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Abstract
In this paper, based on the theory of calculus on time scales, by using a multiple fixed
point theorem in cones, some criteria are established for the existence and
multiplicity of positive periodic solutions in shifts δ± for an impulsive functional
dynamic equation on time scales of the following form:
x�(t) = –a(t)x(t) + b(t)f (t, x(g(t))), t �= tj , t ∈ T, x(t+j ) = x(t–j ) + Ij(x(tj)), where T ⊂R be a
periodic time scale in shifts δ± with period P ∈ [t0,∞)T and t0 ∈ T is nonnegative and
fixed. Finally, some numerical examples are presented to illustrate the feasibility and
effectiveness of the results.
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1 Introduction
The time scales approach unifies differential, difference, h-difference, and q-differences
equations andmore under dynamic equations on time scales. The theory of dynamic equa-
tions on time scales was introduced by Hilger in his PhD thesis in  []. The existence
problem of periodic solutions is an important topic in qualitative analysis of functional
dynamic equations. Up to now, there are only a few results concerning periodic solutions
of dynamic equations on time scales; see, for example, [, ]. In these papers, authors con-
sidered the existence of periodic solutions for dynamic equations on time scales satisfying
the condition ‘there exists a ω >  such that t±ω ∈ T, ∀t ∈ T’. Under this condition all pe-
riodic time scales are unbounded above and below. However, there are many time scales
such as qZ = {qn : n ∈ Z} ∪ {} and √

N = {√n : n ∈ N} which do not satisfy the condition.
Adıvar and Raffoul introduced a new periodicity concept on time scales which does not
oblige the time scale to be closed under the operation t±ω for a fixed ω > . They defined
a new periodicity concept with the aid of shift operators δ± which are first defined in []
and then generalized in [].
Recently, based on a fixed point theorem in cones, Çetin et al. studied the existence of

positive periodic solutions in shifts δ± for some nonlinear first-order functional dynamic
equation on time scales; see [, ].
However, to the best of our knowledge, there are few papers published on the existence

of positive periodic solutions in shifts δ± for a functional dynamic equation with impulses.
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Aswe know, impulsive functional dynamic equation on time scales plays an important role
in applications; see, for example, [, ].
Motivated by the above, in the present paper, we consider the following system:

{
x�(t) = –a(t)x(t) + b(t)f (t,x(g(t))), t �= tj, t ∈ T,
x(t+j ) = x(t–j ) + Ij(x(tj)),

(.)

where T ⊂ R be a periodic time scale in shifts δ± with period P ∈ [t,∞)T and t ∈ T is
nonnegative and fixed; a,b ∈ C(T, (,∞)) are �-periodic in shifts δ± with period ω and
–a ∈R+; f ∈ C(T× (,∞), (,∞)) is periodic in shifts δ± with periodω with respect to the
first variable; g ∈ C(T,T) is periodic in shifts δ± with periodω; x(t+j ) and x(t–j ) represent the
right and the left limit of x(tj) in the sense of time scales, in addition, if tj is right-scattered,
then x(t+j ) = x(tj), whereas, if tj is left-scattered, then x(t–j ) = x(tj); Ij ∈ C((,∞), [,∞)),
j ∈ Z. Assume that there exists a positive constant q such that tj+q = δω

+ (tj), Ij+q = Ij, j ∈ Z.
For each interval I of R, we denote IT = I∩T, without loss of generality, set [t, δω

+ (t))T ∩
{tj, j ∈ Z} = {t, t, . . . , tq}.
The main purpose of this paper is to establish some sufficient conditions for the exis-

tence of at least three positive periodic solutions in shifts δ± of system (.) using amultiple
fixed point theorem (Avery-Peterson fixed point theorem) in cones.
The organization of this paper is as follows. In Section , we introduce some notations

and definitions and state some preliminary results needed in later sections; then we give
the Green’s function of system (.), which plays an important role in this paper. In Sec-
tion , we establish ourmain results for positive periodic solutions in shifts δ± by applying
Avery-Peterson fixed point theorem. In Section , somenumerical examples are presented
to illustrate that our results are feasible and more general.

2 Preliminaries
Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ ,ρ : T→ T and the graininess μ : T →R

+ are defined, respectively, by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} and μ(t) = σ (t) – t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t, right-
dense if t < supT and σ (t) = t, and right-scattered if σ (t) > t. If T has a left-scattered max-
imumm, then T

k = T\{m}; otherwise Tk = T. If T has a right-scattered minimumm, then
Tk = T\{m}; otherwise Tk = T.
A function f : T→R is right-dense continuous provided it is continuous at right-dense

point in T and its left-side limits exist at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T →R will be denoted by C(T) = C(T,R).
For the basic theories of calculus on time scales, see [].
A function p : T→R is called regressive provided  +μ(t)p(t) �=  for all t ∈ T

k . The set
of all regressive and rd-continuous functions p : T → R will be denoted by R =R(T,R).
Define the setR+ =R+(T,R) = {p ∈R :  +μ(t)p(t) > ,∀t ∈ T}.
If r is a regressive function, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξμ(τ )

(
r(τ )

)
�τ

}
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for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(+hz)

h if h �= ,
z if h = .

Let p,q : T→R be two regressive functions, define

p⊕ q = p + q +μpq, �p = –
p

 +μp
, p� q = p⊕ (�q).

Lemma . [] Assume that p,q : T →R be two regressive functions, then
(i) e(t, s)≡  and ep(t, t)≡ ;
(ii) ep(σ (t), s) = ( +μ(t)p(t))ep(t, s);
(iii) ep(t, s) = 

ep(s,t) = e�p(s, t);
(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e�p(t, s))� = (�p)(t)e�p(t, s).

The following definitions and lemmas about the shift operators and the new periodicity
concept for time scales can be found in [, ].
Let T∗ be a nonempty subset of the time scale T and t ∈ T

∗ be a fixed number, define
operators δ± : [t,∞)×T

∗ → T
∗. The operators δ+ and δ– associated with t ∈ T

∗ (called
the initial point) are said to be forward and backward shift operators on the set T∗, re-
spectively. The variable s ∈ [t,∞)T in δ±(s, t) is called the shift size. The values δ+(s, t) and
δ–(s, t) inT∗ indicate s units translation of the term t ∈ T

∗ to the right and left, respectively.
The sets

D± :=
{
(s, t) ∈ [t,∞)

T
×T

∗ : δ∓(s, t) ∈ T
∗}

are the domains of the shift operator δ±, respectively. Hereafter, T∗ is the largest subset of
the time scale T such that the shift operators δ± : [t,∞)×T

∗ → T
∗ exist.

Definition . (Periodicity in shifts δ± []) Let T be a time scale with the shift operators
δ± associated with the initial point t ∈ T

∗. The time scale T is said to be periodic in shifts
δ± if there exists p ∈ (t,∞)T∗ such that (p, t) ∈D± for all t ∈ T

∗. Furthermore, if

P := inf
{
p ∈ (t,∞)T∗ : (p, t) ∈ δ±,∀t ∈ T

∗} �= t,

then P is called the period of the time scale T.

Definition . (Periodic function in shifts δ± []) Let T be a time scale that is periodic in
shifts δ± with the period P.We say that a real-valued function f defined onT∗ is periodic in
shifts δ± if there exists ω ∈ [P,∞)T∗ such that (ω, t) ∈ D± and f (δω±(t)) = f (t) for all t ∈ T

∗,
where δω± := δ±(ω, t). The smallest number ω ∈ [P,∞)T∗ is called the period of f .

Definition . (�-periodic function in shifts δ± []) Let T be a time scale that is peri-
odic in shifts δ± with the period P. We say that a real-valued function f defined on T

∗ is
�-periodic in shifts δ± if there exists ω ∈ [P,∞)T∗ such that (ω, t) ∈ D± for all t ∈ T

∗, the
shifts δω± are �-differentiable with rd-continuous derivatives and f (δω±(t))δ�ω± (t) = f (t) for
all t ∈ T

∗, where δω± := δ±(ω, t). The smallest number ω ∈ [P,∞)T∗ is called the period of f .
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Lemma . [] δω
+ (σ (t)) = σ (δω

+ (t)) and δω
– (σ (t)) = σ (δω

– (t)) for all t ∈ T
∗.

Lemma . [] Let T be a time scale that is periodic in shifts δ± with the period P. Suppose
that the shifts δω± are�-differentiable on t ∈ T

∗ whereω ∈ [P,∞)T∗ and p ∈R is�-periodic
in shifts δ± with the period ω. Then

(i) ep(δω±(t), δω±(t)) = ep(t, t) for t, t ∈ T
∗;

(ii) ep(δω±(t),σ (δω±(s))) = ep(t,σ (s)) =
ep(t,s)

+μ(t)p(t) for t, s ∈ T
∗.

Lemma. [] LetT be a time scale that is periodic in shifts δ± with the period P, and let f
be a �-periodic function in shifts δ± with the period ω ∈ [P,∞)T∗ . Suppose that f ∈ Crd(T),
then

∫ t

t
f (s)�s =

∫ δω±(t)

δω±(t)
f (s)�s.

Lemma . [] Suppose that r is regressive and f : T → R is rd-continuous. Let t ∈ T,
y ∈R, then the unique solution of the initial value problem

y� = r(t)y + f (t), y(t) = y

is given by

y(t) = er(t, t)y +
∫ t

t
er

(
t,σ (τ )

)
f (τ )�τ .

Define

PC(T) =
{
x : T →R | x|(tj ,tj+) ∈ C(tj, tj+),∃x

(
t–j

)
= x(tj),x

(
t+j

)
, j ∈ Z

}
.

Set

X =
{
x : x ∈ PC(T),x

(
δω
+ (t)

)
= x(t)

}
with the norm ‖x‖ = supt∈[t,δω

+ (t)]T |x(t)|, then X is a Banach space.

Lemma . x(t) ∈ X is an ω-periodic solution in shifts δ± of system (.) if and only if x(t)
is an ω-periodic solution in shifts δ± of

x(t) =
∫ δω

+ (t)

t
G(t, s)b(s)f

(
s,x

(
g(s)

))
�s +

∑
j:tj∈[t,δω

+ (t))T

G(t, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)
, (.)

where

G(t, s) =
e–a(t,σ (s))

e–a(t, δω
+ (t)) – 

.

Proof If x(t) is anω-periodic solution in shifts δ± of system (.). For any t ∈ T, there exists
j ∈ Z such that tj is the first impulsive point after t. By using Lemma ., for s ∈ [t, tj]T, we
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have

x(s) = e–a(s, t)x(t) +
∫ s

t
e–a

(
s,σ (θ )

)
b(θ )f

(
θ ,x

(
g(θ )

))
�θ ,

then

x(tj) = e–a(tj, t)x(t) +
∫ tj

t
e–a

(
tj,σ (θ )

)
b(θ )f

(
θ ,x

(
g(θ )

))
�θ . (.)

Again using Lemma . and (.), for s ∈ (tj, tj+]T, then

x(s) = e–a(s, tj)x
(
t+j

)
+

∫ s

tj
e–a

(
s,σ (θ )

)
b(θ )f

(
θ ,x

(
g(θ )

))
�θ

= e–a(s, tj)x(tj) +
∫ s

tj
e–a

(
s,σ (θ )

)
b(θ )f

(
θ ,x

(
g(θ )

))
�θ + e–a(s, tj)Ij

(
x(tj)

)

= e–a(s, t)x(t) +
∫ s

t
e–a

(
s,σ (θ )

)
b(θ )f

(
θ ,x

(
g(θ )

))
�θ + e–a(s, tj)Ij

(
x(tj)

)
.

Repeating the above process for s ∈ [t, δω
+ (t)]T, we have

x(s) = e–a(s, t)x(t) +
∫ s

t
e–a

(
s,σ (θ )

)
b(θ )f

(
θ ,x

(
g(θ )

))
�θ +

∑
j:tj∈[t,s)T

e–a(s, tj)Ij
(
x(tj)

)
.

Let s = δω
+ (t) in the above equality, we have

x
(
δω
+ (t)

)
= e–a

(
δω
+ (t), t

)
x(t) +

∫ δω
+ (t)

t
e–a

(
δω
+ (t),σ (θ )

)
b(θ )f

(
θ ,x

(
g(θ )

))
�θ

+
∑

j:tj∈[t,δω
+ (t))T

e–a
(
δω
+ (t), tj

)
Ij
(
x(tj)

)
.

Noticing that x(δω
+ (t)) = x(t), e–a(t, δω

+ (t)) = e–a(t, δω
+ (t)), by Lemma ., then x satisfies

(.).
Let x be an ω-periodic solution in shifts δ± of (.). If t �= ti, i ∈ Z, then by (.) and

Lemma ., we have

x�(t) = –a(t)x(t) +G
(
σ (t), δω

+ (t)
)
b
(
δω
+ (t)

)
δ�ω
+ (t)f

(
δω
+ (t),x

(
g
(
δω
+ (t)

)))
–G

(
σ (t), t

)
b(t)f

(
t,x

(
g(t)

))
= –a(t)x(t) + b(t)f

(
t,x

(
g(t)

))
.

If t = ti, i ∈ Z, then by (.), we have

x
(
t+i

)
– x

(
t–i

)
=

∑
j:tj∈[t+i ,δω

+ (t+i ))T

G(ti, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)

–
∑

j:tj∈[t–i ,δω
+ (t–i ))T

G(ti, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)

= G
(
ti, δω

+ (ti)
)
e–a

(
σ
(
δω
+ (ti)

)
, δω

+ (ti)
)
Ii
(
x
(
δω
+ (ti)

))
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–G(ti, ti)e–a
(
σ (ti), ti

)
Ii
(
x(ti)

)
= Ii

(
x(ti)

)
.

So, x is an ω-periodic solution in shifts δ± of system (.). This completes the proof. �

It is easy to verify that the Green’s function G(t, s) satisfies the property

 <


ξ – 
≤G(t, s) ≤ ξ

ξ – 
, ∀s ∈ [

t, δω
+ (t)

]
T
, (.)

where ξ = e–a(t, δω
+ (t)). By Lemma ., we have

G
(
δω
+ (t), δ

ω
+ (s)

)
=G(t, s), ∀t ∈ T

∗, s ∈ [
t, δω

+ (t)
]
T
. (.)

In order to obtain the existence of periodic solutions in shifts δ± of system (.), we need
the following concepts and Avery-Peterson fixed point theorem.
Let X be a Banach space and K be a cone in X, define Kr = {x ∈ K | ‖x‖ ≤ r}. A map

α is said to be a nonnegative continuous concave functional on K if α : K → [, +∞) is
continuous and

α
(
λx + ( – λ)y

) ≥ λα(x) + ( – λ)α(y) for all x, y ∈ K ,  < λ < .

Let γ and θ be nonnegative continuous convex functionals on K , α be a nonnegative
continuous concave functional on K , andψ be a nonnegative continuous functional on K .
Then for positive real numbers a, b, c, and d, we define the following convex sets:

K (γ ,d) =
{
x ∈ K | γ (x) < d

}
,

K (γ ,α,b,d) =
{
x ∈ K | b ≤ α(x),γ (x)≤ d

}
,

K (γ , θ ,α,b, c,d) =
{
x ∈ K | b ≤ α(x), θ (x)≤ c,γ (x)≤ d

}
,

and a closed set R(γ ,ψ ,a,d) = {x ∈ K | a ≤ ψ(x),γ (x)≤ d}.

Lemma . (Avery-Peterson fixed point theorem []) Let γ and θ be nonnegative con-
tinuous convex functionals on K , α be a nonnegative continuous concave functional on K ,
andψ be a nonnegative continuous functional on K satisfyingψ(ρx)≤ ρψ(x) for ≤ ρ ≤ ,
such that for some positive numbers E and d,

α(x)≤ ψ(x) and ‖x‖ ≤ Eγ (x) (.)

for all x ∈ K (γ ,d). Suppose H : K (γ ,d) → K (γ ,d) is completely continuous and there exist
positive numbers a, b, and c with a < b such that:
() {x ∈ K (γ , θ ,α,b, c,d) | α(x) > b} �= ∅ and α(Hx) > b for x ∈ K (γ , θ ,α,b, c,d),
() α(Hx) > b, for x ∈ K (γ ,α,b,d) with θ (Hx) > c,
() ∈R(γ ,ψ ,a,d) and ψ(Hx) < a for x ∈ R(γ ,ψ ,a,d) with ψ(x) = a.
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Then H has at least three fixed points x,x,x ∈ K (γ ,d) such that

γ (xi) ≤ d for i = , , , b < α(x),

a <ψ(x), with α(x) < b and ψ(x) < a.

Define K , a cone in X, by

K =
{
x ∈ X : x(t)≥ 

ξ
‖x‖,∀t ∈ [

t, δω
+ (t)

]
T

}
(.)

and an operator H : K → X by

(Hx)(t) =
∫ δω

+ (t)

t
G(t, s)b(s)f

(
s,x

(
g(s)

))
�s

+
∑

j:tj∈[t,δω
+ (t))T

G(t, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)
. (.)

For convenience, we denote

Au := sup
t∈[t,δω

+ (t))T
a(t), Bu := sup

t∈[t,δω
+ (t))T

b(t), B :=
∫ δω

+ (t)

t
b(s)�s.

In the following, we shall give some lemmas concerning K and H defined by (.) and
(.), respectively.

Lemma . H : K → K is well defined.

Proof For any x ∈ K , it is clear that Hx ∈ PC(T). In view of (.), by Lemma . and (.),
for t ∈ T, we have

(Hx)
(
δω
+ (t)

)
=

∫ δω
+ (δω

+ (t))

δω
+ (t)

G
(
δω
+ (t), s

)
b(s)f

(
s,x

(
g(s)

))
�s

+
∑

j:tj∈[δω
+ (t),δω

+ (δω
+ (t)))T

G
(
δω
+ (t), tj

)
e–a

(
σ (tj), tj

)
Ij
(
x(tj)

)

=
∫ δω

+ (t)

t
G

(
δω
+ (t), δ

ω
+ (s)

)
b
(
δω
+ (s)

)
δ�ω
+ (s)f

(
δω
+ (s),x

(
g
(
δω
+ (s)

)))
�s

+
∑

k:tk∈[t,δω
+ (t))T

G
(
δω
+ (t), δ

ω
+ (tk)

)
e–a

(
σ

(
δω
+ (tk)

)
, δω

+ (tk)
)
Ik

(
x
(
δω
+ (tk)

))

=
∫ δω

+ (t)

t
G(t, s)b(s)f

(
s,x

(
g(s)

))
�s

+
∑

k:tk∈[t,δω
+ (t))T

G(t, tk)e–a
(
σ (tk), tk

)
Ik

(
x(tk)

)

= (Hx)(t),

that is, Hx ∈ X.
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Furthermore, for any x ∈ K , ∀t ∈ [t, δω
+ (t)]T, we have

(Hx)(t) ≥ 
ξ – 

∫ δω
+ (t)

t
b(s)f

(
s,x

(
g(s)

))
�s +


ξ – 

q∑
j=

Ij
(
x(tj)

)

=

ξ

[
ξ

ξ – 

∫ δω
+ (t)

t
b(s)f

(
s,x

(
g(s)

))
�s +

ξ

ξ – 

q∑
j=

Ij
(
x(tj)

)]

≥ 
ξ
‖Hx‖,

that is, Hx ∈ K . This completes the proof. �

Lemma . H : K → K is completely continuous.

Proof Firstly, we show that H is continuous. Because of the continuity of f and Ij, j ∈ Z,
for any ν >  and ε > , there exists δ >  such that

{
φ,ψ ∈ C

(
T, (,∞)

)
,‖φ‖ ≤ ν,‖ψ‖ ≤ ν,‖φ –ψ‖ < δ

}
imply

∣∣f (s,φ(
g(s)

))
– f

(
s,ψ

(
g(s)

))∣∣ < (ξ – )ε
ξB

and

∣∣Ij(φ) – Ij(ψ)
∣∣ < (ξ – )ε

ξq
, j ∈ Z.

Therefore, if x, y,∈ K with ‖x‖ ≤ ν , ‖y‖ ≤ ν , ‖x – y‖ < δ, then

∣∣(Hx)(t) – (Hy)(t)
∣∣

≤
∣∣∣∣
∫ δω

+ (t)

t
G(t, s)b(s)f

(
s,x

(
g(s)

))
�s +

∑
j:tj∈[t,δω

+ (t))T

G(t, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)

–
∫ δω

+ (t)

t
G(t, s)b(s)f

(
s, y

(
g(s)

))
�s –

∑
j:tj∈[t,δω

+ (t))T

G(t, tj)e–a
(
σ (tj), tj

)
Ij
(
y(tj)

)∣∣∣∣
≤ ξ

ξ – 

∫ δω
+ (t)

t
b(s)

∣∣f (s,x(g(s))) – f
(
s, y

(
g(s)

))∣∣�s

+
ξ

ξ – 

q∑
j=

∣∣Ij(x(tj)) – Ij
(
y(tj)

)∣∣

<
ξ

ξ – 

(
B
(ξ – )ε
ξB

+ q
(ξ – )ε
ξq

)

= ε,

which yields ‖Hx –Hy‖ = supt∈[t,δω
+ (t)]T |(Hx)(t) – (Hy)(t)| ≤ ε, that is, H is continuous.
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Next, we show that H maps any bounded sets in K into relatively compact sets. We first
prove that f maps bounded sets into bounded sets. Indeed, let ε = , for any ν > , there
exists δ >  such that {x, y ∈ K ,‖x‖ ≤ ν,‖y‖ ≤ ν,‖x – y‖ < δ, s ∈ [t, δω

+ (t)]T} imply

∣∣f (s,x(g(s))) – f
(
s, y

(
g(s)

))∣∣ < 

and

∣∣Ij(x(tj)) – Ij
(
y(tj)

)∣∣ < , j ∈ Z.

Choose a positive integer N such that ν
N < δ. Let x ∈ K and define xk(·) = x(·)k

N , k =
, , , . . . ,N . If ‖x‖ < ν , then

∥∥xk – xk–
∥∥ = sup

t∈[t,δω
+ (t)]T

∣∣∣∣x(·)kN
–
x(·)(k – )

N

∣∣∣∣ ≤ ‖x‖ 
N

≤ ν

N
< δ.

Thus

∣∣f (s,xk(g(s))) – f
(
s,xk–

(
g(s)

))∣∣ < 

for all s ∈ [t, δω
+ (t)]T, and

∣∣Ij(xk(tj)) – Ij
(
xk(tj)

)∣∣ < , j ∈ Z,

and these yield

f
(
s,x

(
g(s)

))
= f

(
s,xN

(
g(s)

))
≤

N∑
k=

∣∣f (s,xk(g(s))) – f
(
s,xk–

(
g(s)

))∣∣ + f (s, )

< N + sup
s∈[t,δω

+ (t)]T
f (s, ) =:W (.)

and

Ij
(
x(tj)

)
= Ij

(
xN (tj)

) ≤
N∑
k=

∣∣Ij(xN (tj)) – Ij
(
xN–(tj)

)∣∣ + Ij()

< N + max
≤j≤q

Ij() =:U , j ∈ Z. (.)

It follows from (.), (.), and (.) that for t ∈ [t, δω
+ (t)]T,

‖Hx‖ = sup
t∈[t,δω

+ (t)]T
(Hx)(t)

≤ ξ

ξ – 

(∫ δω
+ (t)

t
b(s)f

(
s,x

(
g(s)

))
�s +

q∑
j=

Ij
(
x(tj)

))

<
ξ

ξ – 
(BW + qU) :=D.
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Furthermore, for t ∈ T, we have

(Hx)�(t) = –a(t)(Hx)(t) + b(t)f
(
t,x

(
g(t)

))
and

∥∥(Hx)�(t)∥∥ ≤ sup
t∈[t,δω

+ (t)]T

∣∣–a(t)(Hx)(t) + b(t)f
(
t,x

(
g(t)

))∣∣ ≤ AuD + BuW .

To sum up, {Hx : x ∈ K ,‖x‖ ≤ ν} is a family of uniformly bounded and equicontinuous
functionals on [t, δω

+ (t)]T. By a theorem of Arzela-Ascoli, the functional H is completely
continuous. This completes the proof. �

3 Main result
Now, we fix η, l ∈ [t, δω

+ (t)]T, η ≤ l, and let the nonnegative continuous concave func-
tional α, the nonnegative continuous convex functionals θ , γ , and the nonnegative con-
tinuous functional ψ be defined on the cone K by

α(x) = inf
t∈[η,l]T

x(t), ψ(x) = θ (x) = sup
t∈[t,δω

+ (t)]T
x(t),

γ (x) = sup
t∈[t,δω

+ (t)]T
(�x)(t),

(.)

respectively, where (�x)(t) =
∫ δω

+ (t)
t

h(t, s)x(s)�s, h(t, s) ∈ C(T, (,∞)).
The functionals defined above satisfy the following relations:

α(x)≤ ψ(x) = θ (x), ∀x ∈ K . (.)

Lemma . For x ∈ K , there exists a constant E >  such that

sup
t∈[t,δω

+ (t)]T
x(t)≤ E sup

t∈[t,δω
+ (t)]T

(�x)(t).

Proof For x ∈ K , we have

sup
t∈[t,δω

+ (t)]T
(�x)(t) = sup

t∈[t,δω
+ (t)]T

∫ δω
+ (t)

t
h(t, s)x(s)�s

≥ 
ξ
‖x‖ sup

t∈[t,δω
+ (t)]T

∫ δω
+ (t)

t
h(t, s)�s

=
L
ξ

sup
t∈[t,δω

+ (t)]T
x(t),

where L := supt∈[t,δω
+ (t)]T

∫ δω
+ (t)

t
h(t, s)�s. Setting E := ξ

L . This completes the proof. �

Moreover, for each x ∈ K ,

‖x‖ = sup
t∈[t,δω

+ (t)]T
x(t) ≤ ξ

L
sup

t∈[t,δω
+ (t)]T

(�x)(t) = Eγ (x), (.)

and ψ(ρx) = ρψ(x), ∀ρ ∈ [, ], for all x ∈ K . It follows from (.) and (.) that condition
(.) in Lemma . is satisfied.
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For convenience in the following discussion, we introduce the following notations:

IM = max
≤u≤Ed

q∑
j=

Ij(u), IM = max
≤u≤a

q∑
j=

Ij(u), Im = min
b≤u≤bξ

q∑
j=

Ij(u).

To present our main result, we assume that there exist constants a,b,d >  with a < b <
bξ < d

L such that:

(S) f (t,u) < (ξ–)d
ξBL – IM

B , for  ≤ u≤ Ed, t ∈ [t, δω
+ (t)]T;

(S) f (t,u) > (ξ–)b
B – Im

B , for b≤ u≤ bξ , t ∈ [η, l]T;

(S) f (t,u) < (ξ–)a
ξB – IM

B , for  ≤ u≤ a, t ∈ [t, δω
+ (t)]T.

Theorem . Under assumptions (S)-(S), system (.) has at least three positive ω-
periodic solutions x, x, and x in shifts δ± satisfying

sup
t∈[t,δω

+ (t)]T
(�xi)(t) ≤ d, i = , , , b < inf

t∈[t,δω
+ (t)]T

x(t),

a < sup
t∈[t,δω

+ (t)]T
x(t), with inf

t∈[η,l]T
x(t) < b and sup

t∈[t,δω
+ (t)]T

x(t) < a.

Proof For x ∈ K (γ ,d), then x ∈ K and γ (x) = supt∈[t,δω
+ (t)]T (�x)(t) ≤ d. From Lemma .,

we have supt∈[t,δω
+ (t)]T x(t) ≤ Ed, that is,  ≤ x(t) ≤ Ed, for t ∈ [t, δω

+ (t)]T. Then, by
Lemma . and assumption (S), for x ∈ K (γ ,d), we have Hx ∈ K , and

(Hx)(t) =
∫ δω

+ (t)

t
G(t, s)b(s)f

(
s,x

(
g(s)

))
�s

+
∑

j:tj∈[t,δω
+ (t))T

G(t, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)

≤ ξ

ξ – 

∫ δω
+ (t)

t
b(s)f

(
s,x

(
g(s)

))
�s +

ξ

ξ – 

q∑
j=

Ij
(
x(tj)

)

≤ Bξ

ξ – 

(
(ξ – )d

ξBL
–
IM
B

)
+

ξ

ξ – 
IM

=
d
L
,

then

γ (Hx)(t) = sup
t∈[t,δω

+ (t)]T
�(Hx)(t)

= sup
t∈[t,δω

+ (t)]T

∫ δω
+ (t)

t
h(t, s)(Hx)(s)�s

≤ sup
t∈[t,δω

+ (t)]T

{∫ T
h(t, s)�s

}
· d
L

= d.

Therefore, H : K (γ ,d)→ K (γ ,d).

http://www.advancesindifferenceequations.com/content/2014/1/152
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To check condition () in Lemma ., we take x̃ = bξ . It is easy to verify that x̃ ∈
K (γ , θ ,α,b,bξ ,d), and α(x̃) = bξ > b, and so {x ∈ K (γ , θ ,α,b,bξ ,d) | α(x) > b} �= ∅.
For x ∈ K (γ , θ ,α,b,bξ ,d), we have

inf
t∈[η,l]T

x(t)≥ b, sup
t∈[t,δω

+ (t)]T
x(t)≤ bξ , sup

t∈[t,δω
+ (t)]T

(�x)(t)≤ d,

that is, b ≤ x(t)≤ bξ , ≤ (�x)(t)≤ d, for t ∈ [η, l]T.
Then, by assumption (S), we have

α(Hx)(t) = inf
t∈[η,l]T

{∫ δω
+ (t)

t
G(t, s)b(s)f

(
s,x

(
g(s)

))
�s

+
∑

j:tj∈[t,δω
+ (t))T

G(t, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)}

≥ inf
t∈[t,δω

+ (t)]T

{∫ δω
+ (t)

t
G(t, s)b(s)f (s,xs)�s

+
∑

j:tj∈[t,δω
+ (t))T

G(t, tj)e–a
(
σ (tj), tj

)
Ij
(
x(tj)

)}

≥ 
ξ – 

∫ δω
+ (t)

t
b(s)f

(
s,x

(
g(s)

))
�s +


ξ – 

q∑
j=

Ij
(
x(tj)

)

>
B

ξ – 

(
(ξ – )b

B
–
Im

B

)
+


ξ – 

Im

= b,

that is, α(Hx) > b for all x ∈ K (γ , θ ,α,b,bξ ,d). This shows that condition () in Lemma .
is satisfied.
Secondly, by (.) and the cone K we defined in (.), we can get α(Hx) ≥ 

ξ
θ (Hx) >


ξ
(bξ ) = b for all x ∈ K (γ ,α,b,d) with θ (Hx) > bξ . Thus condition () in Lemma . is

satisfied.
Finally, we show that condition () in Lemma . also holds. Clearly, as ψ() =  < a,

we have ∈R(γ ,ψ ,a,d). Suppose that x ∈ R(γ ,ψ ,a,d) with ψ(x) = a, this implies that for
t ∈ [t, δω

+ (t)]T, there is supt∈[t,δω
+ (t)]T x(t) = a, supt∈[t,δω

+ (t)]T (�x)(t)≤ d. Hence,

 ≤ x(t)≤ a,  ≤ (�x)(t)≤ d for t ∈ [
t, δω

+ (t)
]
T
.

By assumption (S), we have

ψ(Hx) = sup
t∈[t,δω

+ (t)]T
(Hx)(t)

≤ ξ

ξ – 

∫ ω

b(s)f
(
s,x

(
g(s)

))
�s +

ξ

ξ – 

q∑
j=

Ij
(
x(tj)

)

<
Bξ

ξ – 

(
(ξ – )a

ξB
–
IM
B

)
+

ξ

ξ – 
IM

= a.

So, condition () in Lemma . is satisfied.
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To sum up, all conditions in Lemma . are satisfied. Hence, H has at least three fixed
points, that is, system (.) has at least three positiveω-periodic solutions in shifts δ±. This
completes the proof. �

4 Numerical examples
Consider the following system with impulses:

{
x�(t) = –a(t)x(t) + b(t)f (t,x(g(t))), t �= tj, t ∈ T,
x(t+j ) = x(t–j ) + Ij(x(tj)).

(.)

Example  Let

a(t) = ., b(t) =  – . sinπ t, f (t,x) =

{ | sinπ t|
 + x

 , x ≤ ,
 + x

+| sinπ t| , x > ,

Ij
(
x(tj)

)
= .

∣∣sin(x(tj))∣∣, j = , , . . . , ,

in system (.), then

ω = ; IM , IM , Im ∈ [, .].

Case I: Let T =R, t = , then δω
+ (t) = t + . It is easy to verify a(t), b(t), f (t,x) satisfy

a
(
δω
+ (t)

)
δ�ω
+ (t) = a(t), b

(
δω
+ (t)

)
δ�ω
+ (t) = b(t), f

(
δω
+ (t),x

)
= f (t,x), ∀t ∈ T

∗,

and –a ∈R+.
By a direct calculation, we can get

ξ = e. = ., B =
∫ 


( – . sinπ t)�t =

(
t +

cosπ t
π

)∣∣∣∣



= .

Choose a = , b = , L = , d = , then

f (t,x)≤  + . = . < . – IM for x ∈ [, .],

f (t,x) >  +



= . > . – Im for x ∈ [, .],

f (t,x) <


+




= . < . – IM for x ∈ [, ].

According to Theorem ., whenT =R, for system (.) there exist at least three positive
periodic solutions x̂, x̂, x̂ in shifts δ± with period ω = , and

sup
t∈[t,δω

+ (t)]T
x̂(t) <  < sup

t∈[t,δω
+ (t)]T

x̂(t), inf
t∈[η,l]T

x̂(t) <  < inf
t∈[t,δω

+ (t)]T
x̂(t).

Case II: Let T = Z, t = , then δω
+ (t) = t + . It is easy to verify a(t), b(t), f (t,x) satisfy

a
(
δω
+ (t)

)
δ�ω
+ (t) = a(t), b

(
δω
+ (t)

)
δ�ω
+ (t) = b(t), f

(
δω
+ (t),x

)
= f (t,x), ∀t ∈ T

∗,

and –a ∈R+.
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By a direct calculation, we can get

ξ = (.)– = , B =
∫ 


( – . sinπ t)�t = (t – .t sinπ t)| = .

Choose a = , b = , L = , d = , then

f (t,x)≤  +  =  <  – IM for x ∈ [, ],

f (t,x) >  +



= . >  – Im for x ∈ [, ],

f (t,x) <


+




= . < . – IM for x ∈ [, ].

According to Theorem ., whenT = Z, for system (.) there exist at least three positive
periodic solutions x̃, x̃, x̃ in shifts δ± with period ω = , and

sup
t∈[t,δω

+ (t)]T
x̃(t) <  < sup

t∈[t,δω
+ (t)]T

x̃(t), inf
t∈[η,l]T

x̃(t) <  < inf
t∈[t,δω

+ (t)]T
x̃(t).

Example  Let

a(t) =

t
, b(t) =


bt

, f (t,x) =

{ | sin π
 t|

 + x
 , x ≤ ,

 + x
+| sin π

 t| , x > ,

Ij
(
x(tj)

)
= .

∣∣sin(x(tj))∣∣, j = , , . . . , ,

in system (.), where b =
∫ 



t�t, then

ω = ; IM , IM , Im ∈ [, .].

Let T = N , t = , then δω
+ (t) = t. It is easy to verify a(t), b(t), f (t,x) satisfy

a
(
δω
+ (t)

)
δ�ω
+ (t) = a(t), b

(
δω
+ (t)

)
δ�ω
+ (t) = b(t), f

(
δω
+ (t),x

)
= f (t,x), ∀t ∈ T

∗,

and –a ∈R+.
By a direct calculation, we can get

ξ =
∏

t∈[,)

(
 +

t
 – t

)
= ., B =

∫ 




bt

�t = .

Choose a = , b = , L = , d = , then

f (t,x)≤  + . = . <  – IM for x ∈ [, .],

f (t,x) >  +



= . > . – Im for x ∈ [, .],

f (t,x) <


+




= . < . – IM for x ∈ [, ].
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According to Theorem ., when T = N , for system (.) there exist at least three pos-
itive periodic solutions x̂, x̂, x̂ in shifts δ± with period ω = , and

sup
t∈[t,δω

+ (t)]T
x̂(t) <  < sup

t∈[t,δω
+ (t)]T

x̂(t), inf
t∈[η,l]T

x̂(t) <  < inf
t∈[t,δω

+ (t)]T
x̂(t).
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