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Abstract
Let us consider the Boundary Value Problem (BVP) for the discrete Dirac equations
an+1y

(2)
n+1 + bny(2)n + pny(1)n = λy(1)n , an–1y

(1)
n–1 + bny(1)n + qny(2)n = λy(2)n , n ∈N,

(γ0 + γ1λ + γ2λ
2)y(2)1 + (β0 + β1λ + β2λ

2)y(1)0 = 0, where (an), (bn), (pn) and (qn), n ∈ N

are complex sequences, γi ,βi ∈C, i = 0, 1, 2, and λ is an eigenparameter. Discussing
the eigenvalues and the spectral singularities, we prove that this BVP has a finite
number of eigenvalues and spectral singularities with a finite number of multiplicities,
if

∑∞
n=1 exp(εn

δ)(|1 – an| + |1 + bn| + |pn| + |qn|) <∞, holds, for some ε > 0 and
1
2 ≤ δ ≤ 1.
MSC: 34L40; 47A10; 47A75

Keywords: discrete Dirac equations; eigenparameter; spectral analysis; discrete
spectrum; spectral singularities

1 Introduction
In the last decade, discrete boundary value problems have been intensively studied. The
spectral analysis of the difference equations have been treated by various authors in con-
nection with the classical moment problem (see themonographs of Agarwal [], Agarwal-
Wong [] and Kelley-Peterson [] and the papers of Agarwal et al. [, ] and the references
therein). Moreover, the modeling of certain linear and nonlinear problems in economies,
optimal control theory, and other areas of study have led to the rapid development of the
theory of difference equations. The spectral theory of the difference equations has also
been applied to the solution of classes of nonlinear discrete Korteweg-de Vries equations
and Toda lattices [, ].
Let us is consider the discrete boundary value problem (BVP)

an–yn– + bnyn + anyn+ = λyn, n ∈N = {, , . . .}, (.)

y = , (.)

where (an) and (bn) are complex sequences, a �=  and λ is a spectral parameter. The spec-
tral analysis of the BVP (.), (.) with continuous and point spectrum has been studied
in []. In this article, the authors proved that the spectrum of the BVP (.), (.) consists
of a continuous spectrum, eigenvalues and a spectral singularities. The spectral singulari-
ties are poles of the resolvent and are also imbedded in the continuous spectrum, but they
are not eigenvalues. The effect of the spectral singularities in the spectral expansion of
the BVP (.), (.) in terms of the principal vectors has been investigated in []. In [,
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], the dependence of the structure of the spectral singularities of the BVP (.), (.) on
the behavior of the sequences (an) and (bn) was considered. Some problems related to the
spectral analysis of difference equations with spectral singularities have been discussed in
[–]. The spectral analysis of an eigenparameter dependent non-selfadjoint BVP for
the system of difference equations of first order has been studied in [, ].
Let us consider the non-selfadjoint BVP for the system of difference equations of first

order{
an+y()n+ + bny()n + pny()n = λy()n ,
an–y()n– + bny()n + qny()n = λy()n , n ∈N,

(.)

(
γ + γλ + γλ

)y() +
(
β + βλ + βλ

)y() = , (.)

where
( y()n
y()n

)
, n ∈ N are vector sequences, an �= , bn �=  for all n. Also γ �= –β

a
, |γ|+ |β| �=

, and γβ – γβ �=  where γi,βi ∈ C, i = , , . If an ≡  and bn ≡ – for all n ∈ N, then
the system (.) reduces to

{
�y()n + pny()n = λy()n ,
–�y()n– + qny()n = λy()n , n ∈N,

(.)

where � is a forward difference operator. The system (.) is the discrete analog of the
well-known Dirac system

(
 
– 

)(
y′


y′


)
+

(
p(x) 
 q(x)

)(
y
y

)
= λ

(
y
y

)

(see [], Chapter ). Therefore the system (.) (also (.)) is called a discreteDirac system.
The specific feature of this paper is the presence of the spectral parameter not only in the
difference equation and also in the boundary condition, which is quadratic.
In this article, we intend to investigate eigenvalues and spectral singularities of the BVP

(.), (.), which has a finite number of eigenvalues and spectral singularities with a finite
number of multiplicities, if the condition

∞∑
n=

exp
(
εnδ

)(| – an| + | + bn| + |pn| + |qn|
)
< ∞

holds, for some ε >  and 
 ≤ δ ≤ .

2 Jost solution of (1.3)
Suppose that the condition

∞∑
n=

exp
(
εnδ

)(| – an| + | + bn| + |pn| + |qn|
)
< ∞ (.)

is satisfied for some ε >  and 
 ≤ δ ≤ . It is well known [] that (.) has the bounded

solution

fn(z) =

(
f ()n (z)
f ()n (z)

)
= αn

(
I +

∞∑
m=

Anmeimz

)(
ei z
–i

)
einz, n ∈N, (.)

http://www.advancesindifferenceequations.com/content/2014/1/148


Koprubasi Advances in Difference Equations 2014, 2014:148 Page 3 of 9
http://www.advancesindifferenceequations.com/content/2014/1/148

f () (z) = α


{
ei

z


[
 +

∞∑
m=

A
me

imz

]
– i

∞∑
m=

A
me

imz

}
, (.)

under the condition (.) for λ =  sin z
 and z ∈C+ := {z : z ∈C, Im z ≥ }, where

αn =

(
α
n α

n

α
n α

n

)
, I =

(
 
 

)
, Anm =

(
A
nm A

nm

A
nm A

nm

)
.

Note that α
ij
n and Aij

nm (i, j = , ) are expressed in terms of (an), (bn), (pn), and (qn), n ∈ N.
Also

∣∣Aij
nm

∣∣ ≤ C
∞∑

k=n+[|m |]

(| – ak| + | + bk| + |pk| + |qk|
)

(.)

holds, where C >  is a constant and [|m |] is the integer part of m
 . Therefore fn is a vector-

valued analytic function with respect to z in C+ := {z : z ∈ C, Im z > } and continuous in
C+ []. The solution f (z) = (fn(z)) =

( f ()n (z)

f ()n (z)

)
is called the Jost solution of (.).

3 Eigenvalues and spectral singularities of (1.3)-(1.4)
We define

f (z) =
(

γ + γ sin
z

+ γ sin

 z


)
f () (z)

+
(

β + β sin
z

+ β sin

 z


)
f () (z), (.)

using (.), (.), and (.). It follows from (.) and (.) that the function f is analytic in
C+, continuous up to the real axis and

f (z + π ) = f (z).

Let

T := {z : z ∈C, z = x + iy, –π ≤ x≤ π , y > }, T := T ∪ [–π , π ].

We will denote the set of all eigenvalues and spectral singularities of the BVP (.), (.)
by σd and σss, respectively. It is clear that

σd =
{
λ : λ =  sin

z

, z ∈ T, f (z) = 

}
, (.)

σss =
{
λ : λ =  sin

z

, z ∈ [–π , π ], f (z) = 

}
. (.)

From (.), (.), and (.) we obtain

f (z) = –α
 βe–i

z
 + i

(
α
 γ + α

 β
)

+
[
α
 γ – α

 γ + α
 (β + β)

]
ei

z
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+ i
[
–α

 (γ + γ) + α
 γ – α

 β
]
eiz

+
[
–α

 γ + α
 (γ + γ) – α

 β
]
ei

z


+ i
(
α
 γ – α

 γ
)
eiz – α

 γei
z


+ i
∞∑
m=

α
 βA

me
i(m–)z +

∞∑
m=

α


(
βA

m – βA
m

)
ei(m– 

 )z

+ i
∞∑
m=

{
γ

(
α
 A

m + α
 A

m
)

+ α


[
βA

m – (β + β)A
m

]}
eimz

+
∞∑
m=

{
α


(
γA

m – γA
m

)
+ α


(
γA

m – γA
m

)

+ α


[
(β + β)A

m – βA
m

]}
ei(m+ 

 )z

+ i
∞∑
m=

{
–α


[
(γ + γ)A

m – γA
m

]
– α


[
(γ + γ)A

m – γA
m

]
+ α


(
βA

m – βA
m

)}
ei(m+)z

+
∞∑
m=

{
–α


[
γA

m – (γ + γ)A
m

]
+ α


[
(γ + γ)A

m – γA
m

]
– α

 βA
m

}
ei(m+ 

 )z

+ i
∞∑
m=

[
α


(
γA

m – γA
m

)
+ α


(
γA

m – γA
m

)]
ei(m+)z

+
∞∑
m=

–γ
(
α
 A

m + α
 γA

m
)
ei(m+ 

 )z. (.)

Let

F(z) := f (z)ei
z
 , (.)

then the function F is analytic in C+, continuous in C+,

F(z) = –α
 β + i

(
α
 γ + α

 β
)
ei

z


+
[
α
 γ – α

 γ + α
 (β + β)

]
eiz

+ i
[
–α

 (γ + γ) + α
 γ – α

 β
]
ei

z


+
[
–α

 γ + α
 (γ + γ) – α

 β
]
eiz

+ i
(
α
 γ – α

 γ
)
ei

z
 – α

 γeiz

+ i
∞∑
m=

α
 βA

me
i(m– 

 )z +
∞∑
m=

α


(
βA

m – βA
m

)
eimz
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+ i
∞∑
m=

{
γ

(
α
 A

m + α
 A

m
)

+ α


[
βA

m – (β + β)A
m

]}
ei(m+ 

 )z

+
∞∑
m=

{
α


(
γA

m – γA
m

)
+ α


(
γA

m – γA
m

)
+ α


[
(β + β)A

m – βA
m

]}
ei(m+)z

+ i
∞∑
m=

{
–α


[
(γ + γ)A

m – γA
m

]
– α


[
(γ + γ)A

m – γA
m

]
+ α


(
βA

m – βA
m

)}
ei(m+ 

 )z

+
∞∑
m=

{
–α


[
γA

m – (γ + γ)A
m

]
+ α


[
(γ + γ)A

m – γA
m

]
– α

 βA
m

}
ei(m+)z

+ i
∞∑
m=

[
α


(
γA

m – γA
m

)
+ α


(
γA

m – γA
m

)]
ei(m+ 

 )z

+
∞∑
m=

–γ
(
α
 A

m + α
 γA

m
)
ei(m+)z (.)

and

F(z + π ) = F(z).

Using (.)-(.),

σd =
{
λ : λ =  sin

z

, z ∈ T,F(z) = 

}
, (.)

σss =
{
λ : λ =  sin

z

, z ∈ [–π , π ],F(z) = 

}
. (.)

Definition . The multiplicity of a zero of F in T is called the multiplicity of the corre-
sponding eigenvalue or spectral singularity of the BVP (.), (.).

It follows from (.) and (.) that, in order to investigate the quantitative properties of
the eigenvalues and the spectral singularities of the BVP (.), (.), we need to discuss the
quantitative properties of the zeros of F in T .
Let

S :=
{
z : z ∈ T,F(z) = 

}
,

S :=
{
z : z ∈ [–π , π ],F(z) = 

}
.

(.)

We also denote the set of all limit points of S by S and the set of all zeros of F with infinite
multiplicity by S.
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From (.), (.), and (.) we get

σd =
{
λ : λ =  sin

z

, z ∈ S

}
,

σss =
{
λ : λ =  sin

z

, z ∈ S

}
.

(.)

Theorem . If (.) holds, then:
(i) The set S is bounded and countable.
(ii) S ∩ S =∅, S ∩ S =∅.
(iii) The set S is compact and μ(S) = , where μ denotes the Lebesgue measure in the

real axis.
(iv) S ⊂ S, S ⊂ S; μ(S) = μ(S) = .
(v) S ⊂ S.

Proof Using (.), (.), and (.), we have

F(z) =

{
–α

 β + o(e–y), β �= , z ∈ T , y→ ∞,
i(α

 γ + α
 β)ei

z
 + o(e–y), β = , z ∈ T , y→ ∞.

(.)

Equation (.) shows that S is bounded. Since F is analytic in C+ and is a π periodic
function, we find that S has at most a countable number of elements. This proves (i).
From the uniqueness theorems of analytic functions we obtain (ii)-(iv) [].
Using the continuity of all derivatives of F on [–π , π ] we get (v). �

From (.) and Theorem ., we have the following.

Theorem . Under the condition (.):
(i) The set of eigenvalues of the BVP (.), (.) is bounded and countable and its limit

points can lie only in [–, ].
(ii) σss ⊂ [–, ], σss = σ ss and μ(σss) = .

For δ =  the condition (.) reduces to

∞∑
n=

exp(εn)
(| – an| + | + bn| + |pn| + |qn|

)
< ∞. (.)

Theorem . Under the condition (.) the BVP (.), (.) has a finite number of eigen-
values and spectral singularities and each of them is of finite multiplicity.

Proof Using (.) we find that

∣∣Aij
nm

∣∣ ≤ C exp

[
–

ε


(n +m)

]
, i, j = , ,n,m ∈ N, (.)

where C >  is a constant. From (.) and (.) we observe that the function F has an
analytic continuation to the half-plane Im z > – ε

 . Since F is a π periodic function, the
limit points its zeros in T cannot lie in [–π , π ]. Using Theorem . we have the bounded

http://www.advancesindifferenceequations.com/content/2014/1/148


Koprubasi Advances in Difference Equations 2014, 2014:148 Page 7 of 9
http://www.advancesindifferenceequations.com/content/2014/1/148

sets S and S having a finite number of elements. From analyticity of F in Im z > – ε
 , we

find that all zeros of F in T have a finite multiplicity. Therefore using (.), we obtain the
finiteness of the eigenvalues and spectral singularities of the BVP (.), (.). �

It is seen that the condition (.) guarantees the analytic continuation of F from the
real axis to lower half-plane. So the finiteness of eigenvalues and spectral singularities of
the BVP (.), (.) are obtained as a result of this analytic continuation.
Now let us suppose that

∞∑
n=

exp
(
εnδ

)(| – an| + | + bn| + |pn| + |qn|
)
< ∞, ε > ,




≤ δ < , (.)

which is weaker than (.). It is evident that under the condition (.) the function F is
analytic in C+ and infinitely differentiable on the real axis. But F does not have an analytic
continuation from the real axis to lower half-plane. Therefore under the condition (.)
the finiteness of eigenvalues and spectral singularities of the BVP (.), (.) cannot be
shown in a way similar to Theorem ..
Under the condition (.), to prove that the eigenvalues and the spectral singularities

of the BVP (.), (.) are of finite number we will use the following.

Theorem . ([]) Let us assume that the π periodic function g is analytic in C+, all of
its derivatives are continuous in C+ and

sup
z∈T

∣∣g(k)(z)∣∣ ≤ Ak , k ∈ N∪ {}.

If the set G ⊂ [–π , π ] with Lebesgue measure zero is the set of all zeros the function g
with infinite multiplicity in T , if

∫ ω


lnK (s)dμ(Gs) = –∞, (.)

where K(s) = infk
Aksk
k! and μ(Gs) is the Lebesgue measure of s-neighborhood of G and ω ∈

(–π , π ) is an arbitrary constant, then g ≡  in C+.
Under the condition (.) from (.) and (.) we find

∣∣F (k)(z)
∣∣ ≤ Ak , k ∈N∪ {},

where

Ak = kC
∞∑
m=

mk exp
(
–εmδ

)

and C >  is a constant.We can obtain the following estimate:

Ak ≤ kC
∫ ∞


xk exp

(
–εxδ

)
dx ≤Ddkk!kk

–δ
δ , (.)

where D and d are constants depending on C, ε, and δ.

http://www.advancesindifferenceequations.com/content/2014/1/148
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Theorem . If (.) holds, then S =∅.

Proof The function F satisfies all conditions of Theorem . except (.). But F is not
identically equal to zero. In this case the function F satisfies the condition

∫ ω


lnK (s)dμ(S,s) > –∞ (.)

instead of (.), where K (s) = infk
Aksk
k! , k ∈ N ∪ {}, and μ(S,s) is the Lebesgue measure

of the s-neighborhood of S and Ak defined by (.). Substituting (.) in the definition
of K (s), we get

K (s) =D exp

{
–
 – δ

δ
e–d– δ

–δ s–
δ

–δ

}
. (.)

It follows from (.) and (.) that

∫ ω


s–

δ
–δ dμ(S,s) < ∞. (.)

Since δ
–δ

≥ , (.) holds for arbitrary s if and only if μ(S,s) =  or S =∅. �

Theorem . Under the condition (.) the BVP (.), (.) has a finite number of eigen-
values and spectral singularities and each of them is of finite multiplicity.

Proof To be able to prove the theorem we have to show that the function F has a finite
number of zeros with finite multiplicities in T .
From Theorem . and Theorem . we see that S = ∅. So the bounded sets S and

S have no limit points, i.e., the function F has only a finite number of zeros in T . Since
S =∅, these zeros are of finite multiplicity. �
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