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1 Introduction andmain result
In the past decades, many authors have studied the autonomous equation{

x′′(t) – a(t) + g(x) = , t ∈R,
x() = x(T), x′() = x′(T), T > ,

(.)

where a(t) ∈ C(R,R) and x(t) ∈ C(R,R). For example, many authors have obtained the
existence and multiplicity of periodic solutions by various methods, such as a generalized
form of the Poincaré-Birkhoff theorem, critical point theory, phase-plane analysis com-
bined with shooting methods or fixed point theorems of planar homeomorphisms, and
continuationmethods based on degree theory; see [–] and the references therein. Some
authors [, ] have obtained the existence of infinitely many periodic and subharmonic
solutions of (.) by using the Poincaré-Birkhoff theorem or Moser’s twist theorem [].
By using the coincidence degree theory of Mawhin [], some authors [–] have

obtained the existence of at least one positive periodic solution for the following non-
autonomous equation:{

x′′(t) – a(t) + g(t,x) = , t ∈ R,
x() = x(T), x′() = x′(T), T > ,

(.)

where g satisfies some strong force condition near x = . If a(t)≡ , then (.) becomes{
x′′(t) + g(t,x) = , t ∈R,
x() = x(T), x′() = x′(T), T > .

(.)

Torres [] has proved (.) with g(t,x) = –f (t,x) having one positive or negative solution.
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However, in some cases in mathematical physics, the global nonnegative of a(t) (i.e.,
a(t)≥ , ∀t ∈R) is not satisfied, thus it is necessary for us to study the case that a(t) is not
uniformly nonnegative for all t ∈ R. Therefore, we shall study the existence of infinitely
many T-periodic solutions of the following general second order differential equation:{

x′′(t) – a(t)x(t) + g(t,x) = , t ∈R,
x() = x(T), x′() = x′(T), T > .

(.)

Here, we need not assume that g ∈ L(R,R).
We are interested in the following case:

(V) a(t) ∈ C(R,R) is T-periodic and  belongs to a spectral gap of D, D := – d
dt + a(t).

Let G(t,x) :=
∫ x
 g(t, s)ds, we assume that g satisfies the following assumptions:

(G) g(t,x) is a Carathéodory function and it is T-periodic in t, besides, |g(t,x)| ≤ c( +
|x|p–) for some c >  and p > .

(G) g(t,x) = o(x) as |x| →  uniformly in t ∈ [,T].
(G) G(t,x)

x → +∞ as |x| → +∞ uniformly in t ∈ [,T].
(G) x 
→ g(t,x)

|x| is strictly increasing on (–∞, )∪ (, +∞) for all t ∈ [,T].

Let E :=H([,T],R). By (V), we have the decomposition E = E– ⊕E+, where E+ and E–

are the positive and negative spectral subspaces ofD in E, respectively. The corresponding
functional of (.) is

�(x) =



∫ T



(∣∣x′∣∣ + a(t)x
)
dt –

∫ T


G(t,x)dt, ∀x ∈ E.

The following set has been introduced by Pankov []:

M :=
{
x ∈ E \ E– :

〈
�′(x),x

〉
=  and

〈
�′(x), y

〉
= ,∀y ∈ E–}.

By definition,M contains all nontrivial critical points of �.
First, we consider ground state T-periodic solutions of (.), that is, solutions corre-

sponding to the least energy of the action functional of (.):

Theorem. If (V) and (G)-(G) hold, then (.) has at least one ground state T-periodic
solution.

Remark . By the Schauder fixed point theorem, Esmailzadeh and Nakhaie-Jazar []
obtained a periodic solution for the Mathieu-Duffing type equation{

x′′ + (a + b cos t)x + cx = , t ∈R,
x() = x(T), x′() = x′(T), T = �.

(.)

But it does not exclude the trivial solution, which always exists. Obviously, the nonlinearity
g(t,x) = cx with c >  satisfies (G)-(G), thus our Theorem . implies (.) admits a
ground state �-periodic solution if  belongs to a spectral gap of – d

dt – (a + b cos t),
that is, mint∈[,�](–a – b cos t) < .
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Remark . Torres [] proved (.) with a(t) ≡  and g(t,x) = –f (t,x) has one positive
or negative solution, where f ∈ L(R,R) is a Carathéodory function and T-periodic in t.
But we consider a more general equation (.) than the equation in [], and we obtain a
ground state T-periodic solution of (.) by a Nehari manifold approach. Therefore, our
result extends the result in [].

Now, we consider themultiplicity of solutions of (.). For k ∈ Z and x ∈ E, let x(·–k) ∈ E
be defined by x(· – k) := x(t – kT). We note that if x is a solution of (.), then so are all
elements of the orbit of x under the action of Z,O(x) := {x(·– k) : k ∈ Z}. Two solutions x
and x are said to be geometrically distinct ifO(x) and O(x) are disjoint.

Theorem . If (V), (G)-(G), and g(t,x) is odd in x hold, then (.) admits infinitely
many pairs of geometrically distinct T-periodic solutions.

Example . As simple applications of Theorems . and ., we consider the following
examples:
Ex. g(t,x) = c(t)x|x|p–;
Ex. g(t,x) = c(t)x ln( + |x|),

where p > , x ∈ R and c(t) >  with T-periodic in t. It is not hard to check that the above
functions all satisfy assumptions (G)-(G).

Remark . Our method is based on the generalized Nehari manifold []. In fact, there
are many papers where the method of the generalized Nehari manifold has been used, see
[–] and so on.

The rest of our paper is organized as follows. In Section , we establish the variational
framework associated with (.), and we also give some preliminary lemmas, which are
useful in the proofs of our results, and thenwe give the detailed proofs of our Theorems .
and ..

2 Variational frameworks and preliminary lemmas
Throughout this paper we denote by ‖ · ‖Lq the usual Lq([,T],R) norm and C for generic
constants.
Let E := H([,T],R) under the usual norm and the corresponding inner product de-

fined by

‖x‖E =
(∫ T



(|x| + ∣∣x′∣∣)dt)/

.

Thus E is a Hilbert space.We will seek solutions of (.) as critical points of the functional
� associated with (.) and given by

�(x) =



∫ T



(∣∣x′∣∣ + a(t)|x|)dt – ∫ T


G(t,x)dt, ∀x ∈ E.

Let I(x) =
∫ T
 G(t,x)dt, then �, I ∈ C(E,R) and the derivatives are given by

〈
I ′(x), y

〉
=

∫ T


g(t,x)ydt,

〈
�′(x), y

〉
=

∫ T



(
x′y′ + a(t)xy

)
dt –

〈
I ′(x), y

〉
, ∀x, y ∈ E,
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which implies that (.) is the corresponding Euler-Lagrange equation for �. Therefore,
we have reduced the problem of finding a nontrivial solution of (.) to that of seeking a
nonzero critical point of the functional � on E.
In what follows, we always assume that (V) and (G)-(G) are satisfied. Obviously, (G)

and (G) imply that for each ε >  there is Cε >  such that

∣∣g(t,x)∣∣ ≤ ε|x| +Cε|x|p– for all (t,x) ∈ [,T]×R. (.)

By (V), we have the decomposition E = E– ⊕ E+, where E+ and E– are the positive and
negative spectral subspaces of D in E, respectively. Let

Q(x,x) :=
∫ T



(∣∣x′∣∣ + a(t)|x|)dt. (.)

Obviously, the quadratic part of �, Q(x) is positive on E+ and negative on E–. Moreover,
we may define an new inner product (·, ·) on E with corresponding norm ‖ · ‖ such that

∫ T



(∣∣x′∣∣ + a(t)|x|)dt =±‖x‖, ∀x ∈ E±. (.)

Therefore, � can be rewritten as

�(x) =


∥∥x+∥∥ –



∥∥x–∥∥ –

∫ T


G(t,x)dt.

Let R+ = [,∞). We define for x ∈ E \ E– the following subspaces of E:

E(x) := E– ⊕Rx = E– ⊕Rx+ (.)

and the convex subset

Ê(x) := E– ⊕R
+x = E– ⊕R

+x+. (.)

2.1 Proof of Theorem 1.1
Lemma . 

g(t,x)x >G(t,x) >  for all x ∈R \ {}.

Proof This follows immediately from (G) and (G). �

Lemma . ([]) Let x, y, s ∈ R be numbers with s ≥ – and q := sx + y �= . Then

g(t,x)
[
s
(
s

+ 

)
x + (s + )y

]
+G(t,x) –G(t,q + x) < .

Lemma . If x ∈ M, then �(x + q) < �(x) for any q ∈ H := {sx + y : s ≥ –, y ∈ E–}, q �= .
Hence x is the unique global maximum of �|Ê(x).

Proof We rewrite � by

�(x) =


Q

(
x+,x+

)
+


Q

(
x–,x–

)
–

∫ T


G(t,x)dt.
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Since �′(x) = , we have

 =
〈
�′(x), s

(
s

+ 

)
x + (s + )y

〉
= s

(
s

+ 

)
Q

(
x+,x+

)
+ s

(
s

+ 

)
Q

(
x–,x–

)
+ (s + )Q

(
x–, y

)
–

∫ T


g(t,x)

[
s
(
s

+ 

)
x + (s + )y

]
dt,

which together with q = sx + y, Q(y, y) ≤  and Lemma . implies that

�(q + x) –�(x)

=


[
Q

(
(s + )x+, (s + )x+

)
–Q

(
x+,x+

)]
+


[
Q

(
(s + )x– + y, (s + )x– + y

)
–Q

(
x–,x–

)]
+

∫ T



[
G(t,x) –G(t,q + x)

]
dt

= s
(
s

+ 

)
Q

(
x+,x+

)
+ s

(
s

+ 

)
Q

(
x–,x–

)
+


Q(y, y) + (s + )Q

(
x–, y

)
+

∫ T



[
G(t,x) –G(t,q + x)

]
dt

=


Q(y, y) +

∫ T



{
g(t,x)

[
s
(
s

+ 

)
x + (s + )y

]
+G(t,x) –G(t,q + x)

}
dt < .

So the proof is finished. �

Lemma . The following statements hold true:
(a) There is α >  such that c := infx∈M �(x)≥ infSα �(x) > , where

Sα := {x ∈ E+ : ‖x‖ = α}.
(b) ‖x+‖ ≥max{‖x–‖,√c} for every x ∈M.

Proof (a) First, for x ∈ E+, we have �(x) = 
‖x‖ –

∫ T
 G(t,x)dt and

∫ T


G(t,x)dt = o

(‖x‖) as x → 

by (.), hence the second inequality follows if α >  is sufficiently small.
Second, since for every x ∈ M, there is s >  such that sx+ ∈ Ê(x) ∩ Sα . Therefore, by

virtue of Lemma ., �(x)≥ �(sx+) ≥ infSα �(x) and the first inequality follows.
(b) For x ∈M, by Lemma ., we have

c≤ �(x) =


(∥∥x+∥∥ –

∥∥x–∥∥) – ∫ T


G(t,x)dt ≤ 


(∥∥x+∥∥ –

∥∥x–∥∥),
from which the conclusion follows. �

Lemma . If V ⊂ E+ \ {} is a compact subset, then there exists R >  such that � ≤  on
E(x) \ BR() for every x ∈ V .
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Proof Without loss of generality, we may assume that ‖x‖ =  for every x ∈ V . Suppose by
contradiction that there exist xj ∈ V and qj ∈ E(xj), j ∈ N, such that �(qj) >  for all j and
‖qj‖ → ∞ as j → ∞. Passing to a subsequence, we may assume that xj → x ∈ E+, ‖x‖ = .
Set yj = qj/‖qj‖ = sjxj + (yj)–, then

 ≤ �(qj)
‖qj‖ =



(
sj –

∥∥(
yj

)–∥∥) – ∫ T



G(t,qj)
(qj)

(
yj

) dt. (.)

Hence ‖(yj)–‖ ≤ sj =  – ‖(yj)–‖ and therefore √
 ≤ sj ≤ , for a subsequence, sj → s > ,

yj ⇀ y and yj → y a.e. t ∈ [,T]. Therefore, y = sx+ y– �= , hence |qj| = |yj| · ‖qj‖ → +∞, it
follows from (G) and the Fatou lemma that

∫ T



G(t,qj)
(qj)

(
yj

) dt → +∞, (.)

which contradicts (.). �

Lemma . For each x /∈ E–, the setM∩ Ê(x) consists of precisely one point m̂(x) which is
the unique global maximum of �|Ê(x).

Proof By Lemma ., it suffices to show that M ∩ Ê(x) �= ∅. Since Ê(x) = Ê(x+), we may
assume that x ∈ E+, ‖x‖ = . By Lemma ., there exists R >  such that � ≤  on Ê(x) \
BR(). By Lemma .(a), �(tx) >  for small t > . Therefore,  < supÊ(x) � < ∞. It is easy
to see that � is weakly upper semicontinuous on Ê(x), therefore, �(x) = supÊ(x) �(x) for
some x ∈ Ê(x) \ {}. This x is a critical point of �|E(x), so 〈�′(x),x〉 = 〈�′(x), y〉 =  for
all y ∈ E(x). Consequently, x ∈M∩ Ê(x), as required. �

Lemma . � is coercive onM, that is, �(x)→ ∞ as ‖x‖ → ∞, x ∈M.

Proof Arguing by contradiction, suppose there exists a sequence {xj} ⊂ M such that
‖xj‖ → ∞ and �(xj) ≤ d for some d ∈ [c,∞). Let yj := xj/‖xj‖. Then yj ⇀ y and yj → y
a.e. t ∈ [,T] as j → ∞ after passing to a subsequence. Suppose

∫ T



∣∣(yj)+∣∣p dt →  as j → ∞,∀p > .

Then it follows from (.) that
∫ T
 G(t, s(yj)+)dt →  for each s ≥ . By Lemma .(b),

‖(yj)+‖ ≥ 
 . Hence, by Lemma ., we obtain

d ≥ �
(
xj

) ≥ �
(
s
(
yj

)+) = 

s

∥∥(
yj

)+∥∥ –
∫ T


G

(
t, s

(
yj

)+)dt
≥ 


s –

∫ T


G

(
t, s

(
yj

)+)dt → 

s as j → ∞. (.)

This yields a contradiction if s > 
√
d. Hence,

lim
j→∞

∫ T



∣∣(yj)+∣∣p dt > , ∀p > .
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Since (yj)+ → y+ in Lp([,T],R) (p > ), we have y �= . Then

lim
j→∞

∣∣xj∣∣ = ∣∣yj∣∣ · ∥∥yj∥∥ = +∞,

it follows again from (G) and the Fatou lemma that

∫ T



G(t,xj)
(xj)

(
yj

) dt → +∞.

Hence we have

 ≤ �(xj)
‖xj‖ =



(∥∥(

yj
)+∥∥ –

∥∥(
yj

)–∥∥) – ∫ T



G(t,xj)
(xj)

(
yj

) dt → –∞,

which is a contradiction. This contradiction establishes the lemma. �

Lemma . The map m̂ : E+ \ {} →M, x 
→ m̂(x) (see Lemma .) is continuous.

Proof Let x ∈ E+ \ {}, it suffices to show that for any sequence {xj} ⊂ E+ \ {} with xj → x,
we have m̂(xj)→ m̂(x) for some subsequence.
Without loss of generality, we may assume that ‖xj‖ = ‖x‖ =  for all j, so that m̂(xj) =

‖m̂(xj)+‖xj + m̂(xj)–. By Lemma . and Lemma ., there exists R >  such that

�
(
m̂

(
xj

))
= sup

Ê(xj)
� ≤ sup

BR()
� ≤ sup

x∈BR()
‖x+‖


=
R


for every j. (.)

Therefore, by Lemma ., ‖m̂(xj)‖ ≤ C < ∞. Passing to a subsequence, we may assume
that

sj :=
∥∥m̂(

xj
)+∥∥ → s and m̂

(
xj

)–
⇀ y– in E, as j → ∞,

where s ≥ √
c >  by Lemma .(b). Therefore, we have

m̂
(
xj

)
⇀ sx + y– and m̂

(
xj

) → sx + y– a.e. on [,T], as j → ∞. (.)

Note that m̂(x) = τx + m̂(x)–, where τ := ‖m̂(x)+‖. It follows from Lemma . that

�
(
m̂

(
xj

)) ≥ �
(
τxj + m̂(x)–

) → �
(
τx + m̂(x)–

)
=�

(
m̂(x)

)
,

which togetherwith Fatou’s lemma and theweak lower semicontinuity of the norm implies
that

�
(
m̂(x)

) ≤ lim
j→∞�

(
m̂

(
xj

))
= lim

j→∞

[


sj –



∥∥m̂(

xj
)–∥∥ –

∫ T


G

(
t, m̂

(
xj

))
dt

]
≤ 


s –



∥∥y–∥∥ –

∫ T


G

(
t, sx + y–

)
dt

=�
(
sx + y–

)
.
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However, Lemma . implies that�(sx+y–) ≤ �(m̂(x)). Hence all inequalities abovemust
be equalities and it follows that m̂(xj)– → y–, besides, m̂(x) = sx+ y– due to Lemma ., so
we have m̂(xj)→ sx + y– = m̂(x). �

We now consider the functional

�̂ : E+ \ {} →R, �̂(x) := �
(
m̂(x)

)
, (.)

which is continuous by Lemma .. Here, we should mention that Lemmas . and .
are due to Szulkin and Weth [].

Lemma . �̂ ∈ C(E+ \ {},R), and

〈
�̂ ′(w), z

〉
=

‖m̂(w)+‖
‖w‖

〈
�′(m̂(w)

)
, z

〉
, w, z ∈ E+,w �= .

Proof For w ∈ E+ \ {}, we put x := m̂(w) ∈ M, so we have x = ‖x+‖
‖w‖ w + x–. Let z ∈ E+.

Choose δ >  such that wl := w + lz ∈ E+ \ {} for |l| < δ, and put xl := m̂(wl) ∈ M. We
may write xl = slwl + x–l with sl > . Then s = ‖x+‖

‖w‖ , and the function (–δ, δ)→ R, l 
→ sl , is
continuous by Lemma ..
Note that x+ = sw, which together with Lemma . and themean value theorem implies

that

�̂(wl) – �̂(w) = �(xl) –�(x)

= �
(
slwl + x–l

)
–�

(
sw + x–

)
= �

(
slwl + x–l

)
–�

(
x+ + x–

)
≤ �

(
slwl + x–l

)
–�

(
slw + x–l

)
= sl

〈
�′(sl[w + τl(wl –w)

]
+ x–l

)
, (wl –w)

〉
= sl

〈
�′(x), z

〉
+ o(l) as l → , (.)

where τl ∈ (, ). Note that x+l = slwl . Similarly, we have

�̂(wl) – �̂(w) = �
(
slwl + x–l

)
–�

(
sw + x–

)
=�

(
x+l + x–l

)
–�

(
sw + x–

)
≥ �

(
swl + x–

)
–�

(
sw + x–

)
= s

〈
�′(s[w + ηl(wl –w)

]
+ x–

)
, (wl –w)

〉
= sl

〈
�′(x), z

〉
+ o(l) as l → , (.)

where ηl ∈ (, ). Therefore, combining (.) and (.), we conclude that

∂z�̂(w) = lim
l→

�̂(wl) – �̂(w)
l

= s
〈
�′(x), z

〉
=

‖m̂(w)+‖
‖w‖

〈
�′(m̂(w)

)
, z

〉
.

Hence, ∂z�̂(w) is linear (and continuous) in z and depends continuously on w. So the
assertion follows from Proposition . in []. �
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Next we consider the unit sphere

S+ :=
{
w ∈ E+ : ‖w‖ = 

}
in E+.

We note that the restriction of the map m̂ to S+ has an inverse given by

m̌ :M→ S+, m̌(x) =
x+

‖x+‖ . (.)

We also consider the restriction � : S+ →R of �̂ to S+.

Lemma . The following statements hold true:
(a) � ∈ C(S+) and 〈� ′(w), z〉 = ‖m̂(w)+‖〈�′(m̂(w)), z〉 for

z ∈ TwS+ = {y ∈ E+ : (w, y) = }.
(b) {wj} is a Palais-Smale sequence for � if and only if {m̂(wj)} is a Palais-Smale

sequence for �.
(c) We have infS+ � = infM � = c.Moreover, x ∈ S+ is a critical point of � if and only if

m̂(x) ∈M is a critical point of �, and the corresponding critical values coincide.

Proof (a) is a direct consequence of Lemma ..
To prove (b), let {wj} be a sequence such that C := supj �(wj) = supj �(m̂(wj)) < ∞, and

let xj := m̂(wj) ∈M. Since for every j we have an orthogonal splitting

E = E
(
wj) ⊕ TwjS+ = E

(
xj

) ⊕ TwjS+, with respect to (·, ·)

and 〈�′(xj),xj〉 = , we have ∇�(xj) ∈ TwjS+ and using (a), we also have the following rela-
tion:

∥∥y� ′(wj)∥∥ = sup
z∈Twj S+,‖z‖=

〈
� ′(wj), z〉 = sup

z∈Twj S+,‖z‖=

∥∥(
xj

)+∥∥〈
�′(xj), z〉 = ∥∥(

xj
)+∥∥ ·∥∥�′(xj)∥∥.

If � ′(wj) →  as j → ∞, it follows from Lemma .(b) that �′(xj) →  as j → ∞. On the
other hand, if �′(xj) →  as j → ∞, it follows from Lemma . that (xj)+ is bounded, and
hence � ′(wj) →  as j → ∞. Hence, {wj} is a Palais-Smale sequence for � if and only if
{xj} is a Palais-Smale sequence for �.
The proof of (c) is similar to that of (b) and is omitted. �

Now, we complete the proof of Theorem ..

Proof of Theorem . From Lemma .(a), we know that c > . Moreover, if x ∈ M sat-
isfies �(x) = c, then m̌(x) ∈ S+ is a minimizer of � and therefore a critical point of � ,
so that x is a critical point of � by Lemma .. It remains to show that there exists a
minimizer x ∈M of �|M. By Ekeland’s variational principle [], there exists a sequence
{wj} ⊂ S+ such that �(wj) → c and � ′(wj) →  as j → ∞. Put xj = m̂(wj) ∈ M, then
�(xj) → c and �′(xj) →  as j → ∞ by Lemma .(b). By Lemma ., {xj} is bounded
and hence xj ⇀ x ∈ E and xj → x a.e. t ∈ [,T] after passing to a subsequence. If

∫ T



∣∣xj∣∣p dt →  as j → ∞, (.)
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then by (.), the Hölder’s inequality, and Sobolev’s imbedding theorem, we have

∣∣∣∣∫ T


g
(
t,xj

)(
xj

)+ dt∣∣∣∣ ≤ ε

∫ T



∣∣xj∣∣ · ∣∣(xj)+∣∣dt +Cε

∫ T



∣∣xj∣∣p–∣∣(xj)+∣∣dt
≤ εC

∥∥xj∥∥ · ∥∥(
xj

)+∥∥ +C′
ε

∥∥xj∥∥p–
Lp · ∥∥(

xj
)+∥∥ →  as j → ∞

for some C,C′
ε > . It follows that

∫ T
 g(t,xj)(xj)+ dt = o() as j → ∞. Therefore,

o() =
〈
�′(xj), (xj)+〉 = ∥∥(

xj
)+∥∥ –

∫ T


g
(
t,xj

)(
xj

)+ dt = ∥∥(
xj

)+∥∥ – o().

Therefore, ‖(xj)+‖ → , which contradicts Lemma .(b). This contradiction shows that
(.) cannot hold. Note that xj → x in Lp([,T],R), so xj ⇀ x �=  and �′(x) = . Particu-
larly, we see that x ∈M, which yields �(x)≥ c.
On the other hand, by Lemma ., the Fatou lemma and the boundedness of {xj}, we get

c + o() = �
(
xj

)
–


〈
�′(xj),xj〉

=
∫ T



[


g
(
t,xj

)
xj –G

(
t,xj

)]
dt

≥
∫ T



[


g(t,x)x –G(t,x)

]
dt + o()

= �(x) –


〈
�′(x),x

〉
+ o() = �(x) + o(),

which implies that �(x)≤ c. Therefore, we conclude that �(x) = c. �

2.2 Proof of Theorem 1.2
In order to prove Theorem ., we still need the following lemmas. In what follows, we
always assume that (V), (G)-(G) and the nonlinearity g(t,x) is odd in x with x ∈ R are
satisfied.

Lemma . The map m̌ defined in (.) is Lipschitz continuous.

Proof For x, y ∈M, we have, by Lemma .(b),

∥∥m̌(x) – m̌(y)
∥∥ =

∥∥∥∥ x+

‖x+‖ –
y+

‖y+‖
∥∥∥∥ =

∥∥∥∥x+ – y+

‖x+‖ +
(‖y+‖ – ‖x+‖)y+

‖x+‖ · ‖y+‖
∥∥∥∥

≤ 
‖x+‖

∥∥(x – y)+
∥∥ ≤

√

c
‖x – y‖.

The proof is completed. �

Remark . It is easy to see that both maps m̂, m̌ are equivariant with respect to the
Z-action given by x 
→ x(· – k) for k ∈ Z. So, by Lemma .(c), the orbits O(x) ⊂ M
consisting of critical points of� are in one-to-one correspondence with the orbitsO(w) ⊂
S+ consisting of critical points of � .
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To continue the proof, we need the following notation. For d ≥ e ≥ c we put

�d :=
{
x ∈M :�(x)≤ d

}
, �e :=

{
x ∈M :�(x)≥ e

}
, �d

e :=�d ∩ �e,

�d :=
{
w ∈ S+ : �(w) ≤ d

}
, �e :=

{
w ∈ S+ :�(w) ≥ e

}
, �d

e :=�d ∩ �e,

K :=
{
w ∈ S+ :� ′(w) = 

}
, Kd :=

{
w ∈ K :�(w) = d

}
,

ν(d) := sup
{‖x‖ : x ∈ �d}.

Note that ν(d) < ∞ for every d due to Lemma .. We may choose a subset F of K such
that F = –F and each orbitO(w) ⊂ K has a unique representative in F . By Remark ., it
suffices to show that the set F is infinite. Suppose to the contrary that

F is a finite set. (.)

Lemma . κ := inf{‖v –w‖ : v,w ∈ K , v �= w} > .

Proof We can choose vj,wj ∈F and kj, lj ∈ Z such that vj(· – kj) �= wj(· – lj) for all j and

∥∥vj(· – kj
)
–wj(· – lj

)∥∥ → κ as n→ ∞.

Let mj = kj – lj. After passing to a subsequence, we have vj = v ∈ F , wj = w ∈ F and either
mj =m ∈ Z for almost all j or |mj| → ∞. If the first case holds, we have

 <
∥∥vj(· – kj

)
–wj(· – lj

)∥∥ =
∥∥v –w(· –m)

∥∥ = κ for all j.

If the second case holds, we have w(·–mj)⇀ , thus κ = limj→∞ ‖v–w(·–mj)‖ ≥ ‖v‖ = ,
where ‖v‖ =  due to the definitions of K and S+. Therefore, this lemma is proven. �

Lemma . Let d ≥ c. If {xj}, {yj} ⊂ �d are two Palais-Smale sequences for � , then either
‖xj – yj‖ →  as j → ∞ or lim supj→∞ ‖xj – yj‖ ≥ ρ(d), where ρ(d) depends on d but not on
the particular choice of Palais-Smale sequences.

Proof Let qj := m̂(xj) and wj := m̂(yj) for j ∈ N. Then both sequences {qj}, {wj} ⊂ �d are
bounded Palais-Smale sequences for � by Lemma . and the definition of � . Let p is the
parameter in (G). We distinguish two cases.
Case . If

∥∥(
qj –wj)+∥∥

Lp → , p > . (.)

Note that {qj} and {wj} are bounded Palais-Smale sequences for �, it follows from (.),
Hölder’s inequality, and Sobolev’s inequality that

∥∥(
qj –wj)+∥∥

=
〈
�′(qj), (qj –wj)+〉 – 〈

�′(wj), (qj –wj)+〉
+

∫ T



[
g
(
t,qjn

)
– g

(
t,wj

n
)](

qj –wj)+ dt
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≤ ε
∥∥(
qj –wj)+∥∥ +

∫ T



[
ε
(∣∣qjn∣∣ + ∣∣wj

n
∣∣) +Cε

(∣∣qjn∣∣p– + ∣∣wj
n
∣∣p–)]∣∣(qj –wj)+∣∣dt

≤ ( +C)ε
∥∥(
qj –wj)+∥∥ +Dε

∥∥(
qj –wj)+∥∥

Lp (.)

for all j ≥ Jε , where ε >  is arbitrary, Cε , Dε , Jε , and C do not depend on the choice
of ε. Therefore, by (.) and (.), we have ‖(qj – wj)+‖ →  as j → ∞. Similarly, ‖(qj –
wj)–‖ →  as j → ∞. Therefore,

∥∥qj –wj∥∥ →  as j → ∞,

it follows from Lemma . that

∥∥xj – yj
∥∥ =

∥∥m̆(
qj

)
– m̆

(
wj)∥∥ →  as j → ∞.

Case . If

lim
j→∞

∥∥(
qj –wj)+∥∥

Lp > , p > . (.)

Since {qj} and {wj} are bounded, we may pass to a subsequence such that

qj =
(
qj

)+ + (
qj

)–
⇀ q = q+ + q– ∈ E = E+ ⊕ E–,

wj =
(
wj)+ + (

wj)– ⇀ w = w+ +w– ∈ E = E+ ⊕ E–,

�′(q) = �′(w) = 

and

∥∥(
qj

)+∥∥ → α,
∥∥(
wj)+∥∥ → α,

where
√
c ≤ αi ≤ ν(d) for i = ,  by Lemma .(b). Note that (qj – wj)+ → q+ – w– in

Lp([,T],R), thus by (.), q+ �= w+, thus q �= w. We first consider the case where q �= 
and w �= , so that q,w ∈M and

x := m̆(q) ∈ K , y := m̆(w) ∈ K , x �= y.

Then by (.), the definition of �d and the weak lower semicontinuity of the norm, we
have

lim inf
j→∞

∥∥xj – yj
∥∥ = lim inf

j→∞

∥∥∥∥ (qj)+

‖(qj)+‖ –
(wj)+

‖(wj)+‖
∥∥∥∥ ≥

∥∥∥∥q+α
–
w+

α

∥∥∥∥ = ‖βx – βy‖,

where β := ‖q+‖
α

≥
√
c

ν(d) and β := ‖w+‖
α

≥
√
c

ν(d) . Since ‖x‖ = ‖y‖ = , an elementary geometric
argument and the inequalities above imply that

lim inf
j→∞

∥∥xj – yj
∥∥ ≥ ‖βx – βy‖ ≥min{β,β}‖x – y‖ ≥ κ

√
c

ν(d)
,
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where κ is defined in Lemma .. It remains to consider the case where either q =  or
w = . If w = , then q �= , and

lim inf
j→∞

∥∥xj – yj
∥∥ = lim inf

j→∞

∥∥∥∥ (qj)+

‖(qj)+‖ –
(wj)+

‖(wj)+‖
∥∥∥∥ ≥

∥∥∥∥q+α

∥∥∥∥ ≥
√
c

ν(d)
.

The case q =  is treated similarly. The proof is finished. �

It is well known (see [], Lemma II..) that � admits a pseudo-gradient vector field,
i.e., there exists a Lipschitz continuous map H : S+ \ K → TS+ (where TS+ is the tangent
bundle) with H(w) ∈ TwS+ for all w ∈ S+ \K and

∥∥H(w)
∥∥ < 

∥∥∇�(w)
∥∥, 〈

H(w),∇�(w)
〉
>


∥∥∇�(w)

∥∥, ∀w ∈ S+ \K . (.)

Let η : G → S+ \K be the corresponding (�-decreasing) flow defined by{
d
dtη(t,w) = –H(η(t,w)),
η(,w) = w,

(.)

where

G :=
{
(t,w) : w ∈ S+ \K ,T–(w) < t < T+(w)

} ⊂R× (
S+ \K)

and T–(w) < , T+(w) >  are the maximal existence times of the trajectory t 
→ η(t,w) in
negative and positive direction. Note that � is strictly decreasing along trajectories of η.
For deformation type arguments, the following lemma is crucial.

Lemma . For every w ∈ S+ the limit limt→T+(w) η(t,w) exists and is a critical point of� .

Proof Fix w ∈ S+ and put d :=�(w).
Case : T+(w) < ∞. For ≤ s < t < T+(w), by (.), (.), and Lemma .(c), we have

∥∥η(t,w) – η(s,w)
∥∥ ≤

∫ t

s

∥∥H(
η(τ ,w)

)∥∥dτ

≤ 
√

∫ t

s

√〈
H

(
η(τ ,w)

)
,∇�

(
η(τ ,w)

)〉
dτ

≤ 
√
(t – s)

(∫ t

s

〈
H

(
η(τ ,w)

)
,∇�

(
η(τ ,w)

)〉
dτ

) 


= 
√
(t – s)

[
�

(
η(s,w)

)
–�

(
η(t,w)

)] 


≤ 
√
(t – s)

[
�(w) – c

] 
 .

Since T+(w) < ∞, this implies that limt→T+(w) η(t,w) exists and then it must be a critical
point of � (otherwise the trajectory t 
→ η(t,w) could be continued beyond T+(w)).
Case : T+(w) = ∞. To prove that limt→∞ η(t,w) exists, it clearly suffices to establish the

following property:

for every ε > , there exists tε >  with
∥∥η(tε ,w) – η(t,w)

∥∥ < ε for t ≥ tε . (.)
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We suppose by contradiction that (.) is not satisfied. Then there exists  < ε < 
ρ(d)

(where ρ(d) is given in Lemma .) and a sequence {tn} ⊂ [,∞) with tn → ∞ and
‖η(tn,w) – η(tn+,w)‖ = ε for every n. Choose the smallest tn ∈ (tn, tn+) such that

∥∥η(tn,w) – η
(
tn,w

)∥∥ =
ε


,  < ε <



ρ(d) (.)

and let

κn := min
s∈[tn ,tn]

∥∥∇�
(
η(s,w)

)∥∥.
Then by (.) and (.), we have

ε


=

∥∥η
(
tn,w

)
– η(tn,w)

∥∥ ≤
∫ tn

tn

∥∥H(
η(τ ,w)

)∥∥dτ

≤ 
∫ tn

tn

∥∥∇�
(
η(τ ,w)

)∥∥dτ

≤ 
κn

∫ tn

tn

∥∥∇�
(
η(τ ,w)

)∥∥ dτ

≤ 
κn

∫ tn

tn

〈
H

(
η(τ ,w)

)
,∇�

(
η(τ ,w)

)〉
dτ

=

κn

[
�

(
η(tn,w)

)
–�

(
η
(
tn,w

))]
.

Note that � is strictly decreasing along trajectories of η, and it follows that

�
(
η(tn,w)

)
–�

(
η
(
tn,w

)) → 

as n → ∞, thus κn →  and there exist sn ∈ [tn, tn] such that ∇�(w
n) → , where w

n :=
η(sn,w). Similarly we find a largest tn ∈ (tn, tn+) for which ‖η(tn+,w) – η(tn,w)‖ = ε

 and
then w

n := η(sn,w) satisfying ∇�(w
n)→ . As ‖w

n – η(tn,w)‖ ≤ ε
 and ‖w

n – η(tn+,w)‖ ≤
ε
 , {w

n} and {w
n} are two Palais-Smale sequences such that

ε


≤ ∥∥w

n –w
n
∥∥ ≤ ε < ρ(d),

which contradicts Lemma ., hence (.) is true. Therefore, limt→∞ η(t,w) exists, and
obviously it must be a critical point of � . �

In the following, for a subset P ⊂ S+ and δ > , we put

Uδ(P) :=
{
x ∈ S+ : ‖x – P‖ < δ

}
. (.)

Lemma . Let d ≥ c. Then for every δ >  there exists ε = ε(δ) >  such that
(a) �d+ε

d–ε ∩K = Kd ;
(b) limt→T+(w) �(η(t,w)) < d – ε for w ∈ �d+ε \Uδ(Kd).
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Proof By (.), (a) is obviously satisfied for ε >  small enough.Without loss of generality,
we may assume Uδ(Kd) ⊂ �d+ and δ < ρ(d + ). In order to find ε such that (b) holds, we
let

τ := inf
{∥∥∇�(w)

∥∥ : w ∈Uδ(Kd) \U δ

(Kd)

}
. (.)

We claim that τ > . Indeed, suppose by contradiction that there exists a sequence {xj} ⊂
Uδ(Kd) \ U δ


(Kd) such that ∇�(xj) → . Passing to a subsequence, using the finiteness

condition (.) and the Z-invariance of � , we may assume {xj} ⊂ Uδ(w) \ U δ

(w) for

some w ∈ Kd . Let yj → w. Then ∇�(yj) →  and

δ


≤ lim sup

j→∞

∥∥xj – yj
∥∥ ≤ δ < ρ(d + ),

which contradicts Lemma .. Hence τ > . Let

A := sup
{∥∥∇�(w)

∥∥ : w ∈Uδ(Kd) \U δ

(Kd)

}
(.)

and choose ε < δτ

A such that (a) holds. By Lemma . and (a), we know that the only way
(b) can fail is that

η(t,w) → w̃ ∈ Kd as t → T+(w) for some w ∈ �d+ε \Uδ(Kd). (.)

In this case we let

t := sup
{
t ∈ [

,T+(w)
)
: η(t,w) /∈Uδ(w̃)

}
,

t := inf
{
t ∈ (

t,T+(w)
)
: η(t,w) ∈U δ


(w̃)

}
.

Then by (.), (.), and (.), we have

δ


=

∥∥η(t,w)–η(t,w)
∥∥ ≤

∫ t

t

∥∥H(
η(s,w)

)∥∥ds≤ 
∫ t

t

∥∥∇�
(
η(s,w)

)∥∥ds≤ A(t – t),

which together with (.), (.), and (.) imply that

�
(
η(t,w)

)
–�

(
η(t,w)

)
= –

∫ t

t

〈∇�
(
η(s,w)

)
,H

(
η(s,w)

)〉
ds

≤ –



∫ t

t

∥∥∇�
(
η(s,w)

)∥∥ ds

≤ –


τ (t – t) ≤ –

δτ 

A
.

Therefore, �(η(t,w)) ≤ d + ε – δτ

A < d, thus η(t,w)� w̃, which contradicts our assump-
tion (.). �

Now, we complete the proof of Theorem ..
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Proof of Theorem . For j ∈N, we consider the family�j of all closed and symmetric sub-
sets A ⊂ S+, that is, A = –A = A with γ ∗(A) ≥ j, where γ ∗ denotes the usual Krasnoselskii
genus (see, e.g., [, ]), that is,

γ ∗(A) :=min
{
i ∈N : ∃ odd continuous ϕ : A→R

i \ {}}.
In particular, if there does not exist a finite i, we set γ ∗(∅) := ∞. Finally, we set γ ∗(∅) := .
For the usual Krasnoselskii genus, let A and B are closed and symmetric subsets, then

we have the following properties (see []):
. Mapping property: If there exists an odd map f ∈ C(A,B), then γ ∗(A) ≤ γ ∗(B).
. Monotonicity property: If A⊂ B, then γ ∗(A) ≤ γ ∗(B).
. Subadditivity: γ ∗(A∪ B) ≤ γ ∗(A) + γ ∗(B).
. Continuity property: If A is compact, then γ ∗(A) < ∞ and there is a δ >  such that

Uδ(A) is a closed and symmetric subset and γ ∗(Uδ(A)) = γ ∗(A), where Uδ(·) is
defined in (.).

Weconsider the nondecreasing sequence of Lusternik-Schnirelman values for� defined
by

ck := inf
{
d ∈R : γ ∗(�d) ≥ k,k ∈N

}
.

Obviously, ck ≤ ck+. Next, we claim that

Kck �= ∅ and ck < ck+ for all k ∈N. (.)

To prove this claim, we let k ∈ N and let d = ck . By Lemma ., we know γ ∗(Kd) =  or
 (depending on whether Kd is empty or not). By the continuity property  of the genus,
there exists δ >  such that

γ ∗(U) = γ ∗(Kd), (.)

where U := Uδ(Kd) and δ < κ
 . Choose ε = ε(δ) >  such that Lemma . holds, then for

every w ∈ �d+ε \U , there exists t ∈ [,T+(w)) such that �(η(t,w)) < d – ε. Thus, we may
define the following entrance time map:

e :�d+ε \U → [,∞), e(w) := inf
{
t ∈ [

,T+(w)
)
:�

(
η(t,w)

) ≤ d – ε
}
,

which satisfies e(w) < T+(w) for everyw ∈ �d+ε \U . Note that d–ε is not a critical value of
� by Lemma .. By g(t, –x) = –g(t,x) for all (t,x) ∈ [,T] × R, (.) and the definition
of � , we know e is a continuous (and even) map. Thus, by (.), we have

h :�d+ε \U → �d–ε , h(w) = η
(
e(w),w

)
is odd and continuous. Therefore, by the properties - of the genus and the definition of
d = ck , we have

γ ∗(�d+ε
)
– γ ∗(U) ≤ γ ∗(�d+ε \U) ≤ γ ∗(�d–ε

) ≤ k – ,
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it follows from (.) that

γ ∗(�d+ε
) ≤ γ ∗(U) + k –  = γ ∗(Kd) + k – ,

that is,

γ ∗(Kd) ≥ γ ∗(�d+ε
)
– (k – ).

It follows from the definition of d = ck and of ck+ that γ ∗(Kd) ≥  if ck+ > ck and γ ∗(Kd) > 
if ck+ = ck . Since γ ∗(F ) = γ ∗(Kd) ≤ , we get (.) holds.
Therefore, (.) implies that there is an infinite sequence (±wk) of pairs of geometri-

cally distinct critical points of � with �(wk) = ck , which contradicts (.). The proof is
finished. �
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