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1 Introduction
In this article, we show the existence of solutions for a fully fractional-order anti-periodic
boundary value problem of the form

cDqx(t) = f
(
t,x(t), cDrx(t)

)
, t ∈ [,T],T > ,  < q ≤ ,  < r ≤ , (.)

x() = –x(T), cDpx() = –cDpx(T),
cDp+x() = –cDp+x(T),  < p < ,

(.)

where cDq denotes the Caputo fractional derivative of order q and f is a given continuous
function.
As a second problem, we will discuss the existence of solutions for the following frac-

tional differential equation with the boundary conditions (.):

cDqx(t) = f
(
t,x(t), cDrx(t), cDr+x(t)

)
, t ∈ [,T],T > ,  < q ≤ ,  < r ≤ . (.)

The present work is motivated by a recent paper [] in which the problem (.)-(.) was
discussed with the nonlinearity of the type f (t,x). Thus the present paper generalizes the
results obtained in [].
In the last few decades, fractional calculus has evolved as an attractive field of research in

view of its extensive applications in basic and technical sciences. Examples can be found
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in physics, chemistry, biology, economics, control theory, signal and image processing,
biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc. [–].
The subject of boundary value problems of differential equations, having an enriched

history, has been progressing at the same pace as before. In the context of fractional
boundary value problems, there has been a much development in the last ten years; for
instance, see [–] and the references cited therein.
In view of the importance of anti-periodic boundary conditions in the mathematical

modeling of a variety of physical processes [–], the study of anti-periodic boundary
value problems has received considerable attention. Some recent work on anti-periodic
boundary value problems of fractional order can be found in a series of papers [–]
and the references therein.

2 Preliminaries
We begin this section with some basic concepts [, ].

Definition . The Riemann-Liouville fractional integral of order q for a continuous
function g is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Definition . For a function g ∈ ACn–([,∞),R), the Caputo derivative of fractional
order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Lemma . [] For any y ∈ C[,T], the unique solution of the linear fractional equation
cDqx(t) = y(t),  < t < T ,  < q ≤  with anti-periodic boundary conditions (.) is given by

x(t) =
∫ T


G(t, s)y(s)ds,

where G(t, s) is the Green’s function (depending on q and p) given by

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(t–s)q––(T–s)q–
�(q) + �(–p)(T–t)(T–s)q–p–

T–p�(q–p)

+ (�(–p))Tp–(T–s)q–p–
�(q–p–)�(–p) { (T–t)�(–p)

�(–p) – T + tT}, s ≤ t,

– (T–s)q–
�(q) + �(–p)(T–t)(T–s)q–p–

T–p�(q–p)

+ (�(–p))Tp–(T–s)q–p–
�(q–p–)�(–p) { (T–t)�(–p)

�(–p) – T + tT}, t < s.

3 Uniqueness of solutions
This section is devoted to the uniqueness of solutions for the problems at hand by means
of Banach’s contraction principle.
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3.1 Uniqueness result for the problem (1.1)-(1.2)
For  < r ≤ , let us define a space C = {x : x, cDrx ∈ C([,T])}, where C([,T]) denotes the
space of all continuous functions defined on [,T]. Note that the space C endowed with
the norm defined by ‖x‖ = sup{|x(t)| + |cDrx(t)|, t ∈ [,T]} is a Banach space.
In view of Lemma ., let us define an operator G : C → C associated with the problem

(.)-(.) as

(Gx)(t) =
∫ t



(t – s)q–

�(q)
f
(
s,x(s), cDrx(s)

)
ds –




∫ T



(T – s)q–

�(q)
f
(
s,x(s), cDrx(s)

)
ds

+μ(t)
∫ T



(T – s)q–p–

�(q – p)
f
(
s,x(s), cDrx(s)

)
ds

+ ν(t)
∫ T



(T – s)q–p–

�(q – p – )
f
(
s,x(s), cDrx(s)

)
ds, (.)

where

μ(t) =
�( – p)(T – t)

T –p , ν(t) =
�( – p)(T – t – �(–p)T

�(–p) + tT�(–p)
�(–p) )

T –p .

Observe that the problem (.)-(.) has a solution only if the operator G has a fixed
point.
Before proceeding further, let us introduce some notations:

N =max{N,N}, (.)

where

N = Tq
[


�(q + )

+
�( – p)

�(q – p + )
+

�( – p)
�(q – p)

[
 –

�( – p)
�( – p)

+ 
(

�( – p)
�( – p)

)]]
,

N = Tq–r
[


�(q – r + )

+
�( – p)

�( – r)�(q – p + )

+
�( – p)
�(q – p)

[
�( – p)

�( – p)�( – r)
–


�( – r)

]]
.

Theorem . Assume that f : [,T]×R×R → R is a continuous function satisfying the
condition

∣∣f (t,x, x̄) – f (t, y, ȳ)
∣∣ ≤ L

(|x – y| + |x̄ – ȳ|), ∀t ∈ [,T],x, y, x̄, ȳ ∈R

with L < 
N ,whereN is given by (.). Then the anti-periodic boundary value problem (.)-

(.) has a unique solution.

Proof Let us set supt∈[,T] |f (t, , )| =M < ∞ and R ≥ MN( – LN)– to show that GBR ⊂
BR, where BR = {x ∈ C : ‖x‖ ≤ R}. For x ∈ BR, we have

∣∣(Gx)(t)∣∣ ≤
∫ t



(t – s)q–

�(q)
∣∣f (s,x(s), cDrx(s)

)∣∣ds

+



∫ T



(T – s)q–

�(q)
∣∣f (s,x(s), cDrx(s)

)∣∣ds
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+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
∣∣f (s,x(s), cDrx(s)

)∣∣ds

+
∣∣ν(t)∣∣

∫ T



(T – s)q–p–

�(q – p – )
∣∣f (s,x(s), cDrx(s)

)∣∣ds

≤
∫ t



(t – s)q–

�(q)
(∣∣f (s,x(s), cDrx(s)

)
– f (s, , )

∣∣ + ∣∣f (s, , )∣∣)ds

+



∫ T



(T – s)q–

�(q)
(∣∣f (s,x(s), cDrx(s)

)
– f (s, , )

∣∣ + ∣∣f (s, , )∣∣)ds

+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
(∣∣f (s,x(s), cDrx(s)

)
– f (s, , )

∣∣ + ∣∣f (s, , )∣∣)ds

+
∣∣ν(t)∣∣

∫ T



(T – s)q–p–

�(q – p – )
(∣∣f (s,x(s), cDrx(s)

)
– f (s, , )

∣∣ + ∣∣f (s, , )∣∣)ds

≤ (LR +M)
[∫ t



(t – s)q–

�(q)
ds +




∫ T



(T – s)q–

�(q)
ds

+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
ds +

∣∣ν(t)∣∣
∫ T



(T – s)q–p–

�(q – p – )
ds

]

≤ (LR +M)N ≤ (LR +M)N ≤ R.

Using the facts cDrb =  (b is a constant), cDrt = t–r
�(–r) ,

cDrt = t–r
�(–r) ,

cDr+t = t–r
�(–r) , for

 < r < , we get

(cDrGx
)
(t) =

∫ t



(t – s)q–r–

�(q – r)
f
(
s,x(s), cDrx(s)

)
ds

–
�( – p)t–r

�( – r)T –p

∫ T



(T – s)q–p–

�(q – p)
f
(
s,x(s), cDrx(s)

)
ds

+ �( – p)Tp–
[

Tt–r�( – p)
�( – p)�( – r)

–
t–r

�( – r)

]

×
∫ T



(T – s)q–p–

�(q – p – )
f
(
s,x(s), cDrx(s)

)
ds.

As in the previous step, it can be shown that

∣∣(cDrGx
)
(t)

∣∣ ≤ (LR +M)N ≤ (LR +M)N ≤ R.

Thus we get Gx ∈ BR. Hence GBR ⊂ BR. Next, for x,x ∈ C and for each t ∈ [,T], we
obtain

∣∣(Gx)(t) – (Gx)(t)
∣∣

≤
∫ t



(t – s)q–

�(q)
∣∣f (s,x, cDrx

)
– f

(
s,x, cDrx

)∣∣ds

+



∫ T



(T – s)q–

�(q)
∣∣f (s,x, cDrx

)
– f

(
s,x, cDrx

)∣∣ds

+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
∣∣f (s,x, cDrx

)
– f

(
s,x, cDrx

)∣∣ds
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+
∣∣ν(t)∣∣

∫ T



(T – s)q–p–

�(q – p – )
∣∣f (s,x, cDrx

)
– f

(
s,x, cDrx

)∣∣ds

≤ L‖x – x‖
[∫ t



(t – s)q–

�(q)
ds +




∫ T



(T – s)q–

�(q)
ds

+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
ds +

∣∣ν(t)∣∣
∫ T



(T – s)q–p–

�(q – p – )
ds

]

< LN‖x – x‖
≤ LN‖x – x‖.

In a similar manner, we find that

∣∣(cDrGx
)
(t) –

(cDrGx
)
(t)

∣∣ ≤ LN‖x – x‖ ≤ LN‖x – x‖.

By the given assumption, L < /N, it follows that the operator G is a contraction. Thus, the
conclusion of the theorem follows by the contraction mapping principle (Banach fixed
point theorem). �

3.2 Uniqueness result for the problem (1.3)-(1.2)
Here, we study the uniqueness of solutions for the problem of (.)-(.). For that, let
C̄ = {x : x, cDrx, cDr+x(t) ∈ C([,T])} be a Banach space endowed with the norm ‖x‖ =
sup{|x(t)| + |cDrx(t)| + |cDr+x(t)|, t ∈ [,T]},  < r ≤ .
Relative to the problem (.)-(.), we define an operator Ḡ : C̄ → C̄ as

(Ḡx)(t) =
∫ t



(t – s)q–

�(q)
f
(
s,x(s), cDrx(s), cDr+x(s)

)
ds

–



∫ T



(T – s)q–

�(q)
f
(
s,x(s), cDrx(s), cDr+x(s)

)
ds

+μ(t)
∫ T



(T – s)q–p–

�(q – p)
f
(
s,x(s), cDrx(s), cDr+x(s)

)
ds

+ ν(t)
∫ T



(T – s)q–p–

�(q – p – )
f
(
s,x(s), cDrx(s), cDr+x(s)

)
ds. (.)

In what follows, we set

N̄ =max{N,N}, (.)

where N is given by (.) and

N = Tq–r–
[


�(q – r)

+
�( – p)

�( – r)�(q – p)

]
.

Theorem . Let f : [,T]×R×R →R be a continuous function and there exists a pos-
itive number L̄ < /N̄ such that

∣∣f (t,x, x̄, ¯̄x) – f (t, y, ȳ, ¯̄y)∣∣ ≤ L̄
(|x – y| + |x̄ – ȳ| + | ¯̄x – ¯̄y|), ∀t ∈ [,T],x, y, x̄, ȳ, ¯̄x, ¯̄y ∈R.

Then the anti-periodic boundary value problem (.)-(.) has a unique solution on [,T].

http://www.advancesindifferenceequations.com/content/2014/1/136
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Proof We define BR̄ = {x ∈ C̄ : ‖x‖ ≤ R̄}, R̄ ≥ M̄N̄
–L̄N̄ , M̄ = supt∈[,T] |f (t, , , )| < ∞ and

show that ḠBR̄ ⊂ BR̄. In view of the given assumption, we have

∣∣f (s,x(s), cDrx(s), cDr+x(t)
)∣∣

≤ ∣∣f (s,x(s), cDrx(s), cDr+x(t)
)
– f (t, , , )

∣∣ + ∣∣f (t, , , )∣∣
≤ L̄R̄ + M̄, x ∈ BR̄. (.)

Thus

∣∣(Ḡx)(t)∣∣ ≤
∫ t



(t – s)q–

�(q)
∣∣f (s,x(s), cDrx(s), cDr+x(t)

)∣∣ds

+



∫ T



(T – s)q–

�(q)
∣∣f (s,x(s), cDrx(s), cDr+x(t)

)∣∣ds

+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
∣∣f (s,x(s), cDrx(s), cDr+x(t)

)∣∣ds

+
∣∣ν(t)∣∣

∫ T



(T – s)q–p–

�(q – p – )
∣∣f (s,x(s), cDrx(s), cDr+x(t)

)∣∣ds

≤ (L̄R̄ + M̄)
[∫ t



(t – s)q–

�(q)
ds +




∫ T



(T – s)q–

�(q)
ds

+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
ds +

∣∣ν(t)∣∣
∫ T



(T – s)q–p–

�(q – p – )
ds

]

≤ (L̄R̄ + M̄)N

≤ (L̄R̄ + M̄)N̄≤ R̄.

Further, it can be shown in a similar way that

∣∣(cDrḠx
)
(t)

∣∣ ≤ (L̄R̄ + M̄)N ≤ (L̄R̄ + M̄)N̄≤ R̄,
∣∣(cDr+Ḡx

)
(t)

∣∣ ≤ (L̄R̄ + M̄)N ≤ (L̄R̄ + M̄)N̄ ≤ R̄.

Next, for x,x ∈ C̄ and for each t ∈ [,T], we obtain

∣∣(Ḡx)(t) – (Ḡx)(t)
∣∣

≤
∫ t



(t – s)q–

�(q)
∣∣f (s,x, cDrx, cDr+x

)
– f

(
s,x, cDrx, cDr+x

)∣∣ds

+



∫ T



(T – s)q–

�(q)
∣∣f (s,x, cDrx, cDr+x

)
– f

(
s,x, cDrx, cDr+x

)∣∣ds

+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
∣∣f (s,x, cDrx, cDr+x

)
– f

(
s,x, cDrx, cDr+x

)∣∣ds

+
∣∣ν(t)∣∣

∫ T



(T – s)q–p–

�(q – p – )
∣∣f (s,x, cDrx, cDr+x

)
– f

(
s,x, cDrx, cDr+x

)∣∣ds

≤ L‖x – x‖
[∫ t



(t – s)q–

�(q)
ds +




∫ T



(T – s)q–

�(q)
ds

http://www.advancesindifferenceequations.com/content/2014/1/136
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+
∣∣μ(t)∣∣

∫ T



(T – s)q–p–

�(q – p)
ds +

∣∣ν(t)∣∣
∫ T



(T – s)q–p–

�(q – p – )
ds

]

< L̄N‖x – x‖
≤ L̄N̄‖x – x‖.

Also, we have

∣∣(cDrḠx
)
(t) –

(cDrḠx
)
(t)

∣∣ ≤ LN‖x – x‖ ≤ L̄N̄‖x – x‖,∣∣(cDr+Ḡx
)
(t) –

(cDr+Ḡx
)
(t)

∣∣ ≤ L̄N‖x – x‖ ≤ L̄N̄‖x – x‖.

Since L̄ < /N̄, therefore, the operator Ḡ is a contraction. Thus, it follows by the contraction
mapping principle that the problem (.)-(.) has a unique solution on [,T]. �

4 Examples
(a) Consider the anti-periodic fractional boundary value problem given by

cD

 x(t) = L

( |x(t)|
 + |x(t)| +

√
 + t

( |cD 
 x(t)|

 + |cD 
 x(t)|

))
+

√
 + sin t, L > , t ∈ [, ],

x() = –x(), cD

 x() = –cD


 x(), cD


 x() = –cD


 x(), (.)

where q = /, p = /, r = /, T = , and

f (t,x, x̄) = L
( |x|
 + |x| +

√
 + t

( |x̄|
 + |x̄|

))
+

√
 + sin t, x̄ = cD


 x(t).

Clearly

∣∣f (t,x, x̄) – f (t, y, ȳ)
∣∣ ≤ L

(∣∣∣∣ x
 + x

–
y

 + y

∣∣∣∣ +
∣∣∣∣ x̄
 + x̄

–
ȳ

 + ȳ

∣∣∣∣
)

≤ L
(|x – y| + |x̄ – ȳ|),

N =



√

π
+

√

π


, N =



.

With L < /N (N = N > N), all the assumptions of Theorem . hold. Therefore, the prob-
lem (.) has a unique solution on [, ].
(b) Consider the following anti-periodic fractional boundary value problem:

cD

 x(t) = L̄

( |x(t)|
 + |x(t)| + tan–

∣∣cD 
 x(t)

∣∣ + cos t
( |cD 

 x(t)|
 + |cD 

 x(t)|

))

+ e–t , L̄ > , t ∈ [, ],

x() = –x(), cD

 x() = –cD


 x(), cD


 x() = –cD


 x(), (.)

where q = /, p = /, r = /, T = . With x̄ = cD 
 x(t), ¯̄x = cD 

 x(t), we can write

f (t,x, x̄, ¯̄x) = L̄
( |x|
 + |x| + tan–

∣∣(x̄)∣∣ + cos t
( | ¯̄x|
 + | ¯̄x|

))
+ e–t .
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Furthermore, we have

∣∣f (t,x, x̄, ¯̄x) – f (t, y, ȳ, ¯̄y)∣∣ ≤ L̄
(|x – y| + |x̄ – ȳ| + | ¯̄x – ¯̄y),

N =



√

π
–

�(/)
�(/)

, N =


+

�(/)


√
π�(/)

, N =  +
�(/)


√

π�(/)
.

Clearly all the assumptions of Theorem . are satisfied with L̄ < /N̄ (N̄ = N > N > N).
Hence, the problem (.) has a unique solution on [, ].
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