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Abstract
In the present paper, by introducing the concept of equipotentially almost
automorphic sequence, the concept of weighted piecewise pseudo almost
automorphic functions on time scales is proposed. Some first results about their basic
properties are obtained and some composition theorems are established. Then we
apply these to investigate the existence of weighted piecewise pseudo almost
automorphic mild solutions to abstract impulsive ∇-dynamic equations on time
scales. In addition, the exponential stability of weighted piecewise pseudo almost
automorphic mild solutions is also considered. Finally, the obtained results are
applied to the study of a class of ∇-partial differential equations on time scales.
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1 Introduction
Almost automorphic functions, which are more general than almost periodic functions,
were introduced by Bochner in relation to some aspects of differential geometry (see [–
]). For more details as regards this topic we refer to the recent books [–], where the
authors gave important overviews about the theory of almost automorphic functions and
their applications to differential equations. Almost automorphic and pseudo almost au-
tomorphic solutions in the context of differential equations had been studied by several
authors [–]. N’Guérékata [] and Xiao [, ] with their collaborators established
the existence and uniqueness theorems of pseudo almost automorphic solutions to some
semilinear abstract differential equations. Recently, Blot et al. [] introduced the con-
cept of weighted pseudo almost automorphic functions, which generalizes the concept
of weighted pseudo almost periodicity [–], and the author proved some interesting
properties of the space of weighted pseudo almost automorphic functions like the com-
pleteness and the composition theorem, which have many applications in the context of
differential equations. For other contributions to the study of weighted pseudo almost au-
tomorphy, we refer the reader to [–] and references therein.
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On the other hand, the theory of time scales, which has recently received a lot of atten-
tion, was introduced by Hilger in his PhD thesis in  [] in order to unify continuous
anddiscrete analysis. This theory represents a powerful tool for applications to economics,
population models, and quantum physics among others. In fact, the progressive field of
dynamic equations on time scales contains links to and extends the classical theory of dif-
ferential and difference equations. For instance, by choosing the time scale to be the set
of real numbers, the general result yields a result for differential equations. In a similar
way, by choosing the time scale to be the set of integers, the same general result yields a
result for difference equations. However, since there are many other time scales than just
the set of real numbers or the set of integers, one has a much more general result. For
these reasons, based on the concept of almost periodic time scales proposed in [, ],
the concept of weighted pseudo almost automorphic functions on almost periodic time
scales was formally introduced by Wang and Li () in []. Moreover, some first re-
sults were proven which concern the weighted pseudo almost automorphic mild solution
to abstract �-dynamic equations on time scales. In addition, by using the results obtained
in [, ], Lizama and Mesquita [] presented some new results about basic properties
of almost automorphic functions on time scales and proved the existence and uniqueness
of an almost automorphic solution to a class of �-dynamic equations.
For another thing, many phenomena in nature are characterized by the fact that their

states are subject to sudden changes at certain moments and therefore can be described
by impulsive system (see [, ]). Many evolution processes, optimal control models
in economics, stimulated neural networks, population models, artificial intelligence, and
robotics are characterized by the fact that at certainmoments of time they undergo abrupt
changes of state. The existence of almost periodic solutions of abstract impulsive differ-
ential equations has been considered by many authors; see [–].
However, to the best of our knowledge, the concept of weighted piecewise pseudo al-

most automorphic functions on time scales has not been introduced in any literature until
now, so there was no work on discussing weighted piecewise pseudo almost automorphic
problems of impulsive dynamic equations on time scales before. Therefore, in this paper,
by introducing the concept of equipotentially almost automorphic sequence, the concept
of weighted piecewise pseudo almost automorphic functions on time scales is proposed.
The first results about their basic properties are obtained and some composition theorems
are established. Then we apply these composition theorems to investigate the existence
of weighted piecewise pseudo almost automorphic mild solutions to abstract impulsive
∇-dynamic equations as follows:

⎧⎨
⎩
x∇ (t) = A(t)x� + f (t,x(t)), t ∈ T, t �= ti, i ∈ Z,

�x(ti) = x(t+i ) – x(t–i ) = Ii(x(ti)), t = ti,
()

where A ∈ PCld(T,X) is a linear operator in the Banach space X and f ∈ PCld(T × X,X),
x� = x(�(t)). f , Ii, ti satisfy suitable conditions that will be established later and T is an
almost periodic time scale. In addition, the notations x(t+i ) and x(t–i ) represent the right-
hand and the left-hand side limits of x(·) at ti, respectively. In addition, some useful lemmas
are obtained and the exponential stability of weighted piecewise pseudo almost automor-
phic mild solutions is also considered. Finally, we apply these obtained results to study a
class of ∇-partial differential equations on time scales.
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2 Preliminaries
In the following, we will introduce some basic knowledge of time scales which is very
useful to the proof of our relative results.
A time scale T is a closed subset of R. It follows that the jump operators σ ,� : T → T

defined by σ (t) = inf{s ∈ T : s > t} and �(t) = sup{s ∈ T : s < t} (supplemented by infφ :=
supT and supφ := infT) are well defined. The point t ∈ T is left-dense, left-scattered, right-
dense, right-scattered if �(t) = t, �(t) < t, σ (t) = t, σ (t) > t, respectively. If T has a right-
scattered minimum m, define Tk := T\m; otherwise, set Tk = T. By the notations [a,b]T,
[a,b)T and so on, we will denote time scale intervals

[a,b]T = {t ∈ T : a ≤ t ≤ b},

where a,b ∈ T with a < �(b).
The graininess function is defined by ν : T → [,∞): ν(t) := t – �(t), for all t ∈ T.

Definition . ([]) The function f : T → R is called ld-continuous provided that it is
continuous at each left-dense point and has a right-sided limit at each point, write f ∈
Cld(T) = Cld(T,R). Let t ∈ Tk , the Delta derivative of f at t such that

∣∣f (�(t)) – f (s) – f ∇ (t)
[
�(t) – s

]∣∣ ≤ ε
∣∣�(t) – s

∣∣

for all s ∈ U , at fixed t. Let F be a function, it is called the antiderivative of f : T → R

provided F∇ (t) = f (t) for each t ∈ Tk . If F∇ (t) = f (t), then we define the delta integral by

∫ t

a
f (s)∇s = F(t) – F(a).

Definition . ([]) A function p : T →R is called ν-regressive provided – ν(t)p(t) �= 
for all t ∈ Tk . The set of all regressive and ld-continuous functions p : T → R will be de-
noted byRν =Rν(T) =Rν(T,R).Wedefine the setR+

ν =R+
ν (T,R) = {p ∈Rν : –ν(t)p(t) >

,∀t ∈ T}.

Definition . ([]) If r is a regressive function, then the generalized exponential func-
tion êr is defined by

êr(t, s) = exp

{∫ t

s
ξ̂ν(τ )

(
r(τ )

)∇τ

}

for all s, t ∈ T, where the ν-cylinder transformation is as in

ξ̂h(z) := –

h
Log( – zh).

Lemma . ([]) Assume that p,q : T→R are two ν-regressive functions, then
(i) ê(t, s)≡  and êp(t, t)≡ ;
(ii) êp(�(t), s) = ( – ν(t)p(t))êp(t, s);
(iii) êp(t, s) = 

êp(s,t) = e
νp(s, t);
(iv) êp(t, s)êp(s, r) = êp(t, r);
(v) (ê
νp(t, s))∇ = (
νp)(t)ê
νp(t, s).
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Lemma . ([]) For each t ∈ T in T\Tk the single-point set {t} is ∇-measurable and
its ∇-measure is given by μ∇ ({t}) = t – �(t).

Lemma . ([]) If a,b ∈ T and a≤ b, then

μ∇
(
(a,b]

T

)
= b – a, μ∇

(
(a,b)T

)
= �(b) – a.

If a,b ∈ T\Tk and a ≤ b, then

μ∇
(
[a,b)

T

)
= �(b) – �(a), μ∇

(
[a,b]T

)
= b – �(a).

Formore details of time scales and∇-measurability, one is referred to [, ]. Formore
on time scales, see [–].

Definition . ([–]) A time scale T is called an almost periodic time scale if


 := {τ ∈R : t ± τ ∈ T,∀t ∈ T} �= {}.

Remark . Definition . introduced in [] is the same as the concept of almost peri-
odic time scales proposed in [, ], and T is also called an invariant time scale under
translations in [].

After these preparations, in the next section, we will introduce the concept of weighted
piecewise pseudo almost automorphic functions on time scales in a Banach space and
some of their basic properties are investigated.

3 Weighted piecewise pseudo almost automorphic functions on time scales
In the following, we will give the definition of ld-piecewise continuous functions on time
scales.

Definition . We say ϕ : T → X is ld-piecewise continuous with respect to a sequence
{τi} ⊂ T which satisfy τi < τi+, i ∈ Z, if ϕ(t) is continuous on (τi, τi+]T and ld-continuous
on T\{τi}. Furthermore, (τi, τi+]T are called intervals of continuity of the function ϕ(t).

For convenience, PCld(T,X) denotes the set of all ld-piecewise continuous functions
with respect to a sequence {τi}, i ∈ Z. Similar to Definition ., we can also introduce the
concept of functions which belong to PCrd(T,X).
Throughout the paper, we denote by X a Banach space; letB be the set consisting of all

sequences {ti}i∈Z such that θ = infi∈Z(ti+ – ti) > . For {ti}i∈Z ∈ B, let BPCld(T,X) be the
space formed by all bounded ld-piecewise continuous functions φ : T → X such that φ(·)
is continuous at t for any t /∈ {ti}i∈Z and φ(ti) = φ(t–i ) for all i ∈ Z; let be a subset ofX and
let BPCld(T × ,X) be the space formed by all bounded piecewise continuous functions
φ : T×  → X such that, for any x ∈ , φ(·,x) ∈ BPCld(T×X,X). For any t ∈ T, φ(t, ·) is
continuous at x ∈ .
Let UPC(T,X) be the space of all functions ϕ ∈ PCld(T,X) such that φ satisfies the con-

dition: for any ε > , there exists a positive number δ = δ(ε) such that if the points t′, t′′

belong to the same interval of continuity of ϕ and |t′ – t′′| < δ implies ‖ϕ(t′) – ϕ(t′′)‖ < ε.
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Now, we introduce the set

B =
{
{tk} : tk ∈ T, tk < tk+,k ∈ Z, lim

t→±∞ =±∞
}
,

which denotes all unbounded increasing sequences of real numbers. Let T ,P ∈B and let
s(T ∪P) :B→B be a map such that the set s(T ∪P) forms a strictly increasing sequence.
For D⊂R and ε > , we introduce the notations θε(D) = {t + ε : t ∈D}, Fε(D) =

⋂
ε{θε(D)}.

Denote by φ̃ = (ϕ(t),T) the element from the space PCld(T,X) × B. For every sequence
of real numbers {sn}, n = , , . . . with θsn φ̃ := (ϕ(t + sn),T – sn), we shall consider the sets
{ϕ(t + sn),T – sn} ⊂ PCld ×B, where

T – sn = {tk – sn : k ∈ Z,n = , , . . .}.

Definition . Let {ti} ∈B, i ∈ Z. We say {tji} is a derivative sequence of {ti} and

tji = ti+j – ti, i, j ∈ Z.

Definition . Let tji = ti+j – ti, i, j ∈ Z. We say {tji}, i, j ∈ Z, is equipotentially almost au-
tomorphic on an almost periodic time scale T if, for any sequence {sn} ⊂ Z, there exists a
subsequence {s′n} such that

lim
n→∞ ts

′
n
k = γk

is well defined for each k ∈ Z and

lim
n→∞γ

–s′n
k = tk

for each k ∈ Z.

Definition . A function φ ∈ PCld(T,X) is said to be ld-piecewise almost automorphic
if the following conditions are fulfilled:

(i) T = {tk} is an equipotentially almost automorphic sequence.
(ii) Let ϕ ∈ PCld(T,X) be a bounded function with respect to a sequence T = {tk}. We

say that ϕ is piecewise almost automorphic if from every sequence {sn}∞n= ⊂ 
, we
can extract a subsequence {τn}∞n= such that

φ̃∗ =
(
ϕ∗(t),T∗) = lim

n→∞
(
ϕ(t + τn),T – τn

)
= lim

n→∞ θτn φ̃

is well defined for each t ∈ T and

φ̃ =
(
ϕ(t),T

)
= lim

n→∞
(
ϕ∗(t – τn),T∗ + τn

)
= lim

n→∞ θ–τn φ̃
∗

for each t ∈ T. Denote by AA(T,X) the set of all such functions.
(iii) A bounded function f ∈ PCld(T×X,X) with respect to a sequence T = {tk} is said

to be piecewise almost automorphic if f (t,x) is piecewise automorphic in t ∈ T

uniformly in x ∈ B, where B is any bounded subset of X. Denote by AA(T×X,X)
the set of all such functions.
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Similarly, we can also introduce the concept of piecewise almost automorphic functions
which belong to PCrd(T,X).
Let U be the set of all functions ρ : T → (,∞) which are positive and locally ∇-

integrable over T. For a given r ∈ [,∞)∩ 
 and ∀t ∈ T, set

m(r,ρ, t) :=
∫ t+r

t–r
ρ(s)∇s ()

for each ρ ∈ U .

Remark . In (), if T =R, t = , one can easily get

m(r,ρ, t) :=
∫ r

–r
ρ(s) ds

if T = Z, t = , one has the following:

m(r,ρ) =
r∑

k=–r+

ρ(k).

Define

U∞ :=
{
ρ ∈U : lim

r→∞m(r,ρ, t) = ∞
}
,

UB :=
{
ρ ∈U∞ : ρ is bounded and inf

s∈T
ρ(s) > 

}
.

It is clear that UB ⊂U∞ ⊂U . Now for ρ ∈ U∞ define

PAA(T,ρ) : =
{
φ ∈ BPCld(T,X) : limr→∞


m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥ρ(s)∇s = ,

∀t ∈ T, r ∈ 


}
.

Similarly, we define

PAA(T×X,ρ) : =
{
� ∈ BPCld(T× ,X) :

lim
r→∞


m(r,ρ, t)

∫ t+r

t–r

∥∥�(s,x)
∥∥ρ(s)∇s = 

uniformly with respect to x ∈ K ,∀t ∈ T, r ∈ 


}
.

We are now ready to introduce the sets WPAA(T,ρ) and WPAA(T×X,ρ) of weighted
pseudo almost periodic functions:

WPAA(T,ρ) =
{
f = g + φ ∈ PCld(T,X) : g ∈ AA(T,X) and φ ∈ PAA(T,ρ)

}
,

WPAA(T×X,ρ) =
{
f = g + φ ∈ PCld(T×X,X) : g ∈ AA(T×X,X)

and φ ∈ PAA(T×X,ρ)
}
.
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Lemma . Let φ ∈ BPCld(T,X). Then φ ∈ PAA(T,ρ) where ρ ∈ UB if and only if, for
every ε > ,

lim
r→∞


m(r,ρ, t)

μ∇
(
Mr,ε,t (φ)

)
= ,

where r ∈ 
 and Mr,ε,t (φ) := {t ∈ [t – r, t + r]T : ‖φ(t)‖ ≥ ε}.

Proof (a) Necessity. For contradiction, suppose that there exists ε >  such that

lim
r→∞


m(r,ρ, t)

μ∇
(
Mr,ε,t (φ)

) �= .

Then there exists δ >  such that, for every n ∈N,


m(rn,ρ, t)

μ∇
(
Mrn ,ε,t (φ)

) ≥ δ for some rn > n,where rn ∈ 
.

So we get


m(rn,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥ρ(s)∇s =


m(rn,ρ, t)

∫
Mrn ,ε,t (φ)

∥∥φ(s)
∥∥ρ(s)∇s

+


m(rn,ρ, t)

×
∫
[t–r,t+r]T\Mrn ,ε,t (φ)

∥∥φ(s)
∥∥ρ(s)∇s

≥ 
m(rn,ρ, t)

∫
Mrn ,ε,t (φ)

∥∥φ(s)
∥∥ρ(s)∇s

≥ ε

m(rn,ρ, t)

∫
Mrn ,ε,t (φ)

∥∥φ(s)
∥∥ρ(s)∇s

≥ εδγ ,

where γ = infs∈T ρ(s). This contradicts the assumption.
(b) Sufficiency. Assume that limr→∞ 

m(r,ρ,t)
μ∇ (Mr,ε,t (φ)) = . Then for every ε > ,

there exists r >  such that, for every r > r,


m(r,ρ, t)

μ∇
(
Mr,ε,t (φ)

)
<

ε

KM
,

whereM := supt∈T ‖φ(t)‖ <∞ and K := supt∈T ρ(t) <∞.
Now, we have


m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥ρ(s)∇s =


m(r,ρ, t)

(∫
Mr,ε,t (φ)

∥∥φ(s)
∥∥ρ(s)∇s

+
∫
[t–r,t+r]T\Mr,ε,t (φ)

∥∥φ(s)
∥∥ρ(s)∇s

)

≤ MK
m(r,ρ, t)

μ∇
(
Mr,ε,t (φ)

)
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+
ε

m(r,ρ, t)

∫
[t–r,t+r]T\Mr,ε,t (φ)

ρ(s)∇s

≤ ε.

Therefore, limr→∞ 
m(r,ρ,t)

∫ t+r
t–r

‖φ(s)‖ρ(s)∇s = , that is, φ ∈ PAA(T,ρ). This completes
the proof. �

Lemma . PAA(T,ρ) is a translation invariant set of BPCld(T,X) with respect to 
 if
ρ ∈UB, i.e., for any s ∈ 
, one has φ(t + s) := θsφ ∈ PAA(T,ρ) if ρ ∈UB.

Proof For any s ∈ 
, φ ∈ PAA(T,ρ), ε > , r > , we have

Mr,ε,t (Tsφ) =
{
t ∈ [t – r, t + r]T :

∥∥Ts(t)
∥∥ ≥ ε

}
=

{
t ∈ [t – r, t + r]T :

∥∥φ(t + s)
∥∥ ≥ ε

}
=

{
t ∈ [t – r + s, t + r + s]T :

∥∥φ(t)
∥∥ ≥ ε

}
⊆ {

t ∈ [
t – r – |s|, t + r + |s|]

T
:
∥∥φ(t)

∥∥ ≥ ε
}
.

Hence


m(r,ρ, t)

μ∇
(
Mr,ε,t (Tsφ)

) ≤ 
m(r,ρ, t)

μ∇
(
Mr+|s|,ε,t(Tsφ)

)

=
m(r + |s|,ρ, t)
m(r,ρ, t)


m(r + |s|,ρ, t)μ∇

(
Mr+|s|,ε,t(φ)

)
.

Since φ ∈ PAA(T,ρ), by Lemma ., we have


m(r + |s|,ρ, t)

(
Mr+|s|,ε,t(φ)

) → , r → ∞.

Furthermore, limr→∞ m(r+|s|,ρ,t)
m(r,ρ,t)

= , thus


m(r,ρ, t)

μ∇
(
Mr,ε,t

(
Ts(φ)

)) → , r → ∞.

Again, using Lemma ., one can get θsφ ∈ PAA(T,ρ) for any s ∈ 
. This completes the
proof. �

By Definition ., one can easily get the following lemma.

Lemma . Let φ ∈ AA(T,X), then the range of φ, φ(T), is a relatively compact subset
of X.

Lemma . If f = g +φ with g ∈ AA(T,X), and φ ∈ PAA(T,ρ),where ρ ∈UB, then g(T) ⊂
f (T).

Proof () For any t ∈ T\{ti}, g(t) ∈ g(T), one has g(t) = f (t)–φ(t). Since g ∈ AA(T,X), there
exists a sequence {αn} ⊂ 
 such that g(t + αn) → g(t), n→ ∞.

http://www.advancesindifferenceequations.com/content/2014/1/153
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Furthermore, by Lemma ., φ(t + αn) ∈ PAA(T,X), so there exists β ∈ 
 such that
φ(t + αn + β) → , n → ∞. Hence, let s = t + β , and one has

f (s + αn – β) – φ(t + αn + β) → g(t) for each t ∈ T as n → ∞,

i.e. f (s + αn – β) → g(t) for each t ∈ T as n→ ∞.
() If {ti} ∈B, noting that Definition ., the above sequence {αn} ⊂ 
 and the number

β ∈ 
 is suitable for the increasing sequence {ti}, so the proof process is the same as ().
This completes the proof. �

Lemma . The decomposition of a weighted piecewise pseudo almost automorphic func-
tion according to AA⊕ PAA is unique for any ρ ∈ UB.

Proof Assume that f = g +φ and f = g +φ. Then (g – g) + (φ –φ) = . Since g – g ∈
AA(T,X), and φ – φ ∈ PAA(T,ρ), in view of Lemma ., we deduce that g – g = .
Consequently, φ – φ = , i.e. φ = φ. This completes the proof. �

Theorem . For ρ ∈UB, (WPAA(T,ρ),‖ · ‖∞) is a Banach space.

Proof Assume that {fn}n∈N is a Cauchy sequence in WPAA(T,ρ). We can write uniquely
fn = gn +φn. Using Lemma ., we see that ‖gp – gq‖∞ ≤ ‖fp – fq‖∞, from which we deduce
that {gn}n∈N is a Cauchy sequence in AA(T,X). Hence, φn = fn – gn is a Cauchy sequence
in PAA(T,ρ). We deduce that gn → g ∈ AA(T,X), φn → φ ∈ PAA(T,ρ), and finally fn →
g + φ ∈ WPAA(T,ρ). This completes the proof. �

Definition . Let ρ,ρ ∈ U∞. One says that ρ is equivalent to ρ, written ρ ∼ ρ if
ρ/ρ ∈UB.

Theorem . Let ρ,ρ ∈U∞. If ρ ∼ ρ, then WPAA(T,ρ) =WPAA(T,ρ).

Proof Assume that ρ ∼ ρ. There exist a,b >  such that aρ ≤ ρ ≤ bρ. So

am(r,ρ, t) ≤m(r,ρ, t) ≤ bm(r,ρ, t),

where r ∈ 
 and

a
b


m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥ρ(s)∇s ≤ 

m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥ρ(s)∇s

≤ b
a


m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥ρ(s)∇s.

This completes the proof. �

Lemma . If g ∈ AA(T×X,X) and α ∈ AA(T,X), then G(t) := g(·,α(·)) ∈ AA(T,X).

Proof Let T = {ti}, φ̃ = (g(t,x),T) ∈ AA(T×X,X)×B, from every sequence {sn}∞n= ⊂ 
,
we can extract a subsequence {τn}∞n= such that

φ̃∗ :=
(
g∗(t,x),T∗) = lim

n→∞ θτn φ̃ = lim
n→∞

(
g(t + τn,x),T – τn

)
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uniformly exists on PCld(T × X,X) × B. Since α ∈ AA(T,X), one can extract {τ ′
n} ⊂ {τn}

such that

lim
n→∞ θτ ′

n φ̃ = lim
n→∞

(
g
(
t + τ ′

n,α
(
t + τ ′

n
))
,T – τ ′

n
)

= lim
n→∞

(
g
(
t + τ ′

n,α
∗(t)

)
,T – τ ′

n
)
=

(
g∗(t,α∗(t)

)
,T∗).

Hence, G ∈ AA(T,X). This completes the proof. �

Theorem . Let f = g + φ ∈ WPAA(T×X,ρ), where g ∈ AA(T×X,X), φ ∈ PAA(T×
X,ρ), ρ ∈UB, and the following conditions hold:

(i) {f (t,x) : t ∈ T,x ∈ K} is bounded for every bounded subset K ⊆ .
(ii) f (t, ·), g(t, ·) are uniformly continuous in each bounded subset of  uniformly in t ∈ T.

Then f (·,h(·)) ∈WPAA(T,ρ) if h ∈ WPAA(T,ρ) and h(T) ⊂ .

Proof We have f = g +φ, where g ∈ AA(T×X,X) and φ ∈ PAA(T×X,ρ) and h = φ +φ,
where φ ∈ AA(T,X) and φ ∈ PAA(T,ρ). Hence, the function f (·,h(·)) can be decom-
posed as

f
(·,h(·)) = g

(·,φ(·)
)
+ f

(·,h(·)) – g
(·,φ(·)

)
= g

(·,φ(·)
)
+ f

(·,h(·)) – f
(·,φ(·)

)
+ φ

(·,φ(·)
)
.

By Lemma ., g(·,φ(·)) ∈ AA(T,X). Now, consider the function

�(·) := f
(·,h(·)) – f

(·,φ(·)
)
.

Clearly, � ∈ BPCld(T,X). For � to be in PAA(T,ρ), it is sufficient to show that

lim
r→∞


m(r,ρ, t)

μ∇
(
Mr,ε,t (�)

)
= .

Let K be a bounded subset of  such that φ(T) ⊆ K , φ(T)⊆ K . By (ii), f (t, ·) is uniformly
continuous in φ(T) uniformly in t ∈ T, and we see that, for given ε > , there exists δ > 
such that y, y ∈ K and ‖y – y‖ < δ implies that

∥∥f (t, y) – f (t, y)
∥∥ < ε, t ∈ T.

Thus, for each t ∈ T, ‖φ(t)‖ < δ implies for all t ∈ T,

∥∥f (t,h(t)) – f
(
t,φ(t)

)∥∥ < ε,

where φ(t) = h(t)–φ(t). For r >  and any fixed t ∈ T, letMr,δ,t (φ) = {t ∈ [t –r, t +r]T :
‖φ‖ ≥ δ}, we can obtain


m(r,ρ, t)

μ∇
(
Mr,ε,t

(
�(t)

))

=


m(r,ρ, t)
μ∇

(
Mr,ε,t

(
f
(
t,h(t)

)
– f

(
t,φ(t)

)))
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≤ 
m(r,ρ, t)

μ∇
(
Mr,δ,t

(
h(t) – φ(t)

))

=


m(r,ρ, t)
μ∇

(
Mr,δ,t

(
φ(t)

))
.

Now since φ ∈ PAA(T,ρ), Lemma . yields

lim
r→∞


m(r,ρ, t)

μ∇
(
Mr,ε,t

(
φ(t)

))
= ,

and this implies that � ∈ PAA(T,ρ).
Finally, we need to show φ(·,φ(·)) ∈ PAA(T,ρ). Note that f = g + φ and g(t, ·) is uni-

formly continuous in φ(T) uniformly in t ∈ T. By the assumption (ii), f (t, ·) is uniformly
continuous in φ(T) uniformly in t ∈ T, so is φ. Since φ(T) is relatively compact in X, for
ε > , there exists δ >  such that φ(T) ⊂ ⋃m

k= Bk , where Bk = {x ∈ X : ‖x – xk‖ < δ} for
some xk ∈ φ(T) and

∥∥φ
(
t,φ(t)

)
– φ(t,xk)

∥∥ <
ε


, φ(t) ∈ Bk , t ∈ T. ()

It is easy to see that the set Uk := {t ∈ T : φ(t) ∈ Bk} is open and φ(T) =
⋃m

k=Uk . Define

V =U, Vk =Uk

∖ k–⋃
i=

Ui,  ≤ k ≤m.

Then it is clear that Vi ∩Vj �= ∅ if i �= j, ≤ i, j ≤m. So we get

{
t ∈ [t – r, t + r]T :

∥∥φ
(
t,φ(t)

)∥∥ ≥ ε



}

⊂
m⋃
k=

{
t ∈ Vk :

∥∥φ
(
t,φ(t)

)
– φ(t,xk)

∥∥ +
∥∥φ(t,xk)

∥∥ ≥ ε
}

⊂
m⋃
k=

({
t ∈ Vk :

∥∥φ
(
t,φ(t)

)
– φ(t,xk)

∥∥ ≥ ε



}
∪

{
t ∈ Vk :

∥∥φ(t,xk)
∥∥ ≥ ε



})
.

In view of (), it follows that
{
t ∈ Vk :

∥∥φ
(
t,φ(t)

)
– φ(t,xk)

∥∥ ≥ ε



}
= ∅, k = , , . . . ,m.

Thus we get


m(r,ρ, t)

μ∇
(
Mr,ε,t

(
φ
(
t,φ(t)

))) ≤
m∑
k=


m(r,ρ, t)

μ∇
(
Mr,ε,t

(
φ(t,xk)

))
.

Since φ ∈ PAA(T×X,ρ) and limr→∞ 
m(r,ρ,t)

μ∇ (Mr,ε,t (φ(t,xk))) = , it follows that

lim
r→∞


m(r,ρ, t)

μ∇
(
Mr,ε,t

(
φ
(
t,φ(t)

)))
= ,

by Lemma ., φ(·,φ(·)) ∈ PAA(T,ρ). This completes the proof. �
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Theorem . has the following consequence.

Corollary . Let f = g + φ ∈ WPAP(T,ρ), where ρ ∈ UB. Assume that f and g are Lips-
chitzian in x ∈ X uniformly in t ∈ T. Then f (·,h(·)) ∈ WPAA(T,ρ) if h ∈WPAA(T,ρ).

Next, wewill show the following two lemmas, which are useful in the proof of our results.

Lemma . If ϕ ∈ PCld(T,X) is an almost automorphic function with respect to the se-
quence T and {tk} ⊂ T is equipotentially almost automorphic satisfying infi∈Z t

q
i = θ > ,

q ∈ Z, then {ϕ(tk)} is an almost automorphic sequence in X.

Proof Let tji = ti+j – ti, i, j ∈ Z. Obviously, from the definition of 
, it is easy to know that
tji ∈ 
. Since ϕ ∈ PCld(T,X) is an almost automorphic function and {tk} ⊂ T is equipo-
tentially almost automorphic, from Definition . and Definition ., for any sequence
{sn} ⊂ Z, we find that there exists a subsequence {s′n} such that

lim
n→∞

(
ϕ(tk+s′n ),T – ts

′
n
k

)
= lim

n→∞
(
ϕ
(
tk + ts

′
n
k

)
,T – ts

′
n
k

)
=

(
ϕ∗(tk),T∗)

=
(
ϕ(tk + γk),T – γk

)

and

lim
n→∞

(
ϕ∗(tk–s′n ),T

∗ + t–s
′
n

k
)
= lim

n→∞
(
ϕ(tk–s′n + γk–s′n ),T – γk–s′n + t–s

′
n

k
)

=
(
ϕ(tk),T

)
.

Hence, {ϕ(tk)} is an almost automorphic sequence in X. This completes the proof. �

Lemma . A necessary and sufficient condition for a bounded sequence {an} to be in
PAA(Z,ρ) is that there exists a uniformly continuous function f ∈ PAA(T,ρ) such that
f (tn) = an, tn ∈ T, n ∈ Z, ρ ∈UB.

Proof Necessity. We define a function

f (t) = an + (t – t – nr)(an+ – an), t + nr ≤ t < t + (n + )r, t ∈ T,n ∈ Z, t ∈ T,

where r ∈ 
. It is obviously uniformly continuous on T. f ∈ PAA(T,ρ) since


m(kr,ρ, t)

∫ t+kr

t–kr

∥∥f (s)∥∥ρ(s)∇s

=


m(kr,ρ, t)

k–∑
j=–k

∫ t+(j+)r

t+jr

∥∥aj + (s – t – jr)(aj+ – aj)
∥∥ρ(s)∇s

≤ 
m(kr,ρ, t)ρ

k–∑
j=–k

(
‖aj‖ρ(tj)r + ‖aj+ – aj‖

∫ t+(j+)r

t+jr
(s – t – jr)ρ(s)∇s

)

≤ 
ρm(kr,ρ, t)

k–∑
j=–k

r‖aj‖ρ(tj) + (‖ak‖ + ‖a–k‖)r
m(kr,ρ, t)

ρ̄
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≤ 
ρ

∑
tj∈[t–kr,t+kr]T ν(tj)ρ(tj)

k–∑
j=–k

r
∥∥f (tj)∥∥ρ(tj) +

‖ak‖ + ‖a–k‖
m(kr,ρ, t)

rρ̄

=


ρ
∑k–

j=–k ν(tj)ρ(tj)

k–∑
j=–k

r
∥∥f (tj)∥∥ρ(tj) +

‖ak‖ + ‖a–k‖
m(kr,ρ, t)

rρ̄ →  as k → ∞,

where ρ = inft∈T ρ(t), ρ̄ = supt∈T ρ(t).
Sufficiency. Let  < ε < , there exists δ >  such that, for t ∈ (tn – δ, tn)T, n ∈ Z, we have

∥∥f (t)∥∥ρ(t)≥ ( – ε)
∥∥f (tn)∥∥ρ(tn), n ∈ Z.

Without loss of generality, let tn ≥ , t–n < , n ∈ Z, there exist rn, r–n ∈ 
 ∩R
+ such that

t + rn = tn, t – r–n = t–n. Let r′n =max{rn, r–n} ∈ 
. Therefore,

∫ t+r′n

t–r′n

∥∥f (t)∥∥ρ(t)∇t ≥
∫ t+rn

t–r–n

∥∥f (t)∥∥ρ(t)∇t =
∫ tn

t–n

∥∥f (t)∥∥ρ(t)∇t

≥
n∑

j=–n+

∫ t+tj

t+tj–

∥∥f (t)∥∥ρ(t)∇t

≥
n∑

j=–n+

∫ t+tj

t+tj–δ

∥∥f (t)∥∥ρ(t)∇t

≥
n∑

j=–n+

δ( – ε)
∥∥f (tj)∥∥ρ(tj)

≥ δ( – ε)
n∑

j=–n+

∥∥f (tj)∥∥ρ(tj),

so one can obtain


m(r′n,ρ, t)

∫ t+r′n

t–r′n

∥∥f (t)∥∥ρ(t)∇t ≥ δ( – ε)


m(r′n,ρ, t)

n∑
j=–n+

∥∥f (tj)∥∥ρ(tj), ()

it is easy to see that r′n is increasing with respect to n ∈ Z
+, one can find some n > n such

that

m
(
r′n,ρ, t

)
=

∫ t+r′n

t–r′n
ρ(s)∇s≤

∑
tj∈[t–r′n ,t+r′n ]T

ν(tj)ρ(tj) =
n∑

j=–n+

ν(tj)ρ(tj), ()

from () and (), we have


m(r′n,ρ, t)

∫ t+r′n

t–r′n

∥∥f (t)∥∥ρ(t)∇t ≥ δ( – ε)
∑n

j=–n+ ν(tj)ρ(tj)

n∑
j=–n+

∥∥φ(tj)
∥∥ρ(tj), ()

noting that n → ∞ implies n → ∞, since f ∈ PAA(T,ρ), it follows from the inequality
() that f (tn) = an ∈ PAA(Z,ρ). This completes the proof. �

By Lemma ., we can straightforwardly get the following theorem.

http://www.advancesindifferenceequations.com/content/2014/1/153


Wang and Agarwal Advances in Difference Equations 2014, 2014:153 Page 14 of 29
http://www.advancesindifferenceequations.com/content/2014/1/153

Theorem . A necessary and sufficient condition for a bounded sequence {an} to be in
WPAA(Z,ρ) is that there exists a uniformly continuous function f ∈WPAA(T,ρ) such that
f (tn) = an, tn ∈ T, n ∈ Z, ρ ∈UB.

Theorem . Assume that ρ ∈ UB and the sequence of vector-valued functions {Ii}i∈Z is
weighted pseudo almost automorphic, i.e., for any x ∈ , {Ii(x), i ∈ Z} is weighted pseudo
almost automorphic sequence. Suppose {Ii(x) : i ∈ Z,x ∈ K} is bounded for every bounded
subset K ⊆ , Ii(x) is uniformly continuous in x ∈  uniformly in i ∈ Z. If h ∈WPAA(T,ρ)∩
UPC(T,X) such that h(T) ⊂ , then Ii(h(ti)) is a weighted pseudo almost automorphic
sequence.

Proof Fix h ∈ WPAA(T,ρ) ∩ UPC(T,X), first we show h(ti) is weighted pseudo almost
automorphic. Since h = φ + φ, where φ ∈ AA(T,X), φ ∈ PAA(T,ρ). It follows from
Lemma . that the sequence φ(ti) is almost automorphic. To show that h(ti) is weighted
pseudo almost automorphic, we need to show that φ(ti) ∈ PAA(Z,ρ). By the assumption,
h,φ ∈UPC(T,X), so isφ. Let  < ε < , there exists δ >  such that, for t ∈ (ti–δ, ti)T, i ∈ Z,
we have

∥∥φ(t)
∥∥ρ(t)≥ ( – ε)

∥∥φ(ti)
∥∥ρ(ti), i ∈ Z.

Without loss of generality, let ti ≥ , t–i < , i ∈ Z; there exists ri, r–i ∈ 
 ∩ R
+ such that

t + ri = ti, t – r–i = t–i. Let r′i =max{ri, r–i} ∈ 
. Therefore,

∫ t+r′i

t–r′i

∥∥φ(t)
∥∥ρ(t)∇t ≥

∫ t+ri

t–r–i

∥∥φ(t)
∥∥ρ(t)∇t =

∫ ti

t–i

∥∥φ(t)
∥∥ρ(t)∇t

≥
i∑

j=–i+

∫ t+tj

t+tj–

∥∥φ(t)
∥∥ρ(t)∇t

≥
i∑

j=–i+

∫ t+tj

t+tj–δ

∥∥φ(t)
∥∥ρ(t)∇t

≥
i∑

j=–i+

δ( – ε)
∥∥φ(tj)

∥∥ρ(tj)

≥ δ( – ε)
i∑

j=–i+

∥∥φ(tj)
∥∥ρ(tj),

so one can obtain


m(r′i,ρ, t)

∫ t+r′i

t–r′i

∥∥φ(t)
∥∥ρ(t)∇t ≥ δ( – ε)


m(r′i,ρ, t)

i∑
j=–i+

∥∥φ(tj)
∥∥ρ(tj), ()

it is easy to see that r′i is increasing with respect to i ∈ Z
+, and one can find some i > i

such that

m
(
r′i,ρ, t

)
=

∫ t+r′i

t–r′i
ρ(s)∇s≤

∑
tj∈[t–r′i ,t+r

′
i
]T

ν(tj)ρ(tj) =
i∑

j=–i+

ν(tj)ρ(tj), ()
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from () and (), we have


m(r′i,ρ, t)

∫ t+r′i

t–r′i

∥∥φ(t)
∥∥ρ(t)∇t ≥ δ( – ε)

∑i
j=–i+ ν(tj)ρ(tj)

i∑
j=–i+

∥∥φ(tj)
∥∥ρ(tj), ()

noting that i → ∞ implies i → ∞, since φ ∈ PAA(T,ρ), it follows from the inequality
() that φ(ti) ∈ PAA(Z,ρ). Hence, h(ti) is weighted pseudo almost automorphic.
Now, we show that Ii(φ(ti)) is weighted pseudo almost automorphic. Let

I(t,x) = In(x) + (t – t – nr)
[
In+(x) – In(x)

]
, t + nr ≤ t < t + (n + )r,n ∈ Z, r ∈ 
,

�(t) = h(tn) + (t – t – nr)
[
h(tn+) – h(tn)

]
, t + nr ≤ t < t + (n + )r,n ∈ Z, r ∈ 
.

Since In, h(tn) both are pseudo almost automorphic, by Lemma . and Theorem ., we
know that I ∈WPAA(T× ,ρ), � ∈WPAA(T,ρ). For every t ∈ T, there exists a number
n ∈ Z such that |t – t – nr| ≤ r,

∥∥I(t,x)∥∥ ≤ ∥∥In(x)∥∥ + |t – t – nr|[∥∥In+(x)∥∥ +
∥∥In(x)∥∥]

≤ ( + r)
∥∥In(x)∥∥ + r

∥∥In+(x)∥∥.
Since {In(x) : n ∈ Z,x ∈ K} is bounded for every bounded set K ⊆ , {I(t,x) : t ∈ T,x ∈ K}
is bounded for every bounded set K ⊆ . For every x,x ∈ , we have

∥∥I(t,x) – I(t,x)
∥∥ ≤ ∥∥In(x) – In(x)

∥∥ + |t – t – nr|[∥∥In+(x) – In+(x)
∥∥

+
∥∥In(x) – In(x)

∥∥]
≤ ( + r)

∥∥In(x) – In(x)
∥∥ + r

∥∥In+(x) – In+(x)
∥∥.

Noting that Ii(x) is uniformly continuous in x ∈  uniformly in i ∈ Z, we then find that
I(t,x) is uniformly in x ∈  uniformly in t ∈ T. Then by Theorem ., I(·,�(·)) ∈
WPAA(T,X). Again, using Lemma . and Theorem ., we find that I(i,�(i)) is a
weighted pseudo almost automorphic sequence, that is, Ii(h(ti)) is weighted pseudo al-
most automorphic. This completes the proof. �

From Theorem ., one can easily get the following corollary.

Corollary . Assume the sequence of vector-valued functions {Ii}i∈Z is weighted pseudo
almost automorphic, ρ ∈UB, if there is a number L >  such that

∥∥Ii(x) – Ii(y)
∥∥ ≤ L‖x – y‖

for all x, y ∈ , i ∈ Z, if h ∈WPAA(T,ρ)∩UPC(T,ρ) such that h(T)⊂ , then Ii(h(ti)) is a
weighted pseudo almost automorphic sequence.

4 Weighted piecewise pseudo almost automorphic mild solutions to abstract
impulsive ∇-dynamic equations

In this section, we investigate the existence and exponential stability of a weighted piece-
wise pseudo almost automorphicmild solution to Eq. (). Before starting our investigation,
we will show a lemma which will be used in our proofs.
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Lemma . Let 
νω ∈R+
ν , for all t ∈ T, α ∈ 
, there exist constants β,β >  such that

βν(t)≤ ν(t + α)≤ βν(t). ()

Then there exist positive constants K∗ and ω∗ such that

ê
νω(t + α, s + α)≤ K∗ê
νω∗ (t, s), t ≥ s.

Proof Obviously, if ν = , T = R, the result holds. Assume that ν �≡ . Since 
νω ∈ R+
ν ,

one has

e
νω(t + α, s + α) = exp

{
–

∫ t+α

s+α


ν(τ )

ln


 – ν(τ )ω
∇τ

}

= exp

{
–

∫ t

s


ν(τ + α)

ln


 – ν(τ + α)ω
∇τ

}
.

Since T is an almost periodic time scale, μ is bounded. Hence, by the inequality (), we
can obtain

ê
νω(t + α, s + α) ≤ exp

{
–

∫ t

s


βν(τ )

ln


 – βν(τ )ω
∇τ

}

=
{
exp

{
–

∫ t

s

ln( – ν(τ )(
νβω))
ν(τ )

}} 
β
.

Therefore, there exists a positive constant K∗ >  such that

ê
νω(t + α, s + α) =
[
ê
νβω(t, s)

] 
β ≤ K∗ê
νω∗ (t, s),

where ω∗ = βω. This completes the proof. �

Remark . It is easy to see that if T is almost periodic, then μ(t) is bounded, so there
exist a sufficiently small constant β >  and a sufficiently large constant β >  such that
() is valid. Therefore, Lemma . holds when T is an almost periodic time scale.

Let T be an almost periodic time scale, and consider the impulsive ∇-dynamic equation

x∇ = A(t)x�, t ∈ T, ()

where A : T → B(X) is a linear operator in the Banach space X. We denote by B(X,Y) the
Banach space of all bounded linear operators from X to Y. This is simply denoted as B(X)
when X =Y.

Definition . T(t, s) : T×T→ B(X) is called the linear evolution operator associated to
() if T(t, s) satisfies the following conditions:
() T(s, s) = Id, where Id denotes the identity operator in X;
() T(t, s)T(s, r) = T(t, r);
() the mapping (t, s)→ T(t, s)x is continuous for any fixed x ∈X.
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Definition. An evolution systemT(t, s) is called exponentially stable if there existK ≥
 and ω >  such that

∥∥T(t, s)∥∥B(X) ≤ Kê
νω(t, s), t ≥ s.

Definition . A function x : T → X is called a mild solution of Eq. () if, for any t ∈ T,
t > c, c �= ti, i ∈ Z, one has

x(t) = T(t, c)x(c) +
∫ t

c
T(t, s)f

(
s,x(s)

)∇s +
∑
c<ti<t

T(t, ti)Ii
(
x(ti)

)
.

In fact, using the semigroup theory, we can easily see that

x(t) = T(t, c)x(c) +
∫ t

c
T(t, s)f

(
s,x(s)

)∇s, t > c,

is a mild solution to

x∇ = A(t)x� + f
(
t,x(t)

)
.

For any c ∈ T, we can find i ∈ Z, ti– < c≤ ti, for t ∈ (c, ti]T,

x(t) = T(t, c)x(c) +
∫ t

c
T(t, s)f

(
s,x(s)

)∇s,

by using x(t+i ) – x(t–i ) = Ii(x(ti)), we have

x
(
t+i

)
= T(ti, c)x(c) +

∫ ti

c
T(ti, s)f

(
s,x(s)

)∇s + Ii
(
x(ti)

)
,

then we have

x(t) = T(t, ti)x
(
t+i

)
+

∫ t

ti
T(t, s)f

(
s,u(s)

)∇s

= T(t, ti)
[
T(ti, c)x(c) +

∫ ti

c
T(ti, s)f

(
s,x(s)

)∇s + Ii
(
x(ti)

)]

+
∫ t

ti
T(t, s)f

(
s,x(s)

)∇s

= T(t, c)x(c) +
∫ ti

c
T(t, s)f

(
s,x(s)

)∇s + T(t, ti)Ii
(
x(ti)

)

+
∫ t

ti
T(t, s)f

(
s,x(s)

)∇s

= T(t, c)x(c) +
∫ t

c
T(t, s)f

(
s,x(s)

)∇s + T(t, ti)Ii
(
x(ti)

)
.

Repeating this procedure, we get

x(t) = T(t, c)x(c) +
∫ t

c
T(t, s)f

(
s,x(s)

)∇s +
∑
c<ti<t

T(t, ti)Ii
(
x(ti)

)
.
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In the following, consider the abstract differential system () with the following assump-
tions:

(H) The family {A(t) : t ∈ T} of operators in X generates an exponentially stable evolution
system {T(t, s) : t ≥ s}, i.e., there exist K >  and ω >  such that

∥∥T(t, s)∥∥B(X) ≤ Ke
ω(t, s), t ≥ s,

and for any sequence {sn} ⊂ 
, there exists a subsequence {s′n} ⊂ {sn} such that

lim
n→∞T

(
t + s′n, s + s′n

)
= T∗(t, s) is well defined for each t, s ∈ T, t ≥ s.

(H) f = g + φ ∈ WPAP(T,ρ), where ρ ∈ U∞ and f (t, ·) is uniformly continuous in each
bounded subset of  uniformly in t ∈ T; Ii is a weighted pseudo almost periodic se-
quence, Ii(x) is uniformly continuous in x ∈  uniformly in i ∈ Z, infi∈Z ti = θ > .

To investigate the existence and uniqueness of a weighted piecewise pseudo almost au-
tomorphic mild solution to Eq. (), we need the following lemma.

Lemma . Let v ∈ AA(T,X), ν ∈ AA(T,R+), ω ∈ R+
ν and (H)-(H) are satisfied. If u :

T →X is defined by

u(t) =
∫ t

–∞
T(t, s)v(s)∇s +

∑
ti<t

T(t, ti)Ii
(
v(ti)

)
, t ≥ s,

then u(·) ∈ AA(T,X).

Proof Let {sn}∞n= ⊂ 
. Since v is almost automorphic, there exists a subsequence {τn}∞n= ⊂
{sn}∞n= such that h(t) := limn→∞ v(t + τn) is well defined for each t ∈ T.
Now, we consider

u(t + τn) =
∫ t+τn

–∞
T(t + τn, s)v(s)∇s =

∫ t

–∞
T(t + τn, s + τn)v(s + τn)∇s

=
∫ t

–∞
T(t + τn, s + τn)vn(s)∇s,

where vn(s) = v(s + τn), n = , , . . . .
Since ω ∈ R+

ν , one can choose sufficiently small constant β >  such that ω∗ = βω is
ν-positive regressive. Further, noting that ê
νω∗ (t, s)( – ν(s)ω∗) = ê
νω∗ (t,�(s)), by (H)
and Lemma ., we have

∥∥u(t + τn)
∥∥ ≤

∫ t

–∞

∥∥T(t + τn, s + τn)vn(s)
∥∥∇s

≤
∫ t

–∞
Kê
νω(t + τn, s + τn)

∥∥vn(s)∥∥∇s

≤ KK∗
∫ t

–∞
ê
νω∗ (t, s)

∥∥vn(s)∥∥∇s

≤ 
 – ν̄ω∗KK∗‖v‖

∫ t

–∞
ê
νω∗

(
t,�(s)

)∇s
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=
KK∗‖v‖

( – ν̄ω∗)
ν ω∗
[
ê
νω∗ (t, –∞) – ê
νω∗ (t, t)

]

≤ KK∗( – νω∗)‖v‖
( – ν̄ω∗)ω∗ ,

where ν̄ = supt∈T ν(t), ν = inft∈T ν .
Therefore, by the condition (H), we have

T(t + τn, s + τn) → T∗(t, s), n→ ∞.

Furthermore, it is easy to see that vn(s) → h(s) as n → ∞, ∀s ∈ T and for any t ≥ s, by
Lebesgue’s dominated convergence theorem, we get

lim
n→∞u(t + τn) =

∫ t

–∞
T∗(t, s)h(s)∇s.

Moreover, we consider

u′(t + τn) =
∑

ti<t+τn

T(t + τn, ti)Ii
(
vi(ti)

)
=

∑
ti<t

T(t + τn, ti + τn)Ii
(
v(ti + τn)

)

=
∑
ti<t

T(t + τn, ti + τn)Ii(vin),

where v(ti + τn) := vin. By Lemma ., we can get

∥∥u′(t + τn)
∥∥ =

∥∥∥∥
∑

ti<t+τn

T(t + τn, ti)Ii
(
vi(ti)

)∥∥∥∥ =
∥∥∥∥
∑
ti<t

T(t + τn, ti + τn)Ii(vin)
∥∥∥∥

≤ IK
∑
ti<t

ê
νω(t + τn, ti + τn)

≤ IKK∗ ∑
ti<t

ê
νω∗ (t, ti) ≤ IKK∗

 – ê
νω∗ (θ , )
.

Since v ∈ AA(T,X), vin → h(ti), n → ∞, ∀i ∈ Z. Hence, for any t > ti, i ∈ Z, by Lebesgue’s
dominated convergence theorem, we get

lim
n→∞u′(t + τn) =

∑
ti<t

T∗(t, ti)Ii
(
h(ti)

)
.

So we have

lim
n→∞u(t + τn) = lim

n→∞u(t + τn) + lim
n→∞u′(t + τn)

is well defined for each t ∈ T. Therefore, u(·) ∈ AA(T,X). This completes the proof. �

Theorem . Let f (·,ϑ(·)) ∈ WPAA(T,ρ), where ϑ ∈ WPAA(T,ρ) and {T(t, s), t ≥ s} is
exponentially stable, ρ ∈UB. Then

F(·) :=
∫ (·)

–∞
T(·, s)f (s,ϑ(s))∇s +

∑
ti<·

T(·, ti)Ii
(
ϑ(ti)

) ∈WPAA(T,ρ).
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Proof Fix ϑ ∈ WPAA(T,X), then we have f (·,ϑ(·)) = φ(·) + φ(·), where φ ∈ AA(T,X),
φ ∈ PAA(T,X), so

∫ t

–∞
T(t, s)f

(
s,ϑ(s)

)∇s =
∫ t

–∞
T(t, s)φ(s)∇s +

∫ t

–∞
T(t, s)φ(s)∇s := I(t) + I(t)

and

∑
ti<t

T(t, ti)Ii
(
ϑ(ti)

)
=

∑
ti<t

T(t, ti)βi +
∑
ti<t

T(t, ti)γi :=ϒ(t) +ϒ(t).

By Lemma ., we can easily see that I,ϒ ∈ AA(T,X).
Moreover, we have


m(r,ρ, t)

∫ t+r

t–r

∥∥I(t)∥∥∇t

=


m(r,ρ, t)

∫ t+r

t–r

∥∥∥∥
∫ t

–∞
T(t, s)φ(s)∇s

∥∥∥∥∇t

≤ 
m(r,ρ, t)

∫ t+r

t–r
∇t

∫ t

–∞
Kê
νω(t, s)

∥∥φ(s)
∥∥∇s

=


m(r,ρ, t)

∫ t+r

t–r
∇t

(∫ t–r

–∞
Kê
νω(t, s)

∥∥φ(s)
∥∥∇s

+
∫ t

t–r
Kê
νω(t, s)

∥∥φ(s)
∥∥∇s

)

=


m(r,ρ, t)

∫ t–r

–∞

∥∥φ(s)
∥∥∇s

∫ t+r

t–r
Kê
νω(t, s)∇s

+


m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥∇s

∫ t+r

s
Kê
νω(t, s)∇t

:= I + I .

Then

I =


m(r,ρ, t)

∫ t–r

–∞

∥∥φ(s)
∥∥∇s

∫ t+r

t–r
Kê
νω(t, s)∇t

=


m(r,ρ, t)

∫ t–r

–∞

∥∥φ(s)
∥∥∇s

∫ t+r

t–r

K

 – ν(
νω)
ê
νω

(
�(t), s

)∇t

≤ 
m(r,ρ, t)

K( – νω)
∫ t–r

–∞

∥∥φ(s)
∥∥∇s

∫ t+r

t–r
êω

(
s,�(t)

)∇t

=


m(r,ρ, t)
K( – νω)

ω

∫ t–r

–∞

∥∥φ(s)
∥∥[
êω(s, t – r) – êω(s, t + r)

]∇s

≤ 
m(r,ρ, t)

K( – νω)
ω

‖φ‖
(∫ t–r

–∞
ê
νω(t – r, s)∇s –

∫ t–r

–∞
ê
νω(t + r, s)∇s

)

=


m(r,ρ, t)
K( – νω)

ω



νω

(
ê
νω(t – r, –∞) – ê
νω(t – r, t – r)

– ê
νω(t + r, –∞) + ê
νω(t + r, t – r)
) →  as r → ∞
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and

I =


m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥∇s

∫ t+r

s
Kê
νω(t, s)∇t

=


m(r,ρ, t)

∫ t+r

t–r

∥∥φ(s)
∥∥∇s

∫ t+r

s


 – ν(
νω)

ê
νω

(
�(t), s

)∇t

≤ 
m(r,ρ, t)

K( – νω)
∫ t+r

t–r

∥∥φ(s)
∥∥∇s

∫ t+r

s
êω

(
s,�(t)

)∇t

=


m(r,ρ, t)
K( – νω)

ω

∫ t+r

t–r

∥∥φ(s)
∥∥[
êω(s, s) – êω(s, t + r)

]∇s

≤ 
m(r,ρ, t)

K( – νω)
ω

∫ t+r

t–r

∥∥φ(s)
∥∥∇s.

Since φ ∈ PAA(T,ρ), we have limr→∞ 
m(r,ρ,t)

∫ t+r
t–r

‖φ(s)‖∇s = . Hence, limr→∞ I = .
It remains to show ϒ ∈ PAA(T,ρ). For any r > , there exist i(r), j(r) such that

ti(r)– < t – r ≤ ti(r) < · · · < tj(r) ≤ t + r < tj(r)+.

Since γi ∈ PAA(Z,ρ), Mγi = supi∈Z ‖γi‖ < ∞, and noting that, for a ∈ T, ê
νω(t,a) = ( –
ν(t)ω)êω(a,�(t)), we have


m(r,ρ, t)

∫ t+r

t–r

∥∥ϒ(t)
∥∥∇t

=


m(r,ρ, t)

∫ t+r

t–r

∥∥∥∥
∑
ti<t

T(t, ti)γi
∥∥∥∥∇t

≤ 
m(r,ρ, t)

∫ t+r

t–r

∑
ti<t

Kê
νω(t, ti)‖γi‖∇t

≤ 
m(r,ρ, t)

∑
ti<t–r

Kê
νω(t – r, ti)‖γi‖

×
∫ t+r

t–r
ê
νω(t, t – r)∇t

+


m(r,ρ, t)
∑

t–r<ti<t+r
‖γi‖

∫ t+r

t–r
Kê
νω(t, ti)∇t

≤ 
m(r,ρ, t)

∑
ti<t–r

K( – νω)

ω
Mγi ê
νω(t – r, ti)

+


m(r,ρ, t)
∑

t–r<ti<t+r

K( – νω)

ω
‖γi‖

≤ 
m(r,ρ, t)

KMγi ( – νω)

ω


 – ê
νω(θ , )

+
K( – νω)

ω


m(r,ρ, t)

j(r)∑
k=i(r)

‖γk‖.
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Since γi ∈ PAA(Z,ρ), for r → ∞,m(r,ρ)→ ∞, we have

lim
r→∞


m(r,ρ, t)

j(r)∑
k=i(r)

‖γk‖ = lim
r→∞

∑j(r)
k=i(r) ρ(tk)ν(tk)

j(r)∑
k=i(r)

‖γk‖ = .

Clearly, as r → ∞, one has


m(r,ρ, t)

KMγi ( – νω)
ω


 – ê
νω(θ , )

→ .

Hence

lim
r→∞


m(r,ρ, t)

∫ t+r

t–r

∥∥ϒ(t)
∥∥∇t = .

Thus,
∑

ti<· T(·, ti)Ii(ϑ(ti)) ∈ PAA(T,ρ), then F(·) ∈ WPAA(T,ρ). This completes the
proof. �

Lemma . If x ∈ PCld(T,R+) satisfies the following inequality:

x(t)≤ α +
∫
(a,t]T

p(τ )x(τ )∇τ +
∑
tk<t

βkx(tk), ∀t ∈ T,

then

x(t)≤ α
∏
tk<t

( + βk)êp (t,a), ∀t ∈ T.

Proof Define

r(t) = α +
∫
(a,t]T

p(τ )x(τ )∇τ +
∑
tk<t

βkx(tk), ∀t ∈ T.

Consider
⎧⎨
⎩
r∇ (t) = p(t)x(t)≤ p(t)r(t), t �= tk ,

r(a) = α, r(t+k ) = ( + βk)r(tk).

For t ∈ (a, t]T, we can calculate that

[
rê
νp (·, t)

]∇ = r∇ (t)e
νp
(
�(t), t

)
+ r(t)(
νp)(t)ê
νp (t, t)

= r∇ (t)e
νp
(
�(t), t

)
+ r(t)

(
p)(t)
 – ν(t)(
p)(t)

ê
νp
(
�(t), t

)

=
[
r∇ (t) –

(
ν(
νp)
)
(t)r(t)

]
ê
νp

(
�(t), t

)
=

[
r∇ (t) – p(t)r(t)

]
ê
νp

(
�(t), t

)
≤ .

http://www.advancesindifferenceequations.com/content/2014/1/153


Wang and Agarwal Advances in Difference Equations 2014, 2014:153 Page 23 of 29
http://www.advancesindifferenceequations.com/content/2014/1/153

This implies that x(t)≤ αêp (t,a). Further we have

r(t) ≤ r
(
t+i

)
êp (t, ti) ≤ α( + βi)

∏
tk<ti

( + βk)êp (ti,a)êp (t, ti)

= α
∏
tk<t

( + βk)êp (t,a), t ∈ (ti, ti+]T.

Thus

x(t)≤ α
∏
tk<t

( + βk)êp (t,a), t ∈ T.

This completes the proof. �

The following existence result is based on the contraction principle.

Theorem . Assume the following conditions hold:

(A) The family {A(t) : t ∈ T} of operators in X generates an exponentially stable evolution
system {T(t, s) : t ≥ s}, i.e., there exist K >  and ω >  such that

∥∥T(t, s)∥∥B(X) ≤ Kê
νω(t, s), t ≥ s,

and for any sequence {sn} ⊂ 
, there exists a subsequence {s′n} ⊂ {sn} such that

lim
n→∞T

(
t + s′n, s + s′n

)
= T∗(t, s) is well defined for each t, s ∈ T, t ≥ s.

(A) f ∈ WPAA(T× ,ρ) and f satisfies the Lipschitz condition with respect to the second
argument, i.e.,

∥∥f (t,x) – f (t, y)
∥∥ ≤ L‖x – y‖, t ∈ T,x, y ∈ .

(A) Ii is a weighted pseudo almost periodic sequence, and there exists a number L >  such
that

∥∥Ii(x) – Ii(y)
∥∥ ≤ L‖x – y‖

for all x, y ∈ , i ∈ Z.

Assume that

KL( – νω)
ω

+
KL

 – ê
νω(θ , )
< ,

then Eq. () has a unique weighted piecewise pseudo almost automorphic mild solution.

Proof Consider the nonlinear operator � given by

�ϕ =
∫ t

–∞
T(t, s)f

(
s,ϕ(s)

)∇s +
∑
ti<t

T(t, ti)Ii
(
ϕ(ti)

)
.

By Theorem ., we see that � mapsWPAA(T,ρ) intoWPAA(T,ρ).
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It suffices now to show that the operator � has a fixed point inWPAA(T,ρ). For ϕ,ϕ ∈
WPAA(T,ρ), one has the following:

∥∥�ϕ(t) – �ϕ(t)
∥∥ =

∥∥∥∥
∫ t

–∞
T(t, s)

[
f
(
s,ϕ(s)

)
– f

(
s,ϕ(s)

)]∇s

+
∑
ti<t

T(t, ti)
[
Ii
(
ϕ(ti)

)
– Ii

(
ϕ(ti)

)]∥∥∥∥

≤
∫ t

–∞
Kê
νω(t, s)

∥∥f (s,ϕ(s)
)
– f

(
s,ϕ(s)

)∥∥∇s

+
∑
ti<t

Kê
νω(t, ti)
∥∥Ii(ϕ(ti)

)
– Ii

(
ϕ(ti)

)∥∥

≤
∫ t

–∞
Kê
νω(t, s)L

∥∥ϕ(s) – ϕ(s)
∥∥∇s

+
∑
ti<t

Kê
νω(t, ti)L
∥∥ϕ(ti) – ϕ(ti)

∥∥

≤
[
KL( – νω)

ω
+

KL
 – ê
νω(θ , )

]
‖ϕ – ϕ‖.

Since KL(–νω)
ω

+ KL
–ê
νω(θ ,) < , � is a contradiction. Hence, � has a fixed point in

WPAA(T,ρ), then Eq. () has a unique weighted piecewise pseudo almost automorphic
mild solution. This completes the proof. �

Finally, we investigate the exponential stability of a weighted piecewise pseudo almost
automorphic mild solution to Eq. (). By using the Gronwall-Bellman inequality (see
Lemma .) and the Lipschitz condition, it can be formulated as follows.

Theorem . Suppose the conditions of Theorem . hold. Assume further that (
νω)⊕ν

p < , where p = KL
–ν̄ω

, ν̄ = supt∈T ν(t). Then Eq. () has a weighted piecewise pseudo almost
automorphic mild solution which is exponentially stable.

Proof By Theorem ., we know that Eq. () has a weighted piecewise pseudo almost au-
tomorphic mild solution u(t), by using integral form of Eq. ():

u(t) = T(t, s)u(s) +
∫ t

s
T(t, s)f

(
s,u(s)

)∇s +
∑
s<ti<t

T(t, ti)Ii
(
u(ti)

)
,

where t > s, s �= ti, i ∈ Z.
Let u(t) = u(t, s) and v(t) = v(t, s) be two solutions of Eq. (), then

u(t) = T(t, s)u(s) +
∫ t

s
T(t, s)f

(
s,u(s)

)∇s +
∑
s<ti<t

T(t, ti)Ii
(
u(ti)

)
,

v(t) = T(t, s)v(s) +
∫ t

s
T(t, s)f

(
s, v(s)

)∇s +
∑
s<ti<t

T(t, ti)Ii
(
v(ti)

)
.
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Hence,

∥∥u(t) – v(t)
∥∥ ≤ ∥∥T(t, s)[u(s) – v(s)

]∥∥
+

∥∥∥∥
∫ t

s
T(t, s)

[
f
(
s,u(s)

)
– f

(
s, v(s)

)]∇s
∥∥∥∥

+
∥∥∥∥

∑
s<ti<t

T(t, ti)
[
Ii
(
u(ti)

)
– Ii

(
v(ti)

)]∥∥∥∥
≤ ∥∥T(t, s)∥∥∥∥u(s) – v(s)

∥∥
+

∫ t

s

∥∥T(t, s)∥∥∥∥f (s,u(s)) – f
(
s, v(s)

)∥∥∇s

+
∑
s<ti<t

∥∥T(t, ti)∥∥∥∥[
Ii
(
u(ti)

)
– Ii

(
v(ti)

)]∥∥

≤ Kê
νω(t, s)
∥∥u(s) – v(s)

∥∥
+

∫ t

s
KLê
νω(t, s)

∥∥u(s) – v(s)
∥∥∇s

+
∑
s<ti<t

KLê
νω(t, ti)
∥∥u(ti) – v(ti)

∥∥.

Let y(t) = ‖u(t) – v(t)‖êω(t, t) and it follows that

y(t) ≤ Ky(s) +KL


 – ν̄ω

∫ t

s
y(s)∇s +KL

∑
s<ti<t

y(ti),

from Lemma ., one has

y(t) ≤ Ky(s)
∏

s<ti<t
KLêp(t, t)

or

∥∥u(t) – v(t)
∥∥ ≤ K

∥∥u(s) – v(s)
∥∥ ∏
s<ti<t

KLêp(t, t)ê(
νω)⊕νp(t, t),

where

p =
KL
 – ν̄ω

.

Hence, Eq. () has a weighted piecewise pseudo almost automorphic mild solution which
is exponentially stable. This completes the proof. �

Example . Let T be an almost periodic time scale with ν < 
 and u : T×T →R. Con-

sider the following problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂
∇t

u(t,x) = ∂

∇x
u(�(t),x) + 

 (sin t + sin
√
t + g(t)) cosu(t,x),

t,x ∈ T, t �= ti,x ∈ [,π ]T,

�u(ti,x) = βiu(ti,x), i ∈ Z,x ∈ [,π ]T,

u(t, ) = u(t,π ) = , t ∈ T,

()
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where g ∈UPC(T,R) satisfies |g(t)| ≤  (t ∈ T) and ρ(t) = | sin t|+, βi = 
 (sin i+ sin

√
i+

g(i)) and ti = i + 
 | sin i – sin

√
i|, i ∈ Z.

Define X = L[,π ]T, let Au = ∂

∇x
u(t,x), u ∈ D(A) = H

[,π ]T ∩ H[,π ]T. Clearly, it
follows from the same discussion as in Section . in [] that one can easily see that the
evolution system {T(t, s) : t ≥ s} satisfies ‖T(t, s)‖ ≤ ê
ν



(t, s) (t ≥ s) with K = , ω = /.

Furthermore, by Definition ., it is easy to check that {tji}, i, j ∈ Z, is an equipotentially
almost automorphic sequence and

ti = ti+ – ti =  +


∣∣sin(i + ) – sin

√
(i + )

∣∣ – 

| sin i – sin

√
i|

≥  –


∣∣sin(i + ) – sin i –

[
sin

√
(i + ) – sin

√
i

]∣∣

≥  –



∣∣∣∣sin 

cos

i + 


∣∣∣∣ – 


∣∣∣∣sin
√



cos

√
(i + )



∣∣∣∣
≥  –



sin



–


sin

√



>


.

Hence, θ = infi∈Z(ti+ – ti) > 
 > . Let f (t,u) = 

 (sin t + sin
√
t + g(t)) cosu, Ii(u) = βiu.

Clearly, both f and Ii satisfy the assumptions given in Theorem . and Theorem . with
L = L = 

 . Moreover,

KL( – νω)
ω

+
KL

 – ê
νω(θ , )
<


+


( – e–/)

≈ . < ,

and since ν < 
 , one has  – νω > 

 , so

(
νω)⊕ν p = –
ω

 – νω
+

KL
 – ν̄ω

+
KLων

( – νω)( – νω)
≈ –. < .

Therefore, Eq. () has a weighted piecewise pseudo almost automorphic mild solution
which is exponentially stable.

5 Conclusion and further discussion
In this paper, the concept of weighted piecewise pseudo almost automorphic functions on
time scales is introduced and discussed. It is well known that the �-dynamic equations
are more popular in the references, however, ∇-dynamic equations are also interesting
in both theory and practice. Therefore, we choose to investigate the weighted piecewise
pseudo almost automorphic mild solutions to Eq. (). All obtained results are essentially
new.
Moreover, Definition . gives the expression of mild solutions to Eq. (). It is worth

emphasizing that the methods used in this paper can also be applied to study the
weighted piecewise pseudo almost automorphic mild solutions to other abstract impul-
sive ∇-dynamic equations and �-dynamic equations. Now, similar to the discussion be-
lowDefinition ., we can list the mild solutions to three representative classes of abstract
impulsive dynamic equations on time scales.
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Type (i). Consider a ∇-dynamic equation as follows:

⎧⎨
⎩
x∇ (t) = A(t)x(t) + f (t,x(t)), t ∈ T, t �= ti, i ∈ Z,

�x(ti) = x(t+i ) – x(t–i ) = Ii(x(ti)), t = ti,
()

where A ∈ PCld(T,X) is a linear operator in the Banach space X and f ∈ PCld(T × X,X).
Then, for any t ∈ T, t > c, c �= ti, i ∈ Z, Eq. () has the following mild solution:

x(t) = T(t, c)x(c) +
∫ t

c
T

(
t,�(s)

)
f
(
s,x(s)

)∇s +
∑
c<ti<t

T(t, ti)Ii
(
x(ti)

)
.

Type (ii). Consider a �-dynamic equation as follows:

⎧⎨
⎩
x�(t) = A(t)xσ + f (t,x(t)), t ∈ T, t �= ti, i ∈ Z,

�x(ti) = x(t+i ) – x(t–i ) = Ii(x(ti)), t = ti,
()

where A ∈ PCrd(T,X) is a linear operator in the Banach space X and f ∈ PCrd(T × X,X),
xσ = x(σ (t)). Then, for any t ∈ T, t > c, c �= ti, i ∈ Z, Eq. () has the followingmild solution:

x(t) = T(t, c)x(c) +
∫ t

c
T(t, s)f

(
s,x(s)

)
�s +

∑
c<ti<t

T(t, ti)Ii
(
x(ti)

)
.

Type (iii). Consider a �-dynamic equation as follows:

⎧⎨
⎩
x�(t) = A(t)x(t) + f (t,x(t)), t ∈ T, t �= ti, i ∈ Z,

�x(ti) = x(t+i ) – x(t–i ) = Ii(x(ti)), t = ti,
()

where A ∈ PCrd(T,X) is a linear operator in the Banach space X and f ∈ PCrd(T × X,X).
Then, for any t ∈ T, t > c, c �= ti, i ∈ Z, Eq. () has the following mild solution:

x(t) = T(t, c)x(c) +
∫ t

c
T

(
t,σ (s)

)
f
(
s,x(s)

)
�s +

∑
c<ti<t

T(t, ti)Ii
(
x(ti)

)
.

By the same discussionmethod in this paper, one can show that the above threemild so-
lutions are weighted piecewise pseudo almost automorphic solutions to their correspond-
ing abstract impulsive dynamic equations on time scales. For example, in [], the concept
of rd-piecewise continuous functions is introduced, by the same discussionmethod in this
paper, the weighted piecewise pseudo almost automorphic mild solutions to Eq. () and
Eq. () can be studied. Furthermore, all the results can be applied to study almost au-
tomorphic solutions to impulsive dynamic models such as impulsive neural networks or
biological models, economical models with impulsive effects on time scales.
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