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Abstract
In the present paper, we introduce and study certain subclasses of analytic functions
in the open unit disk U which is defined by the differential operator DRm,n

λ . We study
and investigate some inclusion properties of these classes. Furthermore, a generalized
Bernardi-Libera-Livington integral operator is shown to be preserved for these classes.
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1 Introduction
Let A be a class of functions f in the open unit disk U = {z ∈ C : |z| < } normalized by
f () = f ′() –  = . Thus each f ∈A has a Taylor series representation

f (z) = z +
∞∑
j=

ajzj. (.)

We denote by S(ξ ) the well-known subclass ofA consisting of all analytic functions which
are, respectively, starlike of order ξ [, ]

S(ξ ) =
{
f ∈A : Re

(
zf ′(z)
f (z)

)
> ξ , z ∈U

}
,  ≤ ξ < .

Let R be a class of all functions φ which are analytic and univalent in U and for which
φ(U) is convex with φ() =  and Reφ(z) > , z ∈U .
For two functions f and g analytic in U , we say that the function f is subordinate to g in

U and write f (z) ≺ g(z), z ∈ U , if there exists a Schwarz function w(z) which is analytic in
U with w() =  and |w(z)| <  such that f (z) = g(w(z)), z ∈U .
Making use of the principle of subordination between analytic functions, denote by

S(ξ ,φ) [] a subclass of the classA for  ≤ ξ <  and φ ∈R which are defined by

S(ξ ,φ) =
{
f ∈A :


 – ξ

(
zf ′(z)
f (z)

– ζ

)
≺ φ(z), z ∈U

}
.
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Let f , g ∈A, where f and g are defined by f (z) = z+
∑∞

j= ajzj and g(z) = z+
∑∞

j= bjzj. Then
the Hadamard product (or convolution) f ∗ g of the functions f and g is defined by

(f ∗ g)(z) = z +
∞∑
j=

ajbjzj.

Definition . (Al-Oboudi []) For f ∈ A, λ ≥  and m ∈ N, the operator Dm
λ is defined

by Dm
λ :A→A,

D
λf (z) = f (z),

D
λf (z) = ( – λ)f (z) + λzf ′(z) =Dλf (z),

. . . ,

Dm
λ f (z) = ( – λ)Dm–

λ f (z) + λz
(
Dm

λ f (z)
)′ =Dλ

(
Dm–

λ f (z)
)
, z ∈U .

Remark . If f ∈ A and f (z) = z +
∑∞

j= ajzj, then Dm
λ f (z) = z +

∑∞
j=[ + (j – )λ]majzj,

z ∈U .

Remark . For λ =  in the above definition, we obtain the Sălăgean differential opera-
tor [].

Definition . (Ruscheweyh []) For f ∈ A and n ∈ N, the operator Rn is defined by Rn :
A→A,

Rf (z) = f (z),

Rf (z) = zf ′(z),

. . . ,

(n + )Rn+f (z) = z
(
Rnf (z)

)′ + nRnf (z), z ∈U .

Remark . If f ∈A, f (z) = z +
∑∞

j= ajzj, then Rnf (z) = z +
∑∞

j=
(n+j–)!
n!(j–)! ajz

j, z ∈U .

Definition . ([]) Let λ ≥  and n,m ∈N. Denote byDRm,n
λ :A→A the operator given

by the Hadamard product of the generalized Sălăgean operator Dm
λ and the Ruscheweyh

operator Rn,

DRm,n
λ f (z) =

(
Dm

λ ∗ Rn)f (z),
for any z ∈U and each nonnegative integerm, n.

Remark . If f ∈A and f (z) = z+
∑∞

j= ajzj, thenDR
m,n
λ f (z) = z+

∑∞
j=[+(j–)λ]m

(n+j–)!
n!(j–)! ×

aj zj, z ∈U .

Remark . The operator DRm,n
λ was studied also in [–].

For λ = , m = n, we obtain the Hadamard product SRn [] of the Sălăgean operator Sn

and the Ruscheweyh derivative Rn, which was studied in [, ].
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Form = n, we obtain the Hadamard product DRn
λ [] of the generalized Sălăgean oper-

ator Dn
λ and the Ruscheweyh derivative Rn, which was studied in [–].

Using a simple computation, one obtains the next result.

Proposition . ([]) For m,n ∈N and λ ≥ , we have

DRm+,n
λ f (z) = ( – λ)DRm,n

λ f (z) + λz
(
DRm,n

λ f (z)
)′ (.)

and

z
(
DRm,n

λ f (z)
)′ = (n + )DRm,n+

λ f (z) – nDRm,n
λ f (z). (.)

By using the operatorDRm,n
λ f (z), we define the following subclasses of analytic functions

for  ≤ ζ <  and φ ∈R:

Sm,n
λ (ξ ) =

{
f ∈A :DRm,n

λ f ∈ S(ξ )
}
,

Sm,n
λ (ξ ,φ) =

{
f ∈A :DRm,n

λ f ∈ S(ξ ,φ)
}
.

In particular, we set

Sm,n
λ

(
ξ ,

 +Az
 + Bz

)
= Sm,n

λ (ξ ,A,B), – < B < A≤ .

Next, wewill investigate various inclusion relationships for the subclasses of analytic func-
tions introduced above. Furthermore, we study the results of Faisal et al. [], Darus and
Faisal [].

2 Inclusion relationship associated with the operator DRm,n
λ

First, we start with the following lemmas which we need for our main results.

Lemma . ([, ]) Let ϕ(μ, v) be a complex function such that ϕ :D → C, D ⊆ C×C,
and let μ = μ + iμ, v = v + iv. Suppose that ϕ(μ, v) satisfies the following conditions:
. ϕ(μ, v) is continuous in D,
. (, ) ∈D and Reϕ(, ) > ,
. Reϕ(iμ, v) ≤  for all (iμ, v) ∈D such that v ≤ – 

 ( +μ
).

Let h(z) =  + cz + cz + · · · be analytic in U , such that (h(z), zh′(z)) ∈D for all z ∈U . If
Re{ϕh(z), zh′(z)} > , z ∈U , then Re{h(z)} > .

Lemma . ([]) Let φ be convex univalent in U with φ() =  and Re{kφ(z) + ν} > ,
k,ν ∈ C. If p is analytic in U with p() = , then

p(z) +
zp′(z)

kp(z) + ν
≺ φ(z), z ∈U ,

implies p(z) ≺ φ(z), z ∈U .
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Theorem . Let f ∈A, ≤ ξ < ,m,n ∈N, λ > , then

Sm,n+
λ (ξ ) ⊆ Sm,n

λ (ξ ) ⊆ Sm,n–
λ (ξ ).

Proof Let f ∈ Sm,n+
λ (ξ ) and suppose that

z(DRm,n
λ f (z))′

DRm,n
λ f (z)

= ξ + ( – ξ )h(z). (.)

Since from (.)

(n + )
DRm,n+

λ f (z)
DRm,n

λ f (z)
= n + ξ + ( – ξ )h(z),

we obtain

( – ξ )h′(z) = (n + )
[
(DRm,n+

λ f (z))′

DRm,n
λ f (z)

–
DRm,n+

λ f (z)
DRm,n

λ f (z)
· (DR

m,n
λ f (z))′

DRm,n
λ f (z)

]
,

( – ξ )zh′(z) = (n + )
DRm,n+

λ f (z)
DRm,n

λ f (z)

[
z(DRm,n+

λ f (z))′

DRm,n+
λ f (z)

– ξ – ( – ξ )h(z)
]
,

( – ξ )h′(z)z
n + ξ + ( – ξ )h(z)

=
z(DRm,n+

λ f (z))′

DRm,n+
λ f (z)

– ξ – ( – ξ )h(z),

z(DRm,n+
λ f (z))′

DRm,n+
λ f (z)

– ξ = ( – ξ )h(z) +
( – ξ )h′(z)z

n + ξ + ( – ξ )h(z)
.

Taking h(z) = μ = μ + iμ and zh′(z) = v = v + iv, we define ϕ(μ, v) by

ϕ(μ, v) = ( – ξ )μ +
( – ξ )v

n + ξ + ( – ξ )μ

and

Re
{
ϕ(iμ, v)

}
=

( – ξ )(n + ξ )v
(n + ξ ) + ( – ξ )μ


,

Re
{
ϕ(iμ, v)

} ≤ –
( – ξ )(n + ξ )( +μ

)
[(n + ξ ) + ( – ξ )μ

]
< .

Clearly, ϕ(μ, v) satisfies the conditions of Lemma .. Hence Re{h(z)} > , z ∈ U , implies
f ∈ Sm,n

λ (ξ ). �

Remark . Using relation (.) and the same techniques as to prove the earlier results,
we can obtain a new similar result.

Theorem . Let f ∈A and φ ∈R with

Re
{
φ(z)

}
<

ξ –  + 
λ

 – ξ
.
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Then

Sm+,n
λ (ξ ,φ) ⊂ Sm,n

λ (ξ ,φ) ⊂ Sm–,n
λ (ξ ,φ).

Proof Let f (z) ∈ Sm+,n
λ (ξ ,φ) and set

p(z) =


 – ξ

(
z(DRm,n

λ f (z))′

DRm,n
λ f (z)

– ξ

)
, (.)

where p is analytic in U with p() = .
By using (.) we have

z(DRm,n
λ f (z))′

DRm,n
λ f (z)

=

λ

DRm+,n
λ f (z)

DRm,n
λ f (z)

–
 – λ

λ
.

Now, by using (.) we get

p′(z) =


 – ξ

(

λ

DRm+,n
λ f (z)

DRm,n
λ f (z)

–
 – λ

λ
– ξ

)
,


λ

DRm+,n
λ f (z)

DRm,n
λ f (z)

= ξ +
 – λ

λ
+ ( – ξ )p(z). (.)

By using (.) and (.), we obtain

zp′(z) =


 – ξ
· 
λ

[
z(DRm+,n

λ f (z))′

DRm,n
λ f (z)

–
DRm+,n

λ f (z)
DRm,n

λ f (z)
· z(DR

m,n
λ f (z))′

DRm,n
λ f (z)

]
,

( – ξ )zp′(z) =

λ

· DR
m+,n
λ f (z)

DRm,n
λ f (z)

[
z(DRm+,n

λ f (z))′

DRm+,n
λ f (z)

–
z(DRm,n

λ f (z))′

DRm,n
λ f (z)

]
,

( – ξ )zp′(z) =
[
ζ –  +


λ
+ ( – ξ )p(z)

][
z(DRm+,n

λ f (z))′

DRm+,n
λ f (z)

– ( – ξ )p(z) – ξ

]
,

( – ξ )zp′(z)
( – ξ )p(z) + ζ –  + 

λ

=
z(DRm+,n

λ f (z))′

DRm+,n
λ f (z)

– ξ – ( – ξ )p(z).

Hence,


 – ξ

[
z(DRm+,n

λ f (z))′

DRm+,n
λ f (z)

– ξ

]
= p(z) +

zp′(z)
( – ζ )p(z) + ζ –  + 

λ

. (.)

Since Re{φ(z)} < ξ–+ 
λ

–ξ
implies Re{( – ξ )p(z) + ξ –  + 

λ
} > , applying Lemma . to (.)

we have that f (z) ∈ Sm,n
λ (ξ ,φ), as required. �

Remark . By using relation (.) and the same techniques as to prove the earlier results,
we can obtain a new similar result.

Corollary . Let +A
+B < ξ–+ 

λ

–ξ
for – < B < A ≤ , then

Sm+,n
λ (ξ ,A,B) ⊂ Sm,n

λ (ξ ,A,B)⊂ Sm–,n
λ (ξ ,A,B).
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Proof Taking φ(z) = +Az
+Bz , – < B < A≤  in Theorem ., we get the corollary. �

3 Integral-preserving properties
In this section, we present several integral-preserving properties for the subclasses of an-
alytic functions defined above. We recall the generalized Bernardi-Libera-Livington inte-
gral operator [] defined by

Fc
[
f (z)

]
=
c + 
zc

∫ z


tc–f (t)dt = z +

∞∑
j=

c + 
j + c

ajzc, f ∈A, c > –, (.)

which satisfies the following equality:

cDRm,n
λ Fc

[
f (z)

]
+ z

[
DRm,n

λ Fc
(
f (z)

)]′ = (c + )DRm,n
λ f (z). (.)

Theorem . Let c > –, ≤ ξ < . If f ∈ Sm,n
λ (ξ ), then Fcf ∈ Sm,n

λ (ξ ).

Proof Let f ∈ Sm,n
λ (ξ ). By using (.), we get

z[DRm,n
λ Fc[f (z)]]′

DRm,n
λ Fc[f (z)]

= (c + )
DRm,n

λ f (z)
DRm,n

λ Fc[f (z)]
– c.

Let

z[DRm,n
λ Fc[f (z)]]′

DRm,n
λ Fc[f (z)]

= ξ + ( – ξ )h(z), h(z) =  + cz + cz + · · · .

We obtain

z[DRm,n
λ f (z)]′

DRm,n
λ f (z)

– ξ = ( – ξ )h(z) +
( – ξ )zh′(z)

ξ + ( – ξ )h(z) + c
.

This implies

ϕ(μ, v) = ( – ξ )μ +
( – ξ )v

c + ξ + ( – ξ )μ

(same as Theorem .) and

Re
{
ϕ(iμ, v)

}
=

( – ξ )(c + ξ )v
(c + ξ ) + ( – ξ )μ


,

Re
{
ϕ(iμ, v)

} ≤ –
( – ξ )(c + ξ )( +μ)

[(c + ξ ) + ( – ξ )μ
]

< .

After using Lemma . and Theorem ., we have

Fcf ∈ Sm,n
λ (ξ ). �

Theorem . Let c > – and φ ∈R with

Re
{
φ(z)

}
<
c + ξ

 – ξ
.

If f ∈ Sm,n
λ (ξ ,φ), then Fcf ∈ Sm,n

λ (ξ ,φ).

#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF


Andrei Advances in Difference Equations #CITATION Page 7 of 8
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

Proof Let f (z) ∈ Sm,n
λ (ξ ,φ) and set

p(z) =


 – ξ

(
z[DRm,n

λ Fc[f (z)]]′

DRm,n
λ Fc[f (z)]

– ξ

)
, (.)

where p is analytic in U with p() = .
Using (.) and (.), we have

(c + )
z[DRm,n

λ f (z)]
DRm,n

λ Fc[f (z)]
= c + ξ + ( – ξ )p(z). (.)

Then, using (.), (.) and (.), we obtain


 – ξ

(
z[DRm,n

λ f (z)]′

DRm,n
λ f (z)

– ξ

)
= p(z) +

zp′(z)
( – ξ )p(z) + c + ξ

. (.)

Applying Lemma . to (.), we conclude that

Fcf ∈ Sm,n
λ (ξ ,φ). �
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