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Abstract
The paper is concerned with the finite-time synchronization problem of delayed
complex networks with stochastic perturbations. Based on the finite-time stability
theorem, some sufficient conditions are obtained to ensure finite-time
synchronization for the Markovian jump complex networks with time delays and
partially unknown transition rates. Finally, the effectiveness of the proposed method
is demonstrated by illustrative examples.
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Introduction
Over the past decades, the dynamics analysis of complex networks has witnessed rapidly
growing research interests since the pioneering work of Watts and Strogatz []. On the
one hand, complex networks exist in our daily life with examples including the Inter-
net, the World Wide Web, food webs, electric power grids, cellular and metabolic net-
works, etc. []. And on the other hand, the dynamical behaviors of complex networks have
found numerous applications in various fields such as physics, technology, and the life sci-
ences []. In fact, synchronization is a basic motion in nature that has been studied for a
long time [–]. Recently, synchronization of complex networks has received increasing
research attention [–].
It is important to note that most of the above research results on network synchroniza-

tion are based on the asymptotic process of an infinite time. That is, network synchro-
nization only occurs when the time tends to infinity. Thus in theory, it is impossible for a
network to achieve synchronization in a limited time. However, in actual physical or en-
gineering systems, complex networks usually achieve synchronization state in a limited
time, which is finite-time synchronization. On the one hand, in the existing literature on
finite time synchronization is not treated often. And on the other hand, finite-time syn-
chronization is a very important bridge for a complex network to succeed in the actual
application. In addition, more and more researchers begin to realize the important role of
finite-time synchronization, and there are some related research results [–].
Time delays often occur in complex networks because of the limited speed of signals

traveling through the links [] and the frequently delayed couplings in biological neural
networks, gene regulatory networks, communication networks, and electrical power grids
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[, ]. It has been well known that time delays can cause complex dynamics such as peri-
odic or quasi-periodicmotions, Hopf bifurcation, and higher-dimensional chaos. It should
be noted that [, ] and [] did not consider the time-delay problem. Although there are
some works that have been reported on the finite synchronization on delayed networks
systems, they are mainly concerned with the finite-time boundedness []. It is checked
that the finite-time boundedness is conservative rather than the finite time convergence.
In addition, stochastic perturbation becomes one of the main sources for causing insta-
bility and poor performance of networks [].
In reality, it has been revealed that a neural network sometimes has finite modes, so that

switching from one to another at different times may occur [, ]. And such a switch-
ing (or jumping) can be governed by a Markovian chain [, ]. This is partly because a
Markovian jump is a suitable mathematical pattern to represent a class of complex net-
works subject to random abrupt variations in the structures []. Moreover, Markovian
jump complex networks can be regarded as a special class of stochastic network systems.
So a great number of significant results on synchronization of Markovian switching net-
worked systems have been available in the literature [, , ]. Unfortunately, almost all
of the above mentioned works on the synchronization problem of complex networks are
built upon the assumption that switching probabilities are known precisely. However, in
most cases the transition probabilities ofMarkovian jump systems or networks are not ex-
actly known [–].Moreover, the estimated values of themode transition ratesmay also
lead to instability or at least degraded system performance as the partially unknownmode
transition rates in system matrices do []. Some extended results concerning the uncer-
tain transition probabilities have been reported in [, ]. However, such uncertainties
require the knowledge of a bound or structure of uncertainties, which is conservative to
some extent.
Although the finite-time stability or stabilization problems of the control systems has

received much attention [, , ], finite-time synchronization of the delayed complex
networks has attracted comparatively less attention primarily due to the lack of an ap-
propriate control method, and secondly due to the difficulty residing in the mathematical
derivation. Besides, how to tackle the coexistence of finite-time synchronization and the
other two typical networked-induced constraints, stochastic disturbance and time delays
in Markovian jump complex networks with partially unknown transition rates, still re-
mains open.
In this paper, finite-time synchronization problems are studied for the delayed com-

plex networks with stochastic perturbations and incomplete description of their transi-
tion rates. The main features of this paper are twofold: () Based on the finite-time stabil-
ity theorem, some sufficient conditions are obtained to ensure finite-time synchronization
for the Markovian jump complex networks with time delays and partially unknown tran-
sition rates. () For finite-time synchronization research, the model in this paper is more
practical, because the network model involves time delays and stochastic perturbations.

Notation Throughout this paper, Rn and Rn×m denote, respectively, the n-dimensional
Euclidean space and the set of all n × m real matrices. The superscript ‘T ’ denotes the
transpose and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric
matrices, means that X – Y is positive semi-definite (respectively, positive definite); I is
the identity matrix with compatible dimension. ‖ · ‖ refers to the Euclidean vector norm;
the notation A⊗B stands for the Kronecker product of matrices A and B. If A is a matrix,

http://www.advancesindifferenceequations.com/content/2014/1/149


Cui et al. Advances in Difference Equations 2014, 2014:149 Page 3 of 13
http://www.advancesindifferenceequations.com/content/2014/1/149

λmin(·) denotes the minimum eigenvalue. diag{· · · } stands for a block-diagonal matrix E.
E[x] means the expectation of the random variable x. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic operations.

System description and preliminaries
Consider a Markovian switching time-delay complex network composed of N identical
nodes with diffusively couplings, in which each node is an n-dimensional delayed dynam-
ical system described by

dxi(t) =

[
f
(
xi(t),xi(t – τ )

)
+ c

N∑
j=

aij
(
r(t)

)
�xj(t) + ui(t)

]
dt

+ hi
(
x(t),x(t – τ ), r(t)

)
dωi(t), i = , , . . . ,N ()

where xi(t) = [xi(t),xi(t), . . . ,xin(t)]T ∈ Rn represents the state vector of the ith node,
τ >  is the time delay of node i, f (xi(t),xi(t – τ )) = (f(xi(t),xi(t – τ )), f(xi(t),xi(t –
τ )), . . . , fn(xi(t),xi(t – τ )))T ∈ Rn is a continuous vector-valued function, we denote hi(x(t),
x(t – τ ), r(t)) = hi(x(t),x(t), . . . ,xN (t),x(t – τ ),x(t – τ ), . . . ,xN (t – τ ), r(t)) ∈ Rn×n is the
unknown diffusive couplingmatrix. Here,A(r(t)) = (aij(r(t)))N×N describes the linear cou-
pling configuration of the network at time t at mode r(t), and is defined as aij(r(t)) ≥ ,
for i �= j, aii(r(t)) = –

∑N
j=,j �=i aij(r(t)), i = , , . . . ,N . � = diag{γ,γ, . . . ,γn} is the weighted

inner-coupling matrix between nodes, which is positive definite. ui(t) denotes the control
input on the node i, ωi(t) = (ωi(t),ωi(t), . . . ,ωin(t))T is a bounded vector-form Weiner
process that is independent of the Markovian chain r(·), satisfying

E
[
ωij(t)

]
= , E

[
ω
ij(t)

]
= , E

[
ωij(t)ωij(s)

]
=  (s �= t). ()

Let {r(t), t ≥ } be a right-continuous Markovian process that describes the evolution
of the modes at time t and takes values in the finite space S = {, , . . . , r}, with a generator
� = {πîĵ}, î, ĵ ∈ S given by

P
{
r(t +	t) = ĵ : r(t) = î

}
=

{
πîĵ	t + o(	t), if ĵ �= î,
 + πîĵ	t + o(	t), if ĵ = î,

with 	t > , and lim	t→(o(	t)/	t) = . Here, πîĵ ≥  is the transition rate from î to ĵ if
ĵ �= î, while πîî = –

∑N
ĵ=,ĵ �=î πîĵ.

In this paper, the transition rates of the jumping process are considered to be partly
accessed. For example, the transition rate matrix for network system () with r operation
modes can be expressed as

⎡
⎢⎢⎢⎢⎣

π ? . . . ?
π ? . . . πr
...

...
. . .

...
? πr . . . πrr

⎤
⎥⎥⎥⎥⎦ ,

where ‘?’ represents the unknown transition rate. For notational clarity, ∀î ∈ S, we denote
S = Sî ∪ Sî with Sî = {ĵ | πîĵ is known}, Sî = {ĵ | πîĵ is unknown}.

http://www.advancesindifferenceequations.com/content/2014/1/149


Cui et al. Advances in Difference Equations 2014, 2014:149 Page 4 of 13
http://www.advancesindifferenceequations.com/content/2014/1/149

The isolated node (or the uncoupled node) of network () is given by

ṡ(t) = f
(
s(t), s(t – τ ), t

)
, ()

where s(t) = (s(t), s(t), . . . , sn(t))T ∈ Rn, s(t – τ ) = (s(t – τ ), s(t – τ ), . . . , sn(t – τ ))T ∈ Rn.
The diffusive couplings mean that the coupled networks () are decoupled when the

systems are synchronized. So, the coupling terms satisfy
∑N

j= aij(r(t))�s(t) = , hi(s(t), s(t–
τ ), r(t)) = n×n, where n×n denotes zero matrix of n dimension.
Our control objective is to finite-timely synchronize complex network () to the homo-

geneous trajectory (). To reduce the number of controllers, we can adopt the control
nodes set J = {l, l+, . . . ,N}, where  < l <N . That is, by adding the suitable designed feed-
back controller to complex networks (), there exists a constant t∗ >  (t∗ depends on the
initial state vector value x() = (xT (),xT (), . . . ,xTN ())T ), for any t ≥ t∗, such that

x(t) = x(t) = · · · = xN (t) = s(t). ()

Definition  The Markovian jump complex network () is said to be synchronization in
finite time, if there exists a constant t∗ >  (t∗ depends on the initial state vector value
x() = (xT (),xT (), . . . ,xTN ())T ), for any t ≥ t∗, such that

lim
t→t∗

N∑
i=

E
∥∥xi(t) – s(t)

∥∥ = , ()

where s(t) = (s(t), s(t), . . . , sn(t))T ∈ Rn is the particular solution of the system ().

Remark  In order to fit themodel here, we give the definition of [–, , ] as follows:
The complex network () is said to be finite-time synchronization (finite-time
boundedness) with respect to (c, c,T) with c < c, if for∑

≤i<j≤M ‖xi() – xj()‖ ≤ c, one has

∑
≤i<j≤M

E
{∥∥xi(t) – xj(t)

∥∥} < c, ∀t ∈ [,T], i, j = , , . . . ,M.

Obviously, there are differences between the above two definitions, the definition of [–
, , ] has more conservatism.
We need the following assumption to study the finite-time synchronization of the com-

plex network ().

Assumption  There exist two constant matrices 
 = (θij)n×n and � = (ϕij)n×n, in which
θij ≥ , ϕij ≥ , such that

∣∣fi(t,x(t),x(t – τ )
)
– fi

(
t, y(t), y(t – τ )

)∣∣
≤

n∑
j=

(
θij
∣∣xj(t) – yj(t)

∣∣ + ϕij
∣∣xj(t – τ ) – yj(t – τ )

∣∣), ()

∀x = (x,x, . . . ,xn)T ∈ Rn, y = (y, y, . . . , yn)T ∈ Rn, i = , , . . . ,n.
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By Assumption , define the following parameters:

ā = max
≤μ≤n

n∑
ν=

(
θε
μν + ϕε

μν + θ(–ε)
νμ

)
, b̄ = max

≤μ≤n

n∑
ν=

ϕ(–ε)
νμ ,

where ε ∈ [, ].

Assumption  There exist nonnegative constants ξ î
ij, ηî

ij, i, j = , , . . . ,N , such that

trace
(
h̃Ti

(
e(t), e(t – τ ), r(t)

)
h̃i
(
e(t), e(t – τ ), r(t)

))
≤

N∑
j=

(
ξ î
ije

T
i (t)ei(t) + ηî

ije
T
i (t – τ )ei(t – τ )

)
, ()

where h̃i(e(t), e(t – τ ), r(t)) = hi(x(t),x(t – τ ), r(t)) – hi(s(t), s(t – τ ), r(t)), r(t) = î ∈ S, ei(t) =
xi(t) – s(t), ei(t – τ ) = xi(t – τ ) – s(t – τ ).

Assumption  [] Let  < β <  and λ > , there exists a continuous function g : [,∞) →
[,∞) with g() > , for any  ≤ u≤ t, such that

g(t) – g(u) ≤ –λ

∫ t

u
gβ (s)ds. ()

Assume that the initial condition of the network () is given by

xi(z) = ϕi(z) ∈ C
(
[–τ , ],Rn), i = , , . . . ,N ,

where C([–τ , ],Rn) denotes the set of continuous functions mapping the interval [–τ , ]
into Rn.
Before ending this section, let us recall the following results, which will be used in the

next section.

Lemma  (Finite-time stability theorem []) Suppose that function V (t) : [,∞) →
[,∞) is differentiable (the derivative of V (t) at  is in fact its right derivative) and
dV (t)
dt ≤ –ηV β (t), where η >  and  < β < . Then V (t) will reach zero at finite time

t∗ ≤ V –β ()/(η( – β)) and V (t) =  for all t ≥ t∗.

Lemma  (Jesen inequality []) If a,a, . . . ,an are positive number and  < α < β , then
(
∑n

i= a
β

i )

β ≤ (

∑n
i= aα

i )

α .

Lemma  [] If ξ, ξ, . . . , ξn ≥  and  < p≤ , then (
∑n

i= ξi)p ≤∑n
i= ξ

p
i .

Main results
In this section, we deal with the synchronization problem in finite time for theMarkovian
jump complex networks with time delays by designing pinning controller. By constructing
new stochastic Lyapunov-Krasovskii functionals and using the finite-time stability theo-
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rem, sufficient conditions for the finite-time synchronization control problems are de-
rived.
We present the finite-time synchronization criterion to ensure that a delayed complex

network can be pinned. Subtracting () from (), we obtain the following error dynamical
systems:

ėi(t) = F
(
ei(t), ei(t – τ )

)
+ c

N∑
j=

aîij�ej(t) + ui(t)

+ h̃i
(
e(t), e(t – τ ), î

)
dωi(t), i = , , . . . ,N , î ∈ S, ()

where F(ei(t), ei(t – τ )) = f (xi(t),xi(t – τ )) – f (s(t), s(t – τ )), h̃i(e(t), e(t – τ ), î) = hi(x(t),x(t –
τ ), î) – hi(s(t), s(t – τ ), î), ei(t) = xi(t) – s(t).
For the coupled system (), we use the following linear negative feedback controllers:

ui(t) = –εîi�ei(t) – kîi sign
(
ei(t)

)∣∣ei(t)∣∣β , ()

where εîi >  and kîi > , i ∈ J , otherwise, εîi = kîi = , i /∈ J , î ∈ S. |ei(t)|β = (|ei(t)|β , |ei(t)|β ,
. . . , |ein(t)|β )T and sign(·) is the sign function, sign(ei(t)) = diag{sign(ei(t)), sign(ei(t)),
. . . , sign(ein(t))}, the real number β satisfies  < β < , i = , , . . . ,N .
In view of the pinning algorithm (), we apply a pinning controller to the network ()

such that the network () has finite-time synchronization in the finite time. We obtain the
following error dynamical systems:

ėi(t) = F
(
ei(t), ei(t – τ )

)
+ c

N∑
j=

aîij�ej(t) – εîi�ei(t) – kîi sign
(
ei(t)

)∣∣ei(t)∣∣β
+ h̃i

(
e(t), e(t – τ ), î

)
dωi(t), i = , , . . . ,N , ()

where ε îi >  and kîi > , i ∈ J , otherwise, εîi = kîi = , i /∈ J , î ∈ S. F(ei(t), ei(t – τ )) =
f (xi(t),xi(t – τ )) – f (s(t), s(t – τ )), ei(t) = xi(t) – s(t).

Theorem  Let Assumptions - hold. If

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(–σ+ā+πî)IN+� î

λmin(�)
+ cAî – ϒ î ≤ ,

�î – ( – σ – b̄)IN ≤ ,
qĵ – δî ≤ , if ĵ �= î, ĵ ∈ S,
qĵ – δî ≥ , if ĵ = î, ĵ ∈ S,

()

where ϒ î = diag{, . . . , ︸ ︷︷ ︸
l

, εîl+, . . . , ε
î
N } ∈ RN×N is the diagonal matrix, πî =

∑
ĵ∈Sî

πîĵ(qĵ –

δî)/qî (δî > , qî > ),  < σ < , then, under the set of controllers (), the complex network
() is synchronization at finite time

t∗ ≤ τ +
V (, r())–

+β


γ ( – +β

 )
, ()
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where  < β < , γ =min(k,λσ ), k =mini,î(k
î
i), i ∈ J , î ∈ S. V (, r()) = qr()

∑N
i= eTi ()ei(),

ei() is the initial condition satisfying Assumption .

Proof For î ∈ S, design the stochastic Lyapunov-Krasovskii functional V (t, e(t), î) as fol-
lows:

V
(
t, e(t), î

)
= qî

[ N∑
i=

eTi (t)ei(t) +
N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

]
, ()

where qî > .
Let LV (see [], the generalized Itô formula) denote the second-order differential op-

erator of V with respect to () defined by

LV
(
t, e(t), î

)
= Vt

(
t, e(t), î

)
+Ve

(
t, e(t), î

)[
F
(
ei(t), ei(t – τ )

)

+ c
N∑
j=

aîij�ej(t) + ui(t)

]
+
∑
p∈S

πîĵV
(
t, e(t), ĵ

)

+


trace

[
h̃Ti

(
e(t), e(t – τ ), r(t)

)
Veeh̃i

(
e(t), e(t – τ ), r(t)

)]

= qî
N∑
i=

eTi (t)

[
f
(
xi(t),xi(t – τ )

)
– f

(
sl(t), sl(t – τ )

)

+ c
N∑
j=

aîij�ej(t) – εîi�ei(t) – kîi sign
(
ei(t)

)∣∣ei(t)∣∣β
]

+ qî
N∑
i=

trace
[
h̃Ti

(
e(t), e(t – τ ), r(t)

)
h̃i
(
e(t), e(t – τ ), r(t)

)]

+ qî

( N∑
i=

eTi (t)ei(t) –
N∑
i=

eTi (t – τ )ei(t – τ )

)

+
∑
ĵ∈S

πîĵqĵ

( N∑
i=

eTi (t)ei(t) +
N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

)
.

In view of Assumption , and the fact that μ|xy| ≤ μεx +μ(–ε)y, for ∀μ > , x, y ∈ R,
ε ∈ [, ], it is not difficult to get

θijeTi (t)ej(t) ≤ θε
ij e


i (t) + θ

(–ε
ij )ej (t),

ϕijeTi (t)ej(t – τ ) ≤ ϕε
ij e


i (t) + ϕ

(–ε
ij )ej (t – τ ).

According to
∑

ĵ∈S πîĵ = , for ∀δî >  (î ∈ S), it is easy to get (
∑

ĵ∈Sî
πîĵ +

∑
ĵ∈Sî

πîĵ)δî = .

Denote k = mini,î(k
î
i) (i ∈ J), πî =

∑
ĵ∈Sî

πîĵ(qĵ – δî)/qî, ξ î
i =

∑N
j= ξ

î
ij, ηî

i =
∑N

j= η
î
ij, i =

, , . . . ,N , and � î = diag{ξ î
, ξ î

, . . . , ξ î
N }, �î = diag{ηî

,ηî
, . . . ,ηî

N }, î ∈ S. Let  < σ < , from

http://www.advancesindifferenceequations.com/content/2014/1/149
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Assumption , the following inequality is obtained:

LV
(
t, e(t), î

) ≤ qîe
T (t)

[(
( – σ + ā + πî)IN +� î

λmin(�)
+ cAî – ϒ î

)
⊗ �

]
e(t)

– kqî
N∑
i=

n∑
j=

∣∣eij(t)∣∣+β +
∑
ĵ∈Sî

N∑
i=

πîĵ(qĵ – δî)e
T
i (t)ei(t)

+ qîe
T (t – τ )

[(
�î – ( – σ – b̄)IN

)⊗ In
]
e(t – τ )

+
∑
ĵ∈S

πîĵ(qĵ – δî)
N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

+ qîσ

( N∑
i=

eTi (t)ei(t) –
N∑
i=

eTi (t – τ )ei(t – τ )

)
.

In view of Assumption , let λ > ,  < +β

 < , t ≥ τ , and it follows that

σ

( N∑
i=

qîe
T
i (t)ei(t) –

N∑
i=

qîe
T
i (t – τ )ei(t – τ )

)

≤ –λσ

N∑
i=

∫ t

t–τ

(
qîe

T
i (s)ei(s)

) +β
 ds. ()

By Lemma , we can see that, for qî > ,

(
qî

N∑
i=

n∑
j=

∣∣eij(t)∣∣+β

) 
+β

≥
(
qî

N∑
i=

n∑
j=

∣∣eij(t)∣∣
) 



.

Thus,

qî
N∑
i=

n∑
j=

∣∣eij(t)∣∣+β ≥
(
qî

N∑
i=

n∑
j=

∣∣eij(t)∣∣
) +β



=

(
qî

N∑
i=

eTi (t)ei(t)

) +β


. ()

By Lemma , it is easy to get

N∑
i=

∫ t

t–τ

(
qîe

T
i (s)ei(s)

) +β
 ds≥

(
qî

N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

) +β


. ()

It follows from the inequalities ()-() that

LV
(
t, e(t), î

) ≤ qîe
T (t)

[(
( – σ + ā + πî)IN +� î

λmin(�)
+ cAî – ϒ î

)
⊗ �

]
e(t)

– k

(
qî

N∑
i=

eTi (t)ei(t)

) +β


+
∑
p∈Sî

N∑
i=

πîĵ(qĵ – δî)e
T
i (t)ei(t)

http://www.advancesindifferenceequations.com/content/2014/1/149
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+ qîe
T (t – τ )

[(
�î – ( – σ – b̄)IN

)⊗ In
]
e(t – τ )

+
∑
ĵ∈S

πîĵ(qĵ – δî)
N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

– λσ

(
qî

N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

) +β


. ()

Denote γ =min(k,λσ ), by Lemma , the following inequalities are given:

k

(
qî

N∑
i=

eTi (t)ei(t)

) +β


+ λσ

(
qî

N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

) +β


≥ γ

[(
qî

N∑
i=

eTi (t)ei(t)

) +β


+

(
qî

N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

) +β

]

≥ γ

[
qî

( N∑
i=

eTi (t)ei(t) +
N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

)] +β


. ()

Taking the expectation on both sides of (), from () we get

E
[
LV

(
t, e(t), î

)] ≤ E

{
qîe

T (t)
[(

( – σ + ā + πî)IN +� î

λmin(�)
+ cAî – ϒ î

)
⊗ �

]
e(t)

+
∑
ĵ∈Sî

N∑
i=

πîĵ(qĵ – δî)e
T
i (t)ei(t)

– γ

[
qî

( N∑
i=

eTi (t)ei(t) +
N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

)] +β


+ qîe
T (t – τ )

[(
�î – ( – σ – b̄)IN

)⊗ In
]
e(t – τ )

+
∑
ĵ∈S

πîĵ(qĵ – δî)
N∑
i=

∫ t

t–τ

eTi (s)ei(s)ds

}
.

According to (), one obtains E[LV (t, e(t), î)] ≤ –γE[V
+β
 (t)]. For any t > , there

is E[V +α
 (t)] = (E[V (t)])

+β
 . Therefore, E[LV (t, e(t), î)] ≤ –γ (E[V (t)])

+β
 . By Lemma ,

E[V (t)] converges to zero in a finite time, and the finite time is estimated by t∗ ≤ τ +
V ()–

+β


γ (– +β
 )

.
Hence, the error vector ei(t) (i = , , . . . ,N ) will stochastically converge to zero within t∗.

According to theDefinition , the coupled complex network () is finite-time synchroniza-
tion in the finite time t∗. The proof is hence completed. �

Remark  Themodel in this paper is more practical, because the networkmodel involves
time delays, stochastic perturbations, and partially known/unknown transition rates,
while the models in [, ] did not contain time delays and partially known/unknown
transition rates. The literature [] did not consider the above three items; see Table .
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Table 1 Model comparisons

Models This paper [11] [12] [14]

Time delays
√ × × ×

Stochastic perturbations
√ √ √ ×

Partially unknown transition rates
√ × × ×

Here ‘
√
’ means that the model contains this component, ‘×’ means that the model does not contain this component.

Remark  [–, , ] Investigated the finite-time boundedness synchronization
problems for complex networks with time delays. Different from this literature, this paper
studied the network synchronization to achieve in a finite time. Therefore, the result of
this paper shows more advantages.

When A(r(t)) = A, and we use the following linear negative feedback controllers:

ui(t) = –εi�ei(t) – ki sign
(
ei(t)

)∣∣ei(t)∣∣β , ()

where εi > , ki > , i ∈ J , otherwise, εi = ki = , i /∈ J . |ei(t)|β = (|ei(t)|β , |ei(t)|β , . . . ,
|ein(t)|β )T , i = , , . . . ,N . We can obtain the following corollary.

Corollary  Let Assumptions  and  hold. If

{
(–σ+ā)IN
λmin(�)

+ cA – ϒ ≤ ,
 – σ – b̄≥ ,

()

where ϒ = diag{, . . . , ︸ ︷︷ ︸
l

, εl+, . . . , εN } ∈ RN×N is the diagonal matrix,  < l < N ,  < σ < ,

then, under the set of controllers (), the complex network () (A(r(t)) = A) is synchroniza-

tion at finite time t∗ ≤ τ + V ()–
+β


γ (– +β
 )

, where  < β < , γ = min(k,λσ ), and k = mini(ki),

i ∈ J . V () =
∑N

i= eTi ()ei(), ei() is the initial condition satisfying Assumption  of ei(t) =
xi(t) – s(t), i = , , . . . ,N .

Numerical examples
In this section, the example is given to demonstrate the effectiveness of the proposed ap-
proach.

Example  Consider the following Markovian jumping time-delay complex network:

ẋi(t) = f
(
xi(t),xi(t – τ )

)
+ c

∑
j=

aîij�xj(t) + ui(t)

+ hi
(
x(t),x(t – τ ), r(t)

)
dωi(t), ()

where xi(t) = (xi(t),xi(t))T is the state variable of the ith node, i = , , , î = , , , , τ = ,
c = , � = diag{, .}. We choose control nodes set J = {, }. We have

A =

⎡
⎢⎣ – . .
. – .
. . –.

⎤
⎥⎦ , A =

⎡
⎢⎣–. . .
. –. .
. . –

⎤
⎥⎦ ,
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A =

⎡
⎢⎣ – . .
. –. .
. . –

⎤
⎥⎦ , A =

⎡
⎢⎣– . .
. –. .
. . –

⎤
⎥⎦ ,

q = q = q = q = .

The partially transition rate matrix is given by

⎡
⎢⎢⎢⎣
– ? . ?
. ? ? .
? . – ?
? ? . ?

⎤
⎥⎥⎥⎦ .

The nonlinear function f (·) is given by []

f
(
xi(t),xi(t – τ )

)
= –Cxi(t) +Ag

(
xi(t)

)
+ Bg

(
xi(t – τ )

)
,

in which g(xi) = .(|xi + | – |xi – |, |xi + | – |xi – |)T , and matrices C, A, B are, re-
spectively, as follows:

C =

[
 
 

]
, A =

[
 + π

 
.  + π



]
, B =

[
–.

√
π
 .

. –.
√
π


]
.

Let ε = ., we have ā = ., and b̄ = . in view of () and the parameters of
network (). Now we verify that the condition () in Assumption  is satisfied. For i =
, , , let hîi(t,x(t),xi(t – τ )) = .îdiag{x̄i, x̄i}, where x̄i = xi(t) + xi(t – τ ) – (xi+,(t) +
xi+,(t – τ )), x̄i = xi(t) + xi(t – τ ) – (xi+,(t) + xi+,(t – τ )). It is easy to see that

trace
((
h̃îi
(
e(t), e(t – τ ), t

))T h̃i (e(t), e(t – τ ), t
))

≤ .î
(∥∥ei(t)∥∥ + ∥∥ei+(t)∥∥ + ∥∥ei(t – τ )

∥∥
 +

∥∥ei+(t – τ )
∥∥


)
.

Let eN+(t) = e(t), eN+(t – τ ) = e(t – τ ), that is, e(t) = e(t), e(t – τ ) = e(t – τ ), then it
follows that � î = �î = î diag{., ., .}, î = , , , . By using the Matlab Toolbox,
applying Theorem  to this example and the following feasible solutions can be obtained:
σ = . and

ϒ = diag{, ., .}, ϒ = diag{, ., .},
ϒ = diag{, ., .}, ϒ = diag{, ., .}.

The initial conditions of the numerical simulations are taken as: x() = (–.,–.)T ,
x() = (–., .)T , x() = (.,–.)T . Through a simple computation, we get V () =

. and t∗ = τ + .–
+β


γ (– +β
 )

. Take γ = , β = ., τ = , by computing we get t∗ = ..
To further verify the effectiveness of the proposed control design for Example , Figure 
describes the time response of the state errors variables e(t), e(t), e(t), which implies
that the addressed complex network () has achieved finite-time synchronization.
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Figure 1 Time response of the error variables e12(t), e13(t), e23(t) for Example 1.

Conclusions
This paper has introduced a general delayed complex networksmodel with stochastic per-
turbations and the finite-time synchronization problem of Markovian switching complex
networks with stochastic disturbance. Based on the finite-time stability theorem and in-
equality technique, easily testable conditions have been established to ensure finite-time
synchronization for the addressed complex networks. Moreover, conditions that guaran-
tee the finite-time synchronization of the delayed complex networks without switching
have also been established. With variable time delays or random delays or mixed delays,
finite-time synchronization research of Markovian switching complex network remains
open. And it is hard for us to solve such problems, which is our future research.
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