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Abstract
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1 Introduction
The nonlinear fractional evolution equation is a general form for fractional ordinary dif-
ferential equations, fractional partial differential equations, and fractional functional dif-
ferential equations related to the time variable. We can widely find the applications in
several fields of sciences and technology. Many real phenomena in those fields can be de-
scribed very successfully by models using mathematical tools of fractional calculus, such
as dielectric polarization, electrode-electrolyte polarization, electromagnetic waves,mod-
eling of earthquakes, fluid dynamics, traffic models with fractional derivative, measure-
ments of viscoelastic material properties, modeling of viscoplasticity, control theory, and
economy (see [–]). There has been a great deal of interest in the solutions of fractional
evolution equations in infinite dimensional space. One is referred to the monographs of
N’Guérékata et al. [], Mophou et al. [, ], Liu et al. [, ], EI-Borai [], Zhou et al. [,
], and the references therein. But to the best of the author’s knowledge, most of them
have researched the fractional evolution equation with Caputo derivative and the initial
conditions such as x() = x and so on; there are few papers on the Riemann-Liouville
fractional derivative. We note that on a series of examples from the field of viscoelastic-
ity, Heymans and Podlubny [] have demonstrated that it is possible to attribute physical
meaning to initial conditions expressed in terms of Riemann-Liouville fractional deriva-
tives, and that it is possible to obtain initial values for such initial conditions by appropri-
ate measurements or observations. In this paper, we discuss the existence and uniqueness
of the following fractional evolution equation with Riemann-Liouville fractional deriva-
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tive:
⎧⎨
⎩
Dq

x(t) = Ax(t) + f (t,x(t)), t ∈ (,T],

I–q x() = x,
(.)

where Dq is the Riemann-Liouville fractional derivative of order  < q < , A is the in-
finitesimal generator of a q-resolvent family Sq(t) defined on a Banach space X and
x(t) ∈ C–q([,T],X). The function f : [,T] × C–q([,T],X) → X is given and satisfies
some conditions which are weak compared to the existing results and the conclusion is
generalized.

2 Definitions and preliminary results
In this section, we introduce preliminary facts which are used throughout this paper. Let
us denote by C([,T],X) the space of all X-valued continuous functions defined on [,T],
which turns out to be a Banach space with the norm

‖x‖ = sup
t∈[,T]

∥∥x(t)∥∥.

We define similarly another Banach space C–q([,T],X), which X-valued function x(t)
is continuous on (,T] and t–qx(t) is continuous on [,T] with the norm

‖x‖–q = sup
t∈[,T]

t–q
∥∥x(t)∥∥.

L(X) is the space of all linear and bounded operators on X. The definitions and results
of the fractional calculus reported below are not exhaustive but rather oriented to the
subject of this paper. For the proofs, which are omitted, we refer the reader to [, ] or
other texts on basic fractional calculus. As x is an abstract function with values in X, the
integrals which appear in Definition . and Definition . are taken in Bochner’s sense.

Definition . (see []) The fractional primitive of order q >  of function x(t) ∈
C–q([,T],X) is given by

Iqx(t) =


�(q)

∫ t


(t – s)q–x(s)ds.

From [] we know Iqx(t) exists for all q > , when x ∈ C–q([,T],X) and I–q x() is
bounded; notice also that when x ∈ C([,T],X) then Iqx(t) ∈ C[,T], and, moreover,
I–q x() = .

Definition . (see []) The fractional derivative of order  < q <  of a function x(t) ∈
C–q([,T],X) is given by

Dq
x(t) =


�( – q)

d
dx

∫ t


(t – s)–qx(s)ds.

We have Dq
I

q
x(t) = x(t) for all x(t) ∈ C–q([,T],X).
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Lemma . (see []) Let  < q < . If we assume x(t) ∈ C–q([,T],X), then the fractional
differential equation

Dq
x(t) = 

has x(t) = ctq–, c ∈ R, as solutions.

From this lemma we can obtain the following law of composition.

Lemma . (see []) Assume that x(t) ∈ C–q([,T],X) with a fractional derivative of
order  < q <  that belongs to C–q([,T],X). Then

IqD
q
x(t) = x(t) + ctq–

for some c ∈ R.When the function x is in C([,T],X), then c = .

Recall that the Laplace transform of a function f ∈ L(R+,X) is defined by L(f (t)) =∫ ∞
 e–λt f (t)dt, Re(λ) > ω, if the integral is absolutely convergent for Re(λ) > ω.

Theorem . (see []) Let E be a closed, convex and bounded and nonempty subset of a
Banach space X and N : E → E be a completely continuous operator. Then N has at least
one fixed point in E.

Definition . (see []) Let A be a closed and linear operator with domain D(A) defined
on Banach space X and q > . Let ρ(A) be the resolvent set of A. We call A the generator of
a q-resolvent family, if there existω ≥  and a strongly continuous function Sq : R+ →L(X)
satisfying Sq() = I such that {λq : Re(λ) > ω} ⊂ ρ(A) and

(
λqI –A

)–x =
∫ ∞


e–λtSq(t)xdt, Re(λ) > ω,x ∈ X.

In this case, Sq(t) is called the q-resolvent family generated by A.

Remark . Note that if A is the generator of an q-resolvent family Sq(t) then the Laplace
transform of Sq(t) is L(Sq(t)) = (λqI –A)–.

Then using the fact that

L
(
Dq

x(t)
)
= λq

L
(
x(t)

)
– I–q x(),

we deduce for the Laplace transform of (.)

λq
L
(
x(t)

)
– I–q x() = AL

(
x(t)

)
+L

(
f
(
t,x(t)

))
,

and then

L
(
x(t)

)
=

(
λqI –A

)–x + (
λqI –A

)–
L
(
f
(
t,x(t)

))
.
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Consequently,

x(t) = Sq(t)x +
∫ t


Sq(t – s)f

(
s,x(s)

)
ds,

if A generates the q-resolvent family Sq(t).
Throughout this work f will be a continuous function [,T]×C–q([,T],X)→ X.

Definition . A function x ∈ C–q([,T],X) is said to be a mild solution of (.) if x sat-
isfies

x(t) = Sq(t)x +
∫ t


Sq(t – s)f

(
s,x(s)

)
ds. (.)

Since we have the uniqueness of the Laplace transform, a -resolvent family is the same
as a C-semigroup whereas a -resolvent family corresponds to the concept of sine fam-
ily; see []. We note that q-resolvent families are a particular case of (q,k)-regularized
families introduced in []. These have been studied in a series of several papers in recent
years (see [, ] and so on). According to [] a q-resolvent family Sq(t) corresponds
to a regularized family. For more details on the q-resolvent family, we refer to [] and
the references therein. We also refer to [] for more information as regards the resolvent
or solution operator. As in the situation of C-semigroups we have diverse relations of a
q-resolvent family and its generator. So we can assume the following condition to present
the first result in this paper.

3 Results
We present now our first result.

Theorem . Assume that

(H) There existM >  and δ >  such that ‖Sq(t)‖ ≤Meδt ;
(H) There exist a constant l ∈ (,q) and u(t) ∈ L


l ([,T],R+) such that

∥∥f (t,x) – f (t, y)
∥∥ ≤ u(t)‖x – y‖, t ∈ [,T], (x, y) ∈ X,

where T –qeδT < ( q–l–l )
–l 

Mu∗ and u∗ = (
∫ T
 (u(s))


l ds)l .

Then (.) has a unique mild solution on [,T].

Proof Let

lf = max
≤t≤T

∥∥f (t, )∥∥.

Consider the operator N : C–q([,T],X)→ C–q([,T],X) defined by

Nx(t) = Sq(t)x +
∫ t


Sq(t – s)f

(
s,x(s)

)
ds.
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Let BR = {x(·) ∈ C–q([,T],X) : ‖x‖–q ≤ R}, which is a bounded and closed subset of
C–q([,T],X). For any x(·) ∈ BR, we have

∥∥Nx(t)∥∥–q

= sup
≤t≤T

t–q
∥∥Nx(t)∥∥

= sup
≤t≤T

t–q
∥∥∥∥Sq(t)x +

∫ t


Sq(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
≤ sup

≤t≤T
t–q

(
Meδt‖x‖ +

∫ t



∥∥Sq(t – s)
∥∥∥∥f (s,x(s)) – f (s, ) + f (s, )

∥∥ds
)

≤ T –q
(
MeδT‖x‖ +MeδT

∫ t


u(s)sq–s–q‖x‖ds +MeδT lf T

)

≤ T –q
(
MeδT‖x‖ +MeδT‖x‖–qu∗

(
 – l
q – l

)–l

+MeδT lf T
)

≤ T –q
(
MeδT‖x‖ +MeδTRu∗

(
 – l
q – l

)–l

+MeδT lf T
)
.

Now let

T –q
(
MeδT‖x‖ +MeδTRu∗

(
 – l
q – l

)–l

+MeδT lf T
)
< R,

T –qMeδT‖x‖ + T–qMeδT lf <
(
 – T –qMeδTu∗

(
 – l
q – l

)–l)
R.

The right-hand side will be positive if

T –qeδT <
(
q – l
 – l

)–l 
Mu∗ . (.)

Therefore, N maps the ball of BR of radius R into itself, when T satisfies (.).
Next we show that N is a contraction on BR. For this, let us take x(·), y(·) ∈ BR, then we

get

∥∥Nx(t) –Ny(t)
∥∥
–q

= sup
≤t≤T

t–q
∥∥Nx(t) –Ny(t)

∥∥

= sup
≤t≤T

t–q
∥∥∥∥
∫ t


Sq(t – s)

(
f
(
s,x(s)

)
– f

(
s, y(s)

))
ds

∥∥∥∥
≤ sup

≤t≤T
t–q

∫ t



∥∥Sq(t – s)
∥∥∥∥f (s,x(s)) – f

(
s, y(s)

)∥∥ds

≤ T –qMeδT
∫ t


u(s)

∥∥x(s) – y(s)
∥∥ds

≤ T –qMeδT
∫ t


u(s)sq–s–q

∥∥x(s) – y(s)
∥∥ds

≤ T –qMeδT
∫ t


u(s)sq– ds‖x – y‖–q
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≤ T –qMeδT
(∫ t



(
u(s)

) 
l ds

)l(∫ t



(
sq–

) 
–l ds

)–l

‖x – y‖–q

≤ T –qMeδTu∗
(
 – l
q – l

)–l

‖x – y‖–q.

From the condition (.), we conclude that N is a contraction. Therefore, N has a unique
fixed point in BR. So (.) is the unique mild solution of (.) on [,T]. �

Now we assume that

(H) There exist a constant l ∈ (,q) and a function u(t) ∈ L

l ([,T], (,∞)) such that

∥∥f (t,x(t))∥∥ ≤ u(t)
(
 + ‖x‖ρ

)
,

where  ≤ ρ < ;
(H) The q-resolvent family Sq(t)x is equicontinuous.

Theorem . Assume that (H), (H), and (H) hold. Then (.) has at least one mild
solution on [,T].

Proof Define

Nx(t) = Sq(t)x +
∫ t


Sq(t – s)f

(
s,x(s)

)
ds,

Br =
{
x(t) ∈ C–q

(
[,T],X

)
,‖x‖–q ≤ r

}
,

where

r ≥max
{
(MeδTT –q‖x‖ + T–q–lMeδTu∗,k


–ρ

}
,

k = MeδTu∗
(

 – l
ρq – ρ +  – l

)–l

Tρq–ρ+–l–q.

Observe that Br is a closed, bounded, and convex subset of Banach space X.
Now we prove that N : Br → Br . For any x ∈ Br , we have

∥∥Nx(t)∥∥–q

= sup
≤t≤T

∥∥t–qNx(t)∥∥

= sup
≤t≤T

∥∥∥∥t–qSq(t)x + t–q
∫ t


Sq(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
≤ sup

≤t≤T

(
t–qMeδT‖x‖ + t–qMeδT

∫ t


u(s)

(
 + ‖x‖ρ

)
ds

)

≤ T –qMeδT‖x‖ + T –qMeδT
∫ t


u(s)ds + t–qMeδT

∫ t


u(s)sqρ–ρ

∥∥s–qx∥∥ρ ds

≤ T –qMeδT‖x‖ + T–q–lMeδTu∗ +MeδTu∗
(

 – l
ρq – ρ +  – l

)–l

Tρq–ρ+–l–qrρ

http://www.advancesindifferenceequations.com/content/2014/1/150
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<
r

+
r


= r.

Notice that N(x(t)) is continuous on [,T], therefore N : Br → Br .
In view of the continuity of f , it is easy to show that the operator N is continuous. Now

we show thatN is a completely continuous operator. For each x ∈ Br , let t, t ∈ [,T] with
t > t. Then

∥∥Nx(t) –Nx(t)
∥∥
–q

= sup
≤t≤T

∥∥t–q(Nx(t) –Nx(t)
)∥∥

= sup
≤t≤T

t–q
∥∥∥∥Sq(t)x +

∫ t


Sq(t – s)f

(
s,x(s)

)
ds

– Sq(t)x –
∫ t


Sq(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
≤ sup

≤t≤T
t–q

(∥∥Sq(t)x – Sq(t)x
∥∥

+
∥∥∥∥
∫ t


Sq(t – s)f

(
s,x(s)

)
ds –

∫ t


Sq(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
)

≤ I + I + I,

where

I = sup
≤t≤T

t–q
∥∥Sq(t)x – Sq(t)x

∥∥,

I = sup
≤t≤T

t–q
∥∥∥∥
∫ t



(
Sq(t – s) – Sq(t – s)

)
f
(
s,x(s)

)
ds

∥∥∥∥,

I = sup
≤t≤T

t–q
∥∥∥∥
∫ t

t
Sq(t – s)f

(
s,x(s)

)
ds

∥∥∥∥.

Actually, I and I tend to  as t → t independently of x ∈ Br . Indeed, since Sq(t) is
equicontinuous, we have ‖Sq(t)x – Sq(t)x‖ → , ‖Sq(t)f (s,x(s)) – Sq(t)f (s,x(s))‖ → .
Hence I → .
In view of (H), (H), and  – l + ρ( – q) > , we have

sup
≤t≤T

t–q
∥∥(
Sq(t – s) – Sq(t – s)

)
f
(
s,x(s)

)∥∥

≤ T –qMeδT∥∥f (s,x(s))∥∥
≤ T –qMeδTu(s)

(
 +

∥∥x(s)∥∥ρ)
= T –qMeδTu(s) + T –qMeδTu(s)sρ(q–)

∥∥s–qx(s)∥∥ρ

= T –qMeδTu(s) + T –qMeδTu(s)sρ(q–)‖x‖ρ
–q

≤ T –qMeδTu(s) + rρT –qMeδTu(s)sρ(q–)

http://www.advancesindifferenceequations.com/content/2014/1/150
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and since

(∫ T



(
sρ(q–)

) 
–l ds

)–l

=
(∫ T


s

ρ(q–)
–l ds

)–l

=
(

 – l
 – l + ρ(q – )

)–l

T –l+ρ(q–),

so sρ(q–) ∈ L

–l ([,T],R+). According to the Hölder inequality we can obtain u(s)sρ(q–) ∈

L([,T],R+), then

T –qMeδTu(s) + rρT –qMeδTu(s)sρ(q–) ∈ L
(
[,T],R+).

In view of the Lebesgue’s dominated convergence theorem, we can deduce that I →  as
t → t,

I = sup
≤t≤T

t–q
∥∥∥∥
∫ t

t
Sq(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
≤ T –qMeδT

∫ t

t
u(s)

(
 +

∥∥x(s)∥∥ρ)ds

= T –qMeδT
∫ t

t
u(s)ds + T –qMeδT

∫ t

t
u(s)sρ(q–)

∥∥s–qx(s)∥∥ρ ds

≤ T –qMeδTu∗
(
(t – t)–l +

(
 – l

 – l + ρ(q – )

)–l(
t–l+ρ(q–)
 – t–l+ρ(q–)


))

,

I →  as t → t. Hence N maps bounded sets of X into equicontinuous sets of X.
Next we will prove the operator N maps Br into a relatively compact set in X. Indeed

from the equicontinuity of Sq(t) and N : Br → Br , according to the Arzela-Ascoli theorem
the set {Nx(t) : x ∈ Br} is relatively compact in X, for every t ∈ [,T]. Therefore, we can
obtainN is a completely continuous operator. Thus the conclusion of Theorem . implies
that (.) has at least one mild solution on [,T]. �

Now we assume that

(H) There exist a constant l ∈ (,q) and a function u(t) ∈ L

l ([,T], (,∞)) such that

∥∥f (t,x(t))∥∥ ≤ u(t)
(
 + ‖x‖)

andMeδTu∗( –l
ρq–ρ+–l )

–lTρq–ρ+–l–q < .

Corollary . Assume that (H), (H), and (H) hold. Then (.) has at least one mild
solution on [,T].

The proof of the Corollary . is similar to Theorem ..

4 Example
Example. Let q = 

 ,T = , x = . Consider the following fractional evolution equation:

⎧⎨
⎩
D



 x(t) = Ax(t) + f (t,x(t)), t ∈ (, ],

I


 x() = .

(.)

http://www.advancesindifferenceequations.com/content/2014/1/150
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Assume that x ∈ C 

[, ], A : D(A) ⊂ C 


[, ] → C 


[, ], defined by Ax = x′, x ∈ D(A),

where D(A) = {x ∈ C 

[, ] | x′ ∈ C 


[, ]}.

It is well know thatA is an infinitesimal generator of a semigroup {S 

(t), t ≥ } inC 


[, ]

and given by S 

(t)x(s) = x(t + s), for x ∈ C 


[, ], S 


(t) is a strongly continuous semigroup

on C 

[, ] and ‖S 


(t)‖ ≤ . We choose f (t,x(t)) = 

 t

 x(t).

Obviously, f (t,x(t)) is continuous on [, ] since x ∈ C 

[, ],

∥∥f (t,x(t)) – f
(
t, y(t)

)∥∥ =
∥∥∥∥ 


t


(
x(t) – y(t)

)∥∥∥∥ ≤ 


t


∥∥x(t) – y(t)

∥∥ ≤ 


t

 ‖x – y‖.

We know 
 t


 ∈ L([, ],R+), u∗ = (  )


 ,

( – l)MeδTu∗

q – l
T

–l+ql
–l =




(



) 

< .

So (.) has a unique mild solution on [, ] by Theorem ..

Example . Let q = 
 , T = , x = . Consider the following fractional evolution equa-

tion:

⎧⎨
⎩
D



 x(t) = Ax(t) + f (t,x(t)), t ∈ (, ],

I


 x() = .

(.)

Assume that x ∈ C 

[, ], A : D(A) ⊂ C 


[, ] → C 


[, ], defined by Ax = x′, x ∈ D(A),

where D(A) = {x ∈ C 

[, ] | x′ ∈ C 


[, ]}.

It is well known that A is an infinitesimal generator of a semigroup {S 

(t), t ≥ } in

C 

[, ] and given by S 


(t)x(s) = x(t + s), for x ∈ C 


[, ], S 


(t) is a strongly continuous

semigroup on C 

[, ], ‖S 


(t)‖ ≤ , and we assume that S 


(t)x is equicontinuous.

We choose f (t,x(t)) = 
 t


 x(t)ρ ,  ≤ ρ ≤ . Obviously, f (t,x(t)) is continuous on [, ]

since x ∈ C 

[, ] and

∥∥f (t,x(t))∥∥ =
∥∥∥∥ 


t

 x(t)ρ

∥∥∥∥
=




t


∥∥t 

 x(t)
∥∥ρt–


 ρ

≤ 


t

 –


 ρ‖x‖ρ




≤ 


t

 –


 ρ

(
 + ‖x‖ρ




)
.

We know 
 t


 –


 ρ ∈ L([, ],R+), u∗ = ( )


 ,

( – l)MeδTu∗

q – l
T

–l+ql
–l =




(



) 

< .

So (.) has at least one mild solution on [, ] by Theorem . and Corollary ..

http://www.advancesindifferenceequations.com/content/2014/1/150
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Example . To illustrate our results, we give another more concrete example of appli-
cation. We consider the following fractional anomalous diffusion equation:

⎧⎪⎪⎨
⎪⎪⎩

∂
q
t z(t,x) = ∂

x z(t,x) + f (t, z(t,x)), t ∈ (,T],x ∈ [,π ],

I–q z(,x) = x,

z(t, ) = z(t,π ) = .

(.)

To study this system in the abstract form (.), we choose the spaceX = L[,π ] and the op-
erator A defined by Az = z′′, with domainD(A) = {z ∈ L[,π ] : z, z′ absolutely continuous,
z′′ ∈ X, z() = z(π ) = }.
ThenA generates a uniformly bounded analytic semigroup which satisfies the condition

(H), (H). Furthermore, A has a discrete spectrum, the eigenvalues are –n, n ∈ N , with
the corresponding normalized eigenvectors γn(x) = (/π )/ sin(nx). Then the following
properties hold.

(i) If z ∈D(A), then

Az =
∞∑
n=

n〈z,γn〉γn.

(ii) For each z ∈ X ,

A– 
 z =

∞∑
n=


n

〈z,γn〉γn.

In particular, ‖A– 
 ‖ = .

(iii) The operator A 
 is given by

A

 z =

∞∑
n=

n〈z,γn〉γn

on the space D(A 
 ) = {z(·) ∈ X,A 

 z ∈ X}.

If the nonlinear term f (t, z) satisfies the condition (H), then (.) has a unique mild
solution on [,T] by Theorem .. If the nonlinear term f (t, z) satisfies the conditions
(H) and (H), then (.) has at least one mild solution on [,T] by Theorem . and
Corollary ..
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