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Abstract
In this paper, the sampled-data state estimation is investigated for a class of neural
networks of neutral type. By employing a suitable Lyapunov functional, a
delay-dependent criterion is established to guarantee the existence of the
sampled-data estimator. The estimator gain matrix can be obtained by solving linear
matrix inequalities (LMIs). A numerical example is given to show the effectiveness of
the proposed method.
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1 Introduction
Over the past decades, considerable attention has been devoted to the study of artificial
neural networks due to their extensive application in signal and image processing, pattern
recognition, and combinatorial optimization [, ]. Numerous models of neural networks
such as cellular neural networks, Hopfield-type neural networks, Cohen-Grossberg neural
networks, and bidirectional associative memory neural networks have been extensively
investigated in the literature [–].
In recent years, the state estimation problem has been a hot topic because of its great

significance to estimation of the neuron states through available output measurements.
Many results have been available. For example, the state estimation problem for delayed
neural networks was discussed in []. Huang and Feng investigated the state estimation
of recurrent neural networks with time-varying delay. A delay-dependent condition was
derived to guarantee the existence of a desired state estimator [, ]. By constructing a
Lyapunov-Krasovskii functional and using a convex combination technique, the exponen-
tial state estimation for Markovian jumping neural networks with time-varying discrete
and distributed delays was investigated []. The state estimation of discrete-time neural
networks and fuzzy neural networks was studied in [–]. Recently, the state estimation
problem of neural networks of neutral type has motivated a great deal of interest. Park et
al. investigated the state estimation of neural networks of neutral type with interval time-
varying delays [–]. A delay-dependent condition was proposed for neural networks
of neutral type with mixed time-varying delays and Markovian jumping parameters [].
At the same time, the sampled-data state estimation of neural networks has gradually

caused researchers’ concern with the development of computer hardware technology. For
instance, Hu investigated the sampled-data state estimation of delayed neural networks
withMarkovian jumping parameters [], and in [] the sampled-data state estimatorwas
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designed for Markovian jumping fuzzy cellular neural networks with mode-dependent
probabilistic time-varying delays. In order to effectively deal with the sampled-data, the
author investigated the sampled-data state estimation of neural networks by using a dis-
continuous Lyapunov functional approach [, ]. It is worth mentioning that the ap-
proach to estimate the neuron states through the output sampled measurement needs
less information from the network outputs, which can lead to a significant reduction of
the information communication burden in the network. To the best of our knowledge, the
sampled-data state estimation of neural networks of neutral type has not been investigated
so far.
Motivated by the above discussion, in this paper, we aim to deal with the sampled-data

state estimation problem for neural networks of neutral type. By utilizing Lyapunov func-
tional, Jensen’s inequalities and Schur complement, a delay-dependent criterion is given
to guarantee the existence of the state estimator of neural networks of neutral type. The
estimator gain matrix can be obtained in terms of LMIs.
The organization of the rest is as follows. In Section , the problem is formulated and

some lemmas are introduced. In Section , some sufficient conditions are given to guar-
antee the existence of the sampled-data estimator. An example is given to exemplify the
usefulness of our theoretical results in Section . And in the last section, Section , we
give some conclusions.

2 Problem formulation
In this paper, the sampled-data state estimation problemwill be investigated. Consider the
following neural networks of neural type:

ẋ(t) = –Ax(t) +Wf
(
x(t)

)
+Wg

(
x
(
t – h(t)

))
+Vẋ

(
t – d(t)

)
+ J ,

y(t) = Cx(t),
()

where x(t) = [x(t), . . . ,xn(t)]T ∈ R
n is the neuron state vector associated with n neu-

rons. f (x(t)) = [f(x(t)), . . . , fn(xn(t))]T ∈R
n and g(x(t–h(t))) = [g(x(t–h(t))), . . . , gn(xn(t–

h(t)))]T ∈R
n are the neuron activation functions. J = [J, . . . , Jn]T is the external input vec-

tor at time t. y(t) ∈ R
m is the measurement output. A = diag(a,a, . . . ,an) is a positive

diagonal matrix.W,W, and V are the interconnection matrices representing the weight
coefficients of the neurons. C ∈R

m×n is a known constant matrix. h(t) >  and d(t) >  are
axonal signal transmission delays that satisfy the following inequalities:

 < h(t)≤ h̄, ḣ(t) ≤ hD,

 < d(t)≤ d̄, ḋ(t)≤ dD < .

Assumption  The neuron activation functions f (·), g(·) satisfy the Lipschitz condition
∥∥f (x) – f (x)

∥∥ ≤ ∥∥F(x – x)
∥∥,∥∥g(x) – g(x)

∥∥ ≤ ∥∥G(x – x)
∥∥,

where F ∈R
n×n and G ∈R

n×n are the known constant matrices.
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The aim of this paper is to present an efficient estimation algorithm to observe the neu-
ron states from the available network sampling output. To this end, the following full order
observer is proposed:

˙̂x(t) = –Ax̂ +Wf
(
x̂(t)

)
+Wg

(
x̂
(
t – h(t)

))
+V ˙̂x(t – d(t)

)
+ J + u(t),

ŷ(t) = Cx̂(t),
()

where x̂(t) ∈ R
n is the estimation of neuron state x(t). ŷ(t) ∈ R

m is the estimated output
vector. u(t) ∈ R

n is the control input, which is assumed to use sampled data as follows:

u(t) = K
[
y(tk) – ŷ(tk)

]
= KC

[
x(tk) – x̂(tk)

]
, k = , , , . . . , ()

where tk denotes the sampling instant and satisfies limk→∞ tk =∞.

Assumption  For k ≥ , there exists a known positive constant τ̄ such that the sampling
instant tk satisfies tk+ – tk ≤ τ̄ .

Define the error vector to be e(t) = x(t) – x̂(t), and

φ(t) = f
(
x(t)

)
– f

(
x̂(t)

)
,

ϕ(t) = g
(
x(t)

)
– g

(
x̂(t)

)
.

()

Let τ (t) = t – tk , tk ≤ t < tk+, the controller () can be represented as follows:

u(t) = KCe(tk)

= KCe
(
t – τ (t)

)
, tk ≤ t < tk+. ()

Therefore, the error dynamical system can be expressed by

ė(t) = –Ae(t) –KCe
(
t – τ (t)

)
+Vė

(
t – d(t)

)
+Wφ(t) +Wϕ

(
t – h(t)

)
, ()

where τ (t) satisfies  ≤ τ (t)≤ τ̄ .
The following lemmas will be used in deriving the main results.

Lemma  ([], Jensen’s inequality) For any constant matrix Q ∈R
n×n,Q =QT > , scalar

b > , and vector function x : [,b]→R
n, one has

–
∫ b


xT (s)Qx(s)ds≤ –


b

[∫ b


x(s)ds

]T

Q
[∫ b


x(s)ds

]
.

Lemma  ([], Schur complement) Given constant matricesΩ,Ω, andΩ,whereΩ =
ΩT

 and Ω > , then

Ω +ΩT
 Ω–

 Ω <  ()
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if and only if

[
Ω ΩT



Ω –Ω

]
< . ()

3 Main results
In this section, we derive a new delay-dependent LMI criterion for the existence of state
estimator () for neural networks ().

Theorem  For given matrices F , G, positive scalars h̄ and  < α < , the error system
() is globally asymptotically stable if there exist eight positive definite matrices P, Qi (i =
, , , , , , ), two positive scalars β and β, and any matrix X satisfying the following
LMI:

[
Λ ΛT



∗ –Λ

]
< , ()

where

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z

τ̄
Q –XC    (αh̄)–Q PV PW PW

∗ – 
τ̄
Q


τ̄
Q      

∗ ∗ – 
τ̄
Q      

∗ ∗ ∗ Z h̄–Q (h̄ – αh̄)–Q   
∗ ∗ ∗ ∗ Z    
∗ ∗ ∗ ∗ ∗ Z   
∗ ∗ ∗ ∗ ∗ ∗ –( – dD)Q  
∗ ∗ ∗ ∗ ∗ ∗ ∗ –βI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ΛT
 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–h̄ATP –τ̄ATP –ATP
–h̄CTXT –τ̄CTXT –CTXT

  
  
  
  

h̄VTP τ̄VTP VTP
h̄WT

 P τ̄WT
 P WT

 P
h̄WT

 P τ̄WT
 P WT

 P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ =

⎡
⎢⎣
h̄(P –Q)  

∗ τ̄ (P –Q) 
∗ ∗ P –Q

⎤
⎥⎦ ,

Z = –PA –ATP +Q +Q +Q +GTQG –

τ̄
Q – (αh̄)–Q + βFTF ,

Z = –( – hD)Q – (h̄ – αh̄)–Q – h̄–Q – βGTG,

Z = –Q – h̄–Q, Z = –( – hD)Q – βI,

Z = –( – αhD)Q – (h̄ – αh̄)–Q – (αh̄)–Q,

and then the estimator gain can be designed as K = P–X.
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Proof Consider the following Lyapunov functional:

V =
∑
i=

Vi, ()

where

V = eT (t)Pe(t), V =
∫ t

t–αh(t)
eT (s)Qe(s)ds,

V =
∫ t

t–h̄

∫ t

s
ėT (θ )Qė(θ )dθ ds, V =

∫ 

–τ̄

∫ t

t+θ

ėT (s)Qė(s)dsdθ ,

V =
∫ t

t–h(t)
ϕT (s)Qϕ(s)ds, V =

∫ t

t–h(t)
eT (s)Qe(s)ds,

V =
∫ t

t–h̄
eT (s)Qe(s)ds, V =

∫ t

t–d(t)
ėT (s)Qė(s)ds.

Calculating the derivative of Vi along the trajectories of system (), we have

V̇ = eT (t)P
[
–Ae(t) –KCe

(
t – τ (t)

)
+Vė

(
t – d(t)

)
+Wφ(t) +Wϕ

(
t – h(t)

)]
, ()

V̇ = eT (t)Qe(t) –
(
 – αḣ(t)

)
eT

(
t – αh(t)

)
Qe

(
t – αh(t)

)
≤ eT (t)Qe(t) – ( – αhD)eT

(
t – αh(t)

)
Qe

(
t – αh(t)

)
, ()

V̇ = h̄ėT (t)Qė(t) –
∫ t

t–h̄
ėT (s)Qė(s)ds, ()

V̇ = τ̄ ėT (t)Qė(t) –
∫ t

t–τ̄

ėT (s)Qė(s)ds, ()

V̇ = ϕT (t)Qϕ(t) –
(
 – ḣ(t)

)
ϕT(

t – h(t)
)
Qϕ

(
t – h(t)

)
≤ eT (t)GTQGe(t) – ( – hD)ϕT(

t – h(t)
)
Qϕ

(
t – h(t)

)
, ()

V̇ = eT (t)Qe(t) –
(
 – ḣ(t)

)
eT

(
t – h(t)

)
Qe

(
t – h(t)

)
≤ eT (t)Qe(t) – ( – hD)eT

(
t – h(t)

)
Qe

(
t – h(t)

)
, ()

V̇ = eT (t)Qe(t) – eT (t – h̄)Qe(t – h̄), ()

V̇ = ėT (t)Qė(t) –
(
 – ḋ(t)

)
ėT

(
t – d(t)

)
Qė

(
t – d(t)

)
≤ ėT (t)Qė(t) – ( – dD)ėT

(
t – d(t)

)
Qė

(
t – d(t)

)
. ()

Note that the Lyapunov functions –
∫ t
t–h̄ ė

T (s)Qė(s)ds and –
∫ t
t–τ̄

ėT (s)Qė(s)ds have the
following relationship:

–
∫ t

t–h̄
ėT (s)Qė(s)ds = –

∫ t

t–αh(t)
ėT (s)Qė(s)ds –

∫ t–αh(t)

t–h(t)
ėT (s)Qė(s)ds

–
∫ t–h(t)

t–h̄
ėT (s)Qė(s)ds, ()

–
∫ t

t–τ̄

ėT (s)Qė(s)ds = –
∫ t

t–τ (t)
ėT (s)Qė(s)ds –

∫ t–τ (t)

t–τ̄

ėT (s)Qė(s)ds. ()
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By Lemma , we have

–
∫ t

t–αh(t)
ėT (s)Qė(s)ds≤ –(αh̄)–

[∫ t

t–αh(t)
ė(s)ds

]T

Q

[∫ t

t–αh(t)
ė(s)ds

]

≤ –(αh̄)–
[
e(t) – e

(
t – αh(t)

)]TQ
[
e(t) – e

(
t – αh(t)

)]
= –(αh̄)–

[
eT (t)Qe(t) – eT (t)Qe

(
t – αh(t)

)
+ eT

(
t – αh(t)

)
Qe

(
t – αh(t)

)]
,

–
∫ t–αh(t)

t–h(t)
ėT (s)Qė(s)ds≤ –(h̄ – αh̄)–

[∫ t–αh(t)

t–h(t)
ė(s)ds

]T

Q

[∫ t–αh(t)

t–h(t)
ė(s)ds

]

≤ –(h̄ – αh̄)–
[
e
(
t – αh(t)

)
– e

(
t – h(t)

)]T
×Q

[
e
(
t – αh(t)

)
– e

(
t – h(t)

)]
= –(h̄ – αh̄)–

[
eT

(
t – αh(t)

)
Qe

(
t – αh(t)

)
()

– eT
(
t – αh(t)

)
Qe

(
t – h(t)

)
+ eT

(
t – h(t)

)
Qe

(
t – h(t)

)]
,

–
∫ t–h(t)

t–h̄
ėT (s)Qė(s)ds≤ –(h̄)–

[∫ t–h(t)

t–h̄
ė(s)ds

]T

Q

[∫ t–h(t)

t–h̄
ė(s)ds

]

≤ –(h̄)–
[
e
(
t – h(t)

)
– e(t – h̄)

]T
×Q

[
e
(
t – h(t)

)
– e(t – h̄)

]
= –(h̄)–

[
eT

(
t – h(t)

)
Qe

(
t – h(t)

)
– eT

(
t – h(t)

)
Qe(t – h̄) + eT (t – h̄)Qe(t – h̄)

]
,

–
∫ t

t–τ (t)
ėT (s)Qė(s)ds≤ –


τ (t)

[∫ t

t–τ (t)
ė(s)ds

]T

Q

[∫ t

t–τ (t)
ė(s)ds

]

≤ –

τ̄

[
e(t) – e

(
t – τ (t)

)]TQ
[
e(t) – e

(
t – τ (t)

)]
= –


τ̄

[
eT (t)Qe(t) – eT (t)Qe

(
t – τ (t)

)
+ eT

(
t – τ (t)

)
Qe

(
t – τ (t)

)]
, ()

–
∫ t–τ (t)

t–τ̄

ėT (s)Qė(s)ds≤ –

τ̄

[
e
(
t – τ (t)

)
– e(t – τ̄ )

]TQ
[
e
(
t – τ (t)

)
– e(t – τ̄ )

]

= –

τ̄

[
eT

(
t – τ (t)

)
Qe

(
t – τ (t)

)
– eT

(
t – τ (t)

)
Qe(t – τ̄ )

+ eT (t – τ̄ )Qe(t – τ̄ )
]
.

FromAssumption  and (), for positive scalars βi (i = , ), we have the following inequal-
ities:

β
[
eT (t)FTFe(t) – φT (t)φ(t)

] ≥ ,

β
[
eT

(
t – h(t)

)
GTGe

(
t – h(t)

)
– ϕT(

t – h(t)
)
ϕ
(
t – h(t)

)] ≥ .
()
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By combining ()-(), it is not difficult to deduce that

V̇ =
∑
i=

V̇i

≤ eT (t)
[
–PA –ATP +Q +Q +Q +GTQG –


τ̄
Q – (αh̄)–Q

+ βFTF
]
e(t) + eT (t)

[
–PKC +


τ̄
Q

]
e
(
t – τ (t)

)

– eT
(
t – τ (t)

)[
τ̄
Q

]
e
(
t – τ (t)

)
+ eT (t)[PV ]ė

(
t – d(t)

)
– ėT

(
t – d(t)

)[
( – dD)Q

]
ė
(
t – d(t)

)
+ eT (t)[PW]φ(t)

– φT (t)[βI]φ(t) + eT (t)[PW]ϕ
(
t – h(t)

)
– ϕT(

t – h(t)
)[
( – hD)Q + βI

]
ϕ
(
t – h(t)

)
+ eT (t)

[
(αh̄)–Q

]
e
(
t – αh(t)

)
– eT

(
t – αh(t)

)[
( – αhD)Q

+ (h̄ – αh̄)–Q + (αh̄)–Q
]
e
(
t – αh(t)

)
+ eT

(
t – τ (t)

)[ 
τ̄
Q

]
e(t – τ̄ ) – eT (t – τ̄ )

[

τ̄
Q

]
e(t – τ̄ )

+ eT
(
t – αh(t)

)[
(h̄ – αh̄)–Q

]
e
(
t – h(t)

)
– eT

(
t – h(t)

)[
( – hD)Q + (h̄ – αh̄)–Q + (h̄)–Q + βGTG

]
e
(
t – h(t)

)
+ eT

(
t – h(t)

)[
h̄–Q

]
e(t – h̄) – eT (t – h̄)

[
h̄–Q +Q

]
e(t – h̄)

+ ėT (t)[h̄Q + τ̄Q +Q]ė(t). ()

LetΥ = [–A–KC V WW], and ηT (t) = [eT (t) eT (t–τ (t)) eT (t– τ̄ ) eT (t–h(t)) eT (t–
h̄) eT (t – αh(t)) ėT (t – d(t)) φT (t) ϕT (t – h(t))]. From (), we have ė(t) = Υ η(t).
Therefore,

ėT (t)[h̄Q + τ̄Q +Q]ė(t) = ηT (t)
[
Υ T (h̄Q + τ̄Q +Q)Υ

]
η(t). ()

Thus, changing the variable as X = PK , equation () can be rewritten as

V̇ ≤ ηT (t)
[
Λ +Υ T (h̄Q + τ̄Q +Q)Υ

]
η(t), ()

where Λ can be seen from Theorem .
In view of the fact –PQ–

 P ≤ –(P –Q), –PQ–
 P ≤ –(P –Q), –PQ–

 P ≤ –(P –Q).
From (), we can obtain the following inequality:

[
Λ ΛT



∗ –Λ

]
< , ()

where

Λ =

⎡
⎢⎣
h̄PTQ–

 P  
∗ τ̄PTQ–

 P 
∗ ∗ PTQ–

 P

⎤
⎥⎦ .
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Pre- and post-multiplying diag{I, I, I, I, I, I, I, I, I,QP–,QP–,QP–} and diag{I, I, I, I, I, I,
I, I, I,P–Q,P–Q,P–Q}, respectively, we have

[
Λ ΛT



∗ –Λ

]
< , ()

where

ΛT
 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–h̄ATQ –τ̄ATQ –ATQ

–h̄(KC)TQ –τ̄ (KC)TQ –(KC)TQ

  
  
  
  

h̄VTQ τ̄VTQ VTQ

h̄WT
 Q τ̄WT

 Q WT
 Q

h̄WT
 Q τ̄WT

 Q WT
 Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ =

⎡
⎢⎣
h̄Q  
∗ τ̄Q 
∗ ∗ Q

⎤
⎥⎦ .

By Lemma , inequality () is equivalent to the inequality [Λ + Υ T (h̄Q + τ̄Q +
Q)Υ ] < . This implies that the error dynamic () is asymptotically stable. This completes
the proof. �

Remark  In the paper, the controller u(t) = K [y(tk) – ŷ(tk)] is designed by the sampled
data, which needs less information from the network outputs than the controller in [,
]. The sampled-data estimation approach can lead to a significant reduction of the in-
formation communication burden in the network and save more computing cost.

To this end, the sampled-data estimation problem has been solved and the desired es-
timator can be designed by Theorem . In the next section, the effectiveness of the devel-
oped sampled-data estimation approach for the neural network of neutral type is shown
by a numerical example.

4 Simulation example
In this section, a numerical example with simulation results is employed to demonstrate
the effectiveness of the proposed method.

Example  Consider the neural networks of neutral type with the following parameters:

A =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ , W =

⎡
⎢⎣

. –. 
. . –.
–. . .

⎤
⎥⎦ , W =

⎡
⎢⎣

.  .
–. . –.
–. . .

⎤
⎥⎦ ,

V =

⎡
⎢⎣

. –. .
. . –.
. . .

⎤
⎥⎦ , J =

⎡
⎢⎣

 sin(π t) + .t

– sin(t) – .t

. cos(t) + .t

⎤
⎥⎦ , C = I,
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f (x) = . tanh(x), g
(
x
(
t – h(t)

))
= . tanh

(
x
(
t – h(t)

))
,

x() = [–.  –.]T , h(t) = .
(
 – sin(t)

)
,

d(t) = .
(
 – sin(t)

)
, τ̄ = ., α = ..

From the parameters above, it can be verified that F = .I , G = .I . By solving LMI
given in Theorem , the feasible solutions are obtained as follows:

P =

⎡
⎢⎣
. –. .
–. . .
. . .

⎤
⎥⎦ , Q =

⎡
⎢⎣
. –. –.
–. . .
–. . .

⎤
⎥⎦ ,

Q =

⎡
⎢⎣
. –. –.
–. . .
–. . .

⎤
⎥⎦ , Q =

⎡
⎢⎣
. –. .
–. . .
. . .

⎤
⎥⎦ ,

Q =

⎡
⎢⎣
. . .
. . .
. . .

⎤
⎥⎦ , Q =

⎡
⎢⎣

. –. –.
–. . .
–. . .

⎤
⎥⎦ ,

Q =

⎡
⎢⎣

. –. –.
–. . .
–. . .

⎤
⎥⎦ , Q =

⎡
⎢⎣

. –. .
–. . –.
. –. .

⎤
⎥⎦ ,

X =

⎡
⎢⎣
–. . –.
. –. .
–. . –.

⎤
⎥⎦ , β = ., β = ..

Thus, the estimator gain matrix K is as follows:

K = P–X =

⎡
⎢⎣
–. –. –.
–. –. .
–. . –.

⎤
⎥⎦ .

The simulation results are shown in Figures  and . It is easy to find that the responses
of the state estimators track to true states very quickly.

Figure 1 The true state x(t) and its estimate x̂(t).
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Figure 2 The error of the true state x(t) and its
estimate x̂(t).

5 Conclusion
In this paper, the sampled-data state estimation has been investigated for a class of neural
networks of neutral type. By employing a Lyapunov functional, a delay-dependent condi-
tion is established to guarantee the existence of the desired state estimator. The feasible
solution can be obtained easily byMatlab LMI toolbox. In the end, the numerical example
is given to show the effectiveness of the proposed estimator. This work can be extended
to the state estimation problem of general systems. This will be done in the near future.
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