
Park et al. Advances in Difference Equations 2014, 2014:143
http://www.advancesindifferenceequations.com/content/2014/1/143

RESEARCH Open Access

Robust stability analysis for Lur’e systems
with interval time-varying delays via
Wirtinger-based inequality
Myeongjin Park1, Ohmin Kwon1*, Juhyun Park2, Sangmoon Lee3 and Eunjong Cha4

*Correspondence:
madwind@cbnu.ac.kr
1School of Electrical Engineering,
Chungbuk National University, 52
Naesudong-ro, Heungduk-gu,
Cheongju, 361-763, Republic of
Korea
Full list of author information is
available at the end of the article

Abstract
This paper considers the problem of robust stability for Lur’e systems with interval
time-varying delays and parameter uncertainties. It is assumed that the parameter
uncertainties are norm bounded. By constructing a newly augmented
Lyapunov-Krasovskii functional, less conservative sufficient stability conditions of the
concerned systems are introduced within the framework of linear matrix inequalities
(LMIs). Three numerical examples are given to show the improvements over the
existing ones and the effectiveness of the proposed methods.

1 Introduction
The Lur’e system is one of a significant class of nonlinear systems and has a nonlinear el-
ement satisfying certain sector bounded constraints. Since the Lur’e system and absolute
stability were firstly introduced by [, ], the study of the absolute stability for Lur’e system
has attracted many researchers. Most nonlinear systems consist of feedback connections
of linear dynamic systems and nonlinear elements. Thus, as regards practical systems,
there are various kinds of nonlinearities it takes to operate various tasks of systems. For
this reason, during a few decades, Lur’e system has received a great deal of attention due to
its extensive applications [, ]. Moreover, we need to pay close attention to a delay in the
time, which is a natural concomitant of the finite speed of information processing and/or
amplifier switching in the implementation of the systems in various systems such as physi-
cal and biological systems, population dynamics, neural networks, networked control sys-
tems, and so on. It is well known that the time delay often causes undesirable dynamic
behavior, such as performance degradation and instability of the systems. Therefore, the
study on stability analysis for systems with time delay has been widely investigated. For
more details, see the literature [–] and references therein. The recent remarkable re-
sult in the delay-dependent stability analysis of dynamic systems is the Wirtinger-based
integral inequality []. This method provides a tighter lower bound of the integral terms
of the quadratic form. It was shown that this method can be applied and effectively reduce
the conservatism of various problems such as stability analysis of systems with constant
and known delay or a time-varying delay, stabilization of sampled-data systems, and so
on.
Returning to the Lur’e system, this system is also booked for the stability problem with

time delay [–]. Above all, in [], the time-delayed Lur’e systems are dealt with sector
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and slope restricted nonlinearities and uncertainties. Li et al. [] investigated the prob-
lem of delay-dependent absolute and robust stability for time-delay Lur’e system and the
relaxed conditions were presented some previously ignored terms when estimating the
triple integral Lyapunov-Krasovskii functional terms’ derivative. In [], the problems of
master-slave synchronization of Lur’e systems under time-varying delay-feedback con-
trollers were investigated in the framework of LMIs. Ramakrishnan andRay [] proposed
an improved delay-dependent sufficient stability condition for a class of Lur’e systems
of neutral type by imposing tighter bounding on the time derivative of the Lyapunov-
Krasovskii functional without neglecting any useful terms with a delay-partitioning ap-
proach. However, there is room for further improvements in stability analysis of Lur’e
system with time delay.
With themotivationmentioned above, in this paper, the problem to get improved delay-

dependent sufficient stability conditions for a class of Lur’e systems with interval time-
varying delays and parameter uncertainties are considered. Here, stability or stabilization
of a system with interval time-varying delays has been a focused topic of theoretical and
practical importance [] in very recent years. The system with interval time-varying de-
lays means that the lower bounds of the time delay which guarantees the stability of sys-
tem is not restricted to zero, and they include the networked control system as one of the
typical examples. Moreover, the analyses of systems with time delay can be classified as
delay-dependent and delay-independent analysis []. To achieve this, by construction of
a newly augmented Lyapunov-Krasovskii functional and utilization of a Wirtinger-based
inequality [] and a reciprocally convex approach [], new delay-dependent robust suffi-
cient stability conditions are derived in terms of LMIs, which can be formulated as convex
optimization algorithms which are amenable to computer solution []. Finally, three nu-
merical examples are included to show the effectiveness of the proposed methods.

Notation R
n is the n-dimensional Euclidean space, and R

m×n denotes the set of allm×n
real matrices. X >  (respectively, X ≥ ) means that the matrix X is a real symmetric
positive definite (respectively, semidefinite) matrix. In and  denote n× n identity ma-
trix and zero matrix of appropriate dimension, respectively. ‖ · ‖ refers to the Euclidean
vector norm or the induced matrix norm. diag{· · · } denotes the block diagonal matrix.
For square matrix X, sym{X} means the sum of X and its symmetric matrix XT , i.e.,
sym{X} = X + XT . For any vectors xi ∈ R

m (i = , , . . . ,n), col{x,x, . . . ,xn} means the
column vector [xT ,xT , . . . ,xTn ]T ∈ R

mn. X[f (t)] ∈ R
m×n means that the elements of matrix

X[f (t)] include the scalar value of f (t), i.e., X[f] = X[f (t)=f].

2 Preliminaries and problem statement
Consider the uncertain Lur’e systems with time-varying delays given by

ẋ(t) =
(
A +�A(t)

)
x(t) +

(
Ad +�Ad(t)

)
x
(
t – h(t)

)
+

(
B +�B(t)

)
ψ

(
y(t)

)
,

y(t) = Cx(t),
()

where x(t) ∈ R
n is the state vector, y(t) ∈ R

ny is the output vector, ψ(·) ∈ R
ny denotes the

nonlinearity, which satisfies ψi() =  (i = , . . . ,ny), and

γ –
i ≤ ψi(u) –ψi(v)

u – v
≤ γ +

i , u �= v,∀u, v ∈R ()
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where γ –
i and γ +

i are given constants. Here, for simplicity, let us define �– = diag{γ –
 , . . . ,

γ –
n } and �+ = diag{γ +

 , . . . ,γ +
n }. A,Ad ∈ R

n×n, B ∈ R
n×ny , and C ∈ R

ny×n are the system
matrices; and �A(t), �Ad(t), and �B(t) are the parameter uncertainties of the form

[
�A(t),�Ad(t),�B(t)

]
=DF(t)[Ea,Ed,Eb], ()

where D ∈ R
n×nu , Ea ∈ R

nu×n, Ed ∈ R
nu×n, and Eb ∈ R

nu×ny are real known constant ma-
trices; and F(t) ∈ R

nu×nu is a real uncertain matrix function with Lebesgue measurable
elements satisfying FT (t)F(t)≤ Inu .
The delay h(t) is a time-varying continuous function satisfying

 ≤ hm ≤ h(t)≤ hM, dm ≤ ḣ(t)≤ dM, ()

where hm, hM , dm, and dM are known constant values.
The aim of this paper is to investigate the delay-dependent stability analysis of system

() with interval time-varying delays and parameter uncertainties.
For simplicity of the system’s representation, the system can be formulated as follows:

ẋ(t) = Ax(t) +Adx
(
t – h(t)

)
+ Bψ

(
y(t)

)
+Dp(t),

p(t) = F(t)q(t), ()

q(t) = Eax(t) + Edx
(
t – h(t)

)
+ Ebψ

(
y(t)

)
.

Also, before deriving our main results, the following lemmas will be used in main results.

Lemma  ([]) For a given matrix M > , the following inequality holds for all continu-
ously differentiable function x in [a,b]→R

n:

∫ b

a
ẋT (s)Mẋ(s)ds≥ 

b – a
ξT
 Mξ +


b – a

ξT
 Mξ,

where ξ = x(b) – x(a) and ξ = x(b) + x(a) – 
b–a

∫ b
a x(s)ds.

Lemma  ([]) Let ζ ∈ R
n, � = �T ∈ R

n×n and B ∈ R
m×n such that rank(B) < n. The

following statements are equivalent:
(i) ζT�ζ < , ∀Bζ = , ζ �= ,
(ii) B⊥T

�B⊥ < , where B⊥ is a right orthogonal complement of B,
(iii) ∃X ∈R

n×m: � +XB + (XB)T < .

3 Main results
In this section, new sufficient stability conditions for the system () will be derived. For
convenience, the notations of several matrices are defined as

ζ (t) = col

{
x(t),x(t – hm),x

(
t – h(t)

)
,x(k – hM), ẋ(t),


hm

∫ t

t–hm
x(s)ds,


h(t) – hm

∫ t–hm

t–h(t)
x(s)ds,


hM – h(t)

∫ t–h(t)

t–hM
x(s)ds,ψ

(
y(t)

)
,p(t)

}
,
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η(t) = col

{
x(t),

∫ t

t–hm
x(s)ds,

∫ t–hm

t–h(t)
x(s)ds,

∫ t–h(t)

t–hM
x(s)ds

}
,


,[h(t)] =
[
e,hme,

(
h(t) – hm

)
e,

(
hM – h(t)

)
e

]
,


,[ḣ(t)] =
[
e, e – e, e –

(
 – ḣ(t)

)
e,

(
 – ḣ(t)

)
e – e

]
,


, = [e – e, e + e – e],


, = [e – e, e + e – e, e – e, e + e – e],

�[h(t),ḣ(t)] = sym
{

,[h(t)]P
T

,[ḣ(t)]

}
+ [e, e – e]Q[e, e – e]T –

(
 – ḣ(t)

)
[e, e – e]Q[e, e – e]T

+ sym
{
[e, e – e]

(
h(t) – hm

)
Q[, e]T

}
+

(
 – ḣ(t)

)
[e, e – e]Q[e, e – e]T – [e, e – e]Q[e, e – e]T ()

+ sym
{
[e, e – e]

(
hM – h(t)

)
Q[, e]T

}
,

� = eQeT – eQeT + eQeT – eQeT

+ sym
{[
e – eCT�–]LCeT +

[
eCT�+ – e

]
LCeT

}
+ hmeReT + (hM – hm)eReT ,

� =

[
diag{R, R} M

MT diag{R, R}

]
,

� = –
,diag{R, R}
T
, –
,�
T

,,

 = –sym
{[
e – eCT�–]K[

e – eCT�+]T}
,

� = ε
{(
EaeT + EdeT + EbeT

)T(
EaeT + EdeT + EbeT

)
– eInue

T


}
,

�[h(t),ḣ(t)] =�[h(t),ḣ(t)] +� +� + +�,

ϒ = AeT +AdeT – IneT + BeT +DeT,

where ei ∈ R
(n+ny+nu)×n (i = , , . . . , ) are defined as block entry matrices, e.g., eT ζ (t) =

x(t – h(t)).
Then the following theorem is given as the main result.

Theorem  For given scalars  ≤ hm ≤ hM , dm ≤ dM , diagonal matrices �– and �+, the
system () is asymptotically stable for (), if there exist a positive scalar ε, positive definite
matricesP ∈R

n×n,Qi ∈R
n×n (i = , ),Qi ∈R

n×n (i = ,), Ri ∈R
n×n (i = , ), positive

definite diagonal matrices Li ∈ R
ny×ny (i = , ), K ∈ R

ny×ny , and any matrix M ∈ R
n×n

satisfying the following LMIs:

ϒ⊥T
�j,kϒ

⊥ <  (j,k = , ), ()

� ≥ , ()

where �j,k are the four vertices of �[h(t),ḣ(t)] with the bounds of h(t) and ḣ(t), that is, hM and
hD when j = k = , hM and –hD when j < k, hm and hD when j > k, and hm and –hD when
j = k = .
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Proof Let us consider the following Lyapunov-Krasovskii functional candidate:

V = ηT (t)Pη(t)

+
∫ t

t–hm
xT (s)Qx(s)ds +

∫ t–hm

t–h(t)

[
x(s)∫ t

s ẋ(u)du

]T

Q

[
x(s)∫ t

s ẋ(u)du

]
ds

+
∫ t–hm

t–hM
xT (s)Qx(s)ds +

∫ t–h(t)

t–hM

[
x(s)∫ t

s ẋ(u)du

]T

Q

[
x(s)∫ t

s ẋ(u)du

]
ds

+ hm
∫ t

t–hm

∫ t

s
ẋT (u)Rẋ(u)duds + (hM – hm)

∫ t–hm

t–hM

∫ t

s
ẋT (u)Rẋ(u)duds

+ 
n∑
i=

∫ CT
i x(t)



[
li

(
ψi(s) – γ –

i s
)
+ li

(
γ +
i s –ψi(s)

)]
ds. ()

It should be noted that

η(t) =

⎡
⎢⎢⎢⎢⎣

x(t)∫ t
t–hm x(s)ds∫ t–hm
t–h(t) x(s)ds∫ t–h(t)
t–hM

x(s)ds

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x(t)∫ t
t–hm x(s)ds

( 
h(t)–hm

∫ t–hm
t–h(t) x(s)ds)(h(t) – hm)

( 
hM–h(t)

∫ t–h(t)
t–hM

x(s)ds)(hM – h(t))

⎤
⎥⎥⎥⎥⎦

=
[
e,hme,

(
h(t) – hm

)
e,

(
hM – h(t)

)
e

]︸ ︷︷ ︸

,[h(t)]

T
ζ (t) ()

and

η̇(t) =

⎡
⎢⎢⎢⎣

ẋ(t)
x(t) – x(t – hm)

x(t – hm) – ( – ḣ(t))x(t – h(t))
( – ḣ(t))x(t – h(t)) – x(t – hM)

⎤
⎥⎥⎥⎦

=
[
e, e – e, e –

(
 – ḣ(t)

)
e,

(
 – ḣ(t)

)
e – e

]︸ ︷︷ ︸

,[ḣ(t)]

T
ζ (t). ()

The time derivative of V can be calculated as

V̇ = ηT (t)P η̇(t)

+ xT (t)Qx(t) – xT (t – hm)Qx(t – hm)

+

[
x(t – hm)∫ t
t–hmẋ(s)ds

]T

Q

[
x(t – hm)∫ t
t–hmẋ(s)ds

]

–
(
 – ḣ(t)

)[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]T

Q

[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]

http://www.advancesindifferenceequations.com/content/2014/1/143
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+ 
∫ t–hm

t–h(t)

[
x(s)∫ t

s ẋ(u)du

]T

Q

[

ẋ(t)

]
ds

+ xT (t – hm)Qx(t – hm) – xT (t – hM)Qx(t – hM)

+
(
 – ḣ(t)

)[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]T

Q

[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]

–

[
x(t – hM)∫ t
t–hM

ẋ(s)ds

]T

Q

[
x(t – hM)∫ t
t–hM

ẋ(s)ds

]

+ 
∫ t–h(t)

t–hM

[
x(s)∫ t

s ẋ(u)du

]T

Q

[

ẋ(t)

]
ds

+ hmẋ
T (t)Rẋ(t) – hm

∫ t

t–hm
ẋT (s)Rẋ(s)ds

+ (hM – hm)ẋT (t)Rẋ(t) – (hM – hm)
∫ t–hm

t–hM
ẋT (s)Rẋ(s)ds

+ 
[
ψ

(
Cx(t)

)
– �–Cx(t)

]TLCẋ(t)
+ 

[
�+Cx(t) –ψ

(
Cx(t)

)]TLCẋ(t)
= ζT (t)(�[h(t),ḣ(t)] +�)ζ (t) – hm

∫ t

t–hm
ẋT (s)Rẋ(s)ds

– (hM – hm)
∫ t–hm

t–h(t)
ẋT (s)Rẋ(s)ds – (hM – hm)

∫ t–h(t)

t–hM
ẋT (s)Rẋ(s)ds. ()

By Lemma , the integral terms of the V̇ are bounded as

–hm
∫ t

t–hm
ẋT (s)Rẋ(s)ds≤ –ξT

,(t)Rξ,(t) – ξT
,(t)Rξ,(t) ()

and

–(hM – hm)
∫ t–hm

t–h(t)
ẋT (s)Rẋ(s)ds – (hM – hm)

∫ t–h(t)

t–hM
ẋT (s)Rẋ(s)ds

≤ –
hM – hm
h(t) – hm

ξT
,(t)Rξ,(t) –

(hM – hm)
h(t) – hm

ξT
,(t)Rξ,(t)

–
hM – hm
hM – h(t)

ξT
,(t)Rξ,(t) –

(hM – hm)
hM – h(t)

ξT
,(t)Rξ,(t), ()

where

ξ,(t) = x(t) – x(t – hm) = (e – e)Tζ (t),

ξ,(t) = x(t) + x(t – hm) –

hm

∫ t

t–hm
x(s)ds = (e + e – e)Tζ (t),

ξ,(t) = x(t – hm) – x
(
t – h(t)

)
= (e – e)Tζ (t),

ξ,(t) = x(t – hm) + x
(
t – h(t)

)
–


h(t) – hm

∫ t–hm

t–h(t)
x(s)ds = (e + e – e)Tζ (t),

http://www.advancesindifferenceequations.com/content/2014/1/143
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ξ,(t) = x
(
t – h(t)

)
– x(t – hM) = (e – e)Tζ (t),

ξ,(t) = x
(
t – h(t)

)
+ x(t – hM) –


hM – h(t)

∫ t–h(t)

t–hM
x(s)ds = (e + e – e)Tζ (t).

Furthermore, if the inequality () holds, applying the reciprocally convex approach in []
to () leads to

–


α(t)
{
ξT
,(t)Rξ,(t) + ξT

,(t)Rξ,(t)
}

–


 – α(t)
{
ξT
,(t)Rξ,(t) + ξT

,(t)Rξ,(t)
}

= –

⎡
⎢⎢⎢⎣

ξ,

ξ,

ξ,

ξ,

⎤
⎥⎥⎥⎦

T [


α(t)diag{R, R} 
 

–α(t)diag{R, R}

]⎡
⎢⎢⎢⎣

ξ,

ξ,

ξ,

ξ,

⎤
⎥⎥⎥⎦

≤ –

⎡
⎢⎢⎢⎣

ξ,

ξ,

ξ,

ξ,

⎤
⎥⎥⎥⎦

T [
diag{R, R} M

MT diag{R, R}

]⎡
⎢⎢⎢⎣

ξ,

ξ,

ξ,

ξ,

⎤
⎥⎥⎥⎦

= ζT (t)�ζ (t) ()

for any n× nmatrixM, where 
α(t) =

hM–hm
h(t)–hm .

In addition, the following inequality holds for any positive diagonal matrix K :

 ≤ –
[
ψ

(
Cx(t)

)
– �–Cx(t)

]TK[
ψ

(
Cx(t)

)
– �+Cx(t)

]
= ζT (t)

[
–sym

{[
e – eCT�–]K[

e – eCT�+]T}]︸ ︷︷ ︸


ζ (t)

= ζT (t)ζ (t). ()

Moreover, with the relational expression between p(t) and q(t), pT (t)p(t) ≤ qT (t)q(t), from
the system (), there exists a scalar ε >  satisfying the following inequality:

 ≤ ε
{
qT (t)q(t) – pT (t)p(t)

}
= ε

(
Eax(t) + Edx

(
t – h(t)

)
+ Ebψ

(
y(t)

))T(
Eax(t) + Edx

(
t – h(t)

)
+ Ebψ

(
y(t)

))
– εpT (t)p(t)

= ζT (t)
[
ε
{(
EaeT + EdeT + EbeT

)T(
EaeT + EdeT + EbeT

)
– eInue

T


}︸ ︷︷ ︸
�

]
ζ (t)

= ζT (t)�ζ (t). ()

From () to () and by applying the S-procedure [], V̇ has a new upper bound:

V̇ ≤ ζT (t)(�[h(t),ḣ(t)] +� +� + +�)ζ (t). ()

http://www.advancesindifferenceequations.com/content/2014/1/143
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Then a new stability condition for the system () can be written:

ζT (t)�[h(t),ḣ(t)]ζ (t) <  ()

subject to ϒζ (t) = .
Here, the above condition is affinely dependent on h(t) and ḣ(t). Also, from (i) and (iii)

of Lemma , if the inequality () holds, then for any free matrix X with appropriate di-
mension, the condition () is equivalent to

�j,k + sym{Xϒ} =j,k <  (j,k = , ). ()

From () to (), if () holds, then there exist positive scalars εj,k (j,k = , ) such that
V̇ ≤ ζT (t)j,kζ (t) < –εj,k‖x(t)‖ (j,k = , ). Therefore, it can be seen that for all time t, if
() holds, then V̇ < –minj,k=,{εj,k}‖x(t)‖. From the Lyapunov stability theory, it can be
concluded that if () holds, then the system () is asymptotically stable.
Lastly, by utilizing (ii) and (iii) of Lemma , one can confirm that the inequality () is

equivalent to the inequality (). This completes our proof. �

Remark  To reduce the conservatism of sufficient stability conditions, the very sim-
ple Lyapunov-Krasovskii functional with a Wirtinger-based inequality was utilized in the
work [], but a new Lyapunov-Krasovskii functional was not introduced. In view of this,
themain difference between thiswork and [] is the use of

∫ t–hm
t–h(t)

[ x(s)∫ t
s ẋ(u)du

]TQ
[ x(s)∫ t

s ẋ(u)du

]
ds

and
∫ t–h(t)
t–hM

[ x(s)∫ t
s ẋ(u)du

]TQ
[ x(s)∫ t

s ẋ(u)du

]
ds included in the new Lyapunov-Krasovskii functional

(). In other words, by calculating their time derivatives, some cross terms such as

[
x(t – hm)∫ t
t–hm ẋ(s)ds

]T

Q

[
x(t – hm)∫ t
t–hm ẋ(s)ds

]

–
(
 – ḣ(t)

)[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]T

Q

[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]

+ 
∫ t–hm

t–h(t)

[
x(s)∫ t

s ẋ(u)du

]T

Q

[

ẋ(t)

]
ds

and

(
 – ḣ(t)

)[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]T

Q

[
x(t – h(t))∫ t
t–h(t)ẋ(s)ds

]

–

[
x(t – hM)∫ t
t–hM

ẋ(s)ds

]T

Q

[
x(t – hM)∫ t
t–hM

ẋ(s)ds

]

+ 
∫ t–h(t)

t–hM

[
x(s)∫ t

s ẋ(u)du

]T

Q

[

ẋ(t)

]
ds

are obtained and utilized in estimating the time derivative of the proposed Lyapunov-
Krasovkii functional ().

http://www.advancesindifferenceequations.com/content/2014/1/143


Park et al. Advances in Difference Equations 2014, 2014:143 Page 9 of 13
http://www.advancesindifferenceequations.com/content/2014/1/143

As a special case of Theorem , when the system () is the nominal form and the in-
formation about ḣ(t) is unknown, then, based on a new Lyapunov-Krasovskii functional
candidate given by

V =

⎡
⎢⎣ x(t)∫ t

t–hmx(s)ds∫ t–hm
t–hM

x(s)ds

⎤
⎥⎦

T

P

⎡
⎢⎣ x(t)∫ t

t–hmx(s)ds∫ t–hm
t–hM

x(s)ds

⎤
⎥⎦

+
∫ t

t–hm
xT (s)Qx(s)ds +

∫ t–hm

t–hM
xT (s)Qx(s)ds

+ hm
∫ t

t–hm

∫ t

s
ẋT (u)Rẋ(u)duds

+ (hM – hm)
∫ t–hm

t–hM

∫ t

s
ẋT (u)Rẋ(u)duds

+ 
n∑
i=

∫ CT
i x(t)



[
li

(
ψi(s) – γ –

i s
)
+ li

(
γ +
i s –ψi(s)

)]
ds, ()

the following theorem can be obtained.

Theorem  For given scalars  ≤ hm ≤ hM , diagonal matrices �– and �+, the nominal
form of the system () is asymptotically stable for hm ≤ h(t) ≤ hM , if there exist positive
definite matrices P ∈R

n×n,Qi ∈ R
n×n (i = , ), Ri ∈ R

n×n (i = , ), positive definite diag-
onal matrices Li ∈ R

ny×ny (i = , ), K ∈ R
ny×ny , and any matrix M ∈ R

n×n satisfying the
LMIs () and

ϒ̂⊥T
�̂iϒ̂

⊥ <  (i = , ), ()

where �̂i are the two vertices of �̂[h(t)] with the bounds of h(t), that is, hM when i =  and
hM when i = , and ϒ̂ = AeT +AdeT – IneT + BeT .

Proof The new upper bound of the time derivative of () can be calculated as

V̇ ≤ ζ̂T (t)�̂[h(t)]ζ̂ (t), ()

where

ζ̂ (t) = col

{
x(t),x(t – hm),x

(
t – h(t)

)
,x(k – hM), ẋ(t),


hm

∫ t

t–hm
x(s)ds,


h(t) – hm

∫ t–hm

t–h(t)
x(s)ds,


hM – h(t)

∫ t–h(t)

t–hM
x(s)ds,ψ

(
y(t)

)}
,

�̂[h(t)] = sym
{[
e,hme,

(
h(t) – hm

)
e +

(
hM – h(t)

)
e

]
P[e, e – e, e – e]T

}
+� +� +

with replacing the block entry matrices to ei ∈R
(n+ny)×n (i = , . . . , ), which is very similar

to the proof of Theorem , so it is omitted. �
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4 Illustrative examples
Example  Consider the system () with

A =

[
–. 
. –

]
, Ad =

[
– .
–. –

]
, B = –I, C = I,

D = diag{θ , θ}, Ea = diag{., .}, Ed = Eb = diag{., .}, ()

�– = , �+ = diag{, }.

Table  shows the results of themaximum allowable delay bounds with various θ and fixed
hm = dm =  for the above system. It can be seen that Theorem  in this work provides a
larger delay bound than the existing works. This indicates that the presented conditions
relieve the conservativeness of the stability caused by time delay.

Example  Consider the Chua circuit [] given by

ẋ(t) = α
(
x(t) – h

(
x(t)

))
,

ẋ(t) = x(t) – x(t) + x(t),

ẋ(t) = –βx(t)

with the nonlinear function h(x(t)) =mx(t) + 
 (m –m)(|x(t) + c| – |x(t) – c|), where

the parameters are m = – 
 , m = 

 , α = , β = ., and c = ; its Lur’e form can be
rewritten with

A =

⎡
⎢⎣–αm α 

 – 
 –β 

⎤
⎥⎦ , Ad = ,

B =

⎡
⎢⎣–α(m –m)




⎤
⎥⎦ , C = [  ].

Furthermore, according to the works [, ], a master-slave error system using static
error feedback control with time-varying delay is presented as

ṁ(t) = Am(t) + Bψ
(
Cm(t)

)
,

ṡ(t) = As(t) + Bψ
(
Cs(t)

)
–K

(
m(t) – s(t)

)
+ L

(
Cm

(
t – h(t)

)
–Cs

(
t – h(t)

))
Table 1 Maximum allowable delay bounds with fixed hm = dm = 0 (Example 1)

θ 0 0.2 0.4 0.6 0.8 1.0
dM = 0 Choi et al. [18] 1.113 1.062 1.014 0.967 0.921 0.877

Chen et al. [17] 3.325 3.128 2.849 2.780 2.651 2.522
Li et al. [19] 3.355 3.172 2.912 2.876 2.734 2.614
Theorem 1 4.372 3.840 3.456 3.160 2.921 2.723

dM = 0.1 Choi et al. [18] 1.026 0.984 0.940 0.898 0.857 0.818
Chen et al. [17] 3.160 2.899 2.840 2.702 2.575 2.460
Li et al. [19] 3.224 3.046 2.900 2.804 2.603 2.554
Theorem 1 3.616 3.295 3.039 2.828 2.649 2.491
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Table 2 Maximum allowable delay bounds with fixed hm = 0, unknown dm and dM
(Example 2)

Methods hM NoVar∗
Han [23] 0.1527 19
Ramakrishnan and Ray [29] 0.1698 162
Theorem 2 0.1789 108

∗Number of decision variables.

and defining e(t) =m(t) – s(t) leads to

ė(t) = (A +K )e(t) – LCe
(
t – h(t)

)
+ Bψ

(
Ce(t)

)
.

Here, ψ(s) belongs to the sector bound [, ].
For comparison with the existing works, the controller gains are selected by

K = diag{–,–,–}, L = [. . –.]T .

Synthetically, the above error system is equal to the nominal form of system () with

A =

⎡
⎢⎣–αm –  α 

 – 
 –β –

⎤
⎥⎦ , Ad =

⎡
⎢⎣–.  
–.  
.  

⎤
⎥⎦ ,

B =

⎡
⎢⎣–α(m –m)




⎤
⎥⎦ , C = [  ].

()

For system () with (), the result of the maximum allowable delay bound with fixed hm =
, unknown dm and dM obtained by Theorem  is listed in Table . One can see that our
result for this example gives a larger maximum allowable delay bound than those of []
and []. Even though the number of decision variables of Theorem  is larger than that of
[], it is smaller than that of []. To confirm the obtained result, a simulation result when
the time delay is h(t) = . sin(.t)+. and the initial value x() = [–, ., ]T

is given in Figure .

Example  Consider the nominal form of system () with

A =

[
 
– –

]
, Ad =

[
 
– 

]
. ()

For the above system, the results of the maximum allowable delay bound with various
hm = , unknown dm and dM are compared with the previous results in Table . It can also
be shown that the proposed sufficient stability condition improves the stability region.
Furthermore, the number of utilized decision variables in Theorem  is much smaller
than those of [, ], and [].

5 Conclusions
In this paper, the delay-dependent stability problem for the Lur’e systems with interval
time-varying delays and parameter uncertainties was dealt. In Theorem , the improved

http://www.advancesindifferenceequations.com/content/2014/1/143
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Table 3 Maximum allowable delay bounds with unknown dm and dM (Example 3)

hm 0.3 0.5 0.8 1.0 2.0 NoVar∗
Shao [20] 1.072 1.219 1.454 1.617 2.480 15
Sun et al. [21] 1.104 1.276 1.485 1.694 2.515 85
Orihuela et al. [22] 1.223 1.360 1.582 1.738 2.572 290
Park et al. [5] 1.240 1.380 1.600 1.750 2.570 19
Li et al. [19] 1.278 1.415 1.655 1.786 2.590 283
Theorem 2 1.351 1.473 1.677 1.824 2.637 49

∗Number of decision variables.

Figure 1 Phase trajectory (Example 2).

robust sufficient stability condition for the concerned systems was proposed by introduc-
ing the augmented Lyapunov-Krasovskii functional and using some approaches. In The-
orem , based on the result of Theorem , the sufficient stability condition for the nom-
inal form of Lur’e systems with interval time-varying delays having a constraint on the
unknown ḣ(t) was presented. Three illustrative examples have been given to show the
effectiveness and usefulness of the presented sufficient conditions.
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