, from (.), we have

∣∣Su(t)∣∣ ≤
{
maxt∈[,T]{N

∫ T
 G(t, s)ds +

∑
<tk<T G(t, tk)ρ(tk)Hk()} +A,

‖ϕ‖[–τ ,]

≤ d.

Choose d =max{d,d}. Hence, in either case, we always may set

�d =
{
u ∈ K : ‖u‖[–τ ,T] < d

}
,

such that ‖Su‖[–τ ,T] ≤ ‖u‖[–τ ,T] for u ∈ ∂�d . Thus, Lemma . yields

i(S,�d,K ) = . (.)

Since a < b < d, it follows from (.), (.), (.), and the additivity of the fixed point
index that

i(S,�b\�a ,K ) = –, i(S,�d\�b ,K ) = .

Thus, S has a fixed point u∗ in�b\�a , and a fixed point u∗∗ in�d\�b . They are positive
solutions of the PBVP (.) and

 < ‖u∗‖[–τ ,T] < b < ‖u∗∗‖[–τ ,T].

The proof is complete. �
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Example . Consider the following PBVP:

⎧⎪⎨
⎪⎩
(etu′(t))′ = ( + t)F(supθ∈[–,] |ut(θ )|),
–�u′(  ) = I(supθ∈[–,] |u(  + θ )|),
u(t) = 

 ( + sin t), t ∈ [–, ], u() = ,
(.)

where

F(x) =

⎧⎪⎨
⎪⎩
 –

√
x, x ∈ [, .),

x, x ∈ [., ),

x

, x ∈ [,+∞),
I(x) =

⎧⎪⎨
⎪⎩
x + ., x ∈ [, .),

x, x ∈ [., ),


x
 – , x ∈ [, +∞).

(.)

Then PBVP (.) has at least two positive solutions u∗, u∗∗ with  < ‖u∗‖[–,] <  <
‖u∗∗‖[–,].

Proof PBVP (.) can be regarded as a PBVP of the form (.), where

f (t,x) =
(
 + t

)
F
(‖x‖), I(x) = I

(‖x‖), ϕ(t) =



( + sin t), (.)

and ρ(t) = et , A = , τ = –, T = .
First we have  –

∫ 
 G(s, s)ds ≈ .. By choosing α = ., β = ., we get σ =

. < . On the other hand, it follows from (.) and (.) that f∞ = ∞ and I∞ = ∞
are satisfied. Finally, we show that (C) and (C) hold. Choose M = , M = , a = 

 ,
b = ,M∗

 = ,M∗
 =


 . By calculation, we get

σ

{
M

∫ .

.
G

(


, s

)
ds +G

(


,



)
ρ

(



)
M

}
≈ . > , D ≈ .

and

max
{‖ϕ‖[–τ ,],a, ( –D)–A

} ≈ . < b = .

Then it is not difficult to see that the conditions (C) and (C) hold.
By Theorem ., PBVP (.) has at least two positive solutions u∗, u∗∗ with  <

‖u∗‖[–,] <  < ‖u∗∗‖[–,]. �
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