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1 Introduction
In this paper, we investigate the existence of solutions for a fractional boundary value prob-
lem (P) on the half line:

{
cDq

+u(t) = f (t,u(t),u′(t)), t > ,
u() = u′′() = , limt→∞ cDq–

+ u(t) = αu(),
(P)

where f : [,∞[×R×R →R is a given function,  < q < , α > , cDq
+ denotes the Caputo

fractional derivative. Note that few papers in the literature dealing with fractional differ-
ential equations considered the nonlinearity f in (P) depending on the derivative of u.
Since many problems in the natural sciences require a notion of positivity (only non-

negative densities, population sizes or probabilities make sense in real life), in the present
study we discuss the existence of positive solutions for the problem (P). The proofs of the
main results are based on the properties of the associatedGreen function, Leray-Schauder
nonlinear alternative andGuo-Krasnosel’skii fixed point theoremon cone.Differentmeth-
ods are applied to investigate such boundary value problems, we can cite fixed point the-
ory, topological degreemethods,Mawhin theory, upper and lower solutions. . . ; see [–].
Fractional boundary value problems on infinite intervals often appear in applied math-

ematics and physics. They can model some physical phenomena, such as the models of
gas pressure in a semi-infinite porous medium; see []. The population growth model
can also be characterized by a nonlinear fractional Volterra integrodifferential equation
on the half line []. For more results on fractional differential equations in science and
engineering and their applications we refer to [–].
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Fractional boundary value problems on infinite intervals have been investigated bymany
authors; see [, , , , , –]. In [], the authors proved the existence of unbounded
solutions for the following nonlinear fractional boundary value problem:

{
Dα

+u(t) + f (t,u(t)) = , t > ,
u() = , limt→∞ Dα–

+ u(t) = αu(η),

by using Leray-Schauder nonlinear alternative. Here  < α ≤ , and Dq
+ denotes the

Riemann-Liouville fractional derivative.
In [] by means of fixed point theorem on cone, the authors discussed the exis-

tence of multiple positive solutions form-point fractional boundary value problems with
p-Laplacian operator on infinite interval.
Further, in [], the authors studied the following second order nonlinear differential

equation on the half line:
{
u′′(t) + q(t)f (t,u(t),u′(t)) = , t > ,
αu() – βu′() = , u′(∞) = u∞ ≥ .

Applying a fixed point theorem and the monotone iterative technique, they proved the
existence of positive solution.
The organization of this paper is as follows. In Section , we provide necessary back-

ground and properties of the Green function. The existence result is established under
some sufficient conditions on the nonlinear term f . Section  is devoted to the existence
of positive solutions on a cone. We conclude the paper with some examples.

2 Existence results
For the convenience of the readers, we first present some useful definitions and funda-
mental facts of fractional calculus theory, which can be found in [, ].

Definition  The Riemann-Liouville fractional integral of order α of a function g is de-
fined by

Iαa+g(t) =


�(α)

∫ t

a

g(s)
(t – s)–α

ds,

where �(α) =
∫ +∞
 e–ttα– dt is the Gamma function, α > .

Definition  The Caputo fractional derivative of order q of a function g is defined by

cDq
a+g(t) =


�(n – q)

∫ t

a

g(n)(s)
(t – s)q–n+

ds,

where n = [q] +  ([q] is the entire part of q).

Lemma  For q > , g ∈ C([, ]), the homogeneous fractional differential equation
cDq

a+g(t) =  has a solution

g(t) = c + ct + ct + · · · + cntn–,

where ci ∈R, i = , . . . ,n, and n = [q] + .
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Lemma Let p,q ≥ , f ∈ L[a,b].Then I
p
+ I

q
+ f (t) = Ip+q+ f (t) = Iq+ I

p
+ f (t) and cDq

a+ I
q
+ f (t) =

f (t), for all t ∈ [a,b].

Lemma  Let α,β >  and n = [α] + , then the following relations hold:

cDα
a+ t

β– =
�(β)

�(β – α)
tβ–α–, β > n,

cDα
a+ t

k = , k = , , , . . . ,n – .

To prove the main results of this paper we need the following lemma.

Lemma  Let y ∈ C(R+,R) with
∫ ∞
 y(s)ds < ∞, the linear nonhomogeneous boundary

value problem

cDq
a+u(t) = y(t), t > ,

u() = u′′() = , lim
t→∞

cDq–
+ u(t) = αu(),

has a unique solution

u(t) =
∫ ∞


G(t, s)y(s)ds,

where

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(t–s)q–
�(q) + t

α
– t

�(q) ( – s)q–, s ≤min(t, ),
(t–s)q–

�(q) + t
α
,  ≤ s ≤ t,

t
α
– t

�(q) ( – s)q–, t ≤ s ≤ ,
t
α
, s ≥max(t, ).

Proof By Lemmas  and , we obtain

u(t) = Iq+y(t) + a + bt + ct.

The boundary conditions u() = u′′() = , imply that

u(t) = Iq+y(t) + bt;

applying Lemma  and the condition limt→∞ cDq–
+ u(t) = αu(), we obtain

lim
t→∞

cDq–
+ u(t) = lim

t→∞
(
I+y(t) + cDq–

+ (bt)
)

= lim
t→∞ I+y(t) =

∫ ∞


y(s)ds,

u() = Iq+y() + b,

consequently

b =

α

∫ ∞


y(s)ds – Iq+y() =


α

∫ ∞


y(s)ds –


�(q)

∫ 


( – s)q–y(s)ds,
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substituting b by its value, it yields

u(t) =


�(q)

[∫ t


(t – s)q–y(s)ds – t

∫ 


( – s)q–y(s)ds

]
+

t
α

∫ ∞


y(s)ds.

The proof is complete. �

Lemma  Assume that  < α ≤ �(q), then for all s, t ≥  we have

 ≤ G(t, s)
 + tq–

≤ 
α
,  ≤ Gt(t, s)

 + tq–
≤ 

α�(q – )
.

Proof Simple computations give

Gt(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(t–s)q–
�(q–) + 

α
– 

�(q) ( – s)q–, s≤min(t, ),
(t–s)q–
�(q–) + 

α
,  ≤ s≤ t,


α
– 

�(q) ( – s)q–, t ≤ s≤ ,

α
, s≥max(t, ).

Let us consider the case s≤min(t, ), then we get

G(t, s)≥ t
α
–

t
�(q)

( – s)q– ≥ t
(

�(q) – α

α�(q)

)
≥ ,

Gt(t, s)≥ 
α
–


�(q)

( – s)q– ≥ .

Firstly if s≤ t ≤ , then

G(t, s)
 + tq–

≤ (t – s)q– + t
α( + tq–)

≤ 
α
,

Gt(t, s)
 + tq–

≤ α(t – s)q– + �(q – )
α( + tq–)�(q – )

≤ α + �(q – )
α�(q – )( + tq–)

≤ 
α�(q – )

.

Secondly if s≤ ≤ t, then

G(t, s)
 + tq–

≤ (t – s)q– + t
α( + tq–)

≤ tq– + t
α( + tq–)

≤ tq–

α( + tq–)
≤ 

α
,

Gt(t, s)
 + tq–

≤ α(t – s)q– + �(q – )
α( + tq–)�(q – )

≤ 
α�(q – )

.

Applying the same techniques to the other cases, the conclusion follows. �

In this paper, we will use the Banach space E defined by

E =
{
u ∈ C(R+,R), limt→∞

u(t)
 + tq–

< ∞, lim
t→∞

u′(t)
 + tq–

<∞
}

and equipped with the norm ‖u‖ = max(‖u‖∞,‖u′‖∞), where ‖u‖∞ = supt≥
|u(t)|
+tq– and

R+ = [,∞[.
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Define the integral operator T : E → E by

Tu(t) =
∫ ∞


G(t, s)f

(
s,u(s),u′(s)

)
ds,

so we have transformed the problem (P) to a Hammerstein integral equation by using the
Green function.

Lemma  The function u ∈ E is solution of the boundary value problem (P) if and only if
Tu(t) = u(t), for all t ∈R+.

From this we see that to solve the problem (P) it remains to prove that the map T has a
fixed point in E. Since the Arzela-Ascoli theorem cannot be applied in this situation, then,
to prove that T is completely continuous, we need the following compactness criterion:

Lemma  [] Let V = {u ∈ C∞,‖u‖ < l, where l > }, V (t) = { u(t)
+tq– ,u ∈ V }, V ′(t) =

{ u′(t)
+tq– ,u ∈ V }. V is relatively compact in E, if V (t) and V ′(t) are both equicontinuous on
any finite subinterval of R+ and equiconvergent at ∞, that is for any ε > , there exists
η = η(ε) >  such that

∣∣∣∣ u(t)
 + tq–

–
u(t)
 + tq–

∣∣∣∣ < ε,
∣∣∣∣ u′(t)
 + tq–

–
u′(t)
 + tq–

∣∣∣∣ < ε,

∀u ∈ V , t, t ≥ η (uniformly according to u).

We recall that a continuous mapping F from a subset M of a normed space X into an-
other normed space Y is called completely continuous iff F maps bounded subset of M
into relatively compact subset of Y .

Lemma  Assume that f ∈ C(R+ ×R×R,R), f (t, , ) 
=  on any subinterval of R+ and
there exist non-negative functions h,k ∈ L(R+,R+) and ψ,ψ ∈ C(R,R∗

+) nondecreasing
on R+, such that

∣∣f (t, ( + tq–
)
x,

(
 + tq–

)
x
)∣∣ ≤ k(t)ψ

(|x|) + h(t)ψ
(|x|), ∀(t,x,x) ∈R+ ×R

, (.)

then T is completely continuous. (Here R∗
+ = ],∞[.)

Proof The proof will be done in some steps.
Step : T is continuous. Let (un)n∈N ∈ E be a convergent sequence to u in E. Let r >

max(‖u‖∞, sup‖un‖∞) and r > max(‖u′‖∞, sup‖u′
n‖∞), then we obtain with the help of

Lemma , hypothesis (.) and some elementary inequalities

∫ ∞



G(t, s)
 + tq–

∣∣f (s,u(s),u′(s)
)
– f

(
s,un(s),u′

n(s)
)∣∣ds

≤ 
α

∫ ∞



∣∣∣∣f
(
s,
( + tq–)u(s)

 + tq–
,
( + tq–)u′(s)

 + tq–

)∣∣∣∣
–

∣∣∣∣f
(
s,
( + tq–)un(s)

 + tq–
,
( + tq–)u′

n(s)
 + tq–

)∣∣∣∣ds
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≤ 
α

∫ ∞



(∣∣∣∣f
(
s,
( + tq–)u(s)

 + tq–
,
( + tq–)u′(s)

 + tq–

)∣∣∣∣
+

∣∣∣∣f
(
s,
( + tq–)un(s)

 + tq–
,
( + tq–)u′

n(s)
 + tq–

)∣∣∣∣
)
ds

≤ 
α

∫ ∞


k(s)ψ

(
u(s)

 + tq–

)
+ h(s)ψ

(
u′(s)

 + tq–

)
ds

+

α

∫ ∞


k(s)ψ

(
un(s)
 + tq–

)
+ h(s)ψ

(
u′
n(s)

 + tq–

)
ds

≤ 
α

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
< ∞.

Using similar techniques we prove that

∫ ∞



Gt(t, s)
 + tq–

∣∣f (s,u(s),u′(s)
)
– f

(
s,un(s),u′

n(s)
)∣∣ds < ∞,

hence the integrals are convergent. With the help of Lebesgue dominated convergence
theorem and the fact that f is continuous we get

‖Tun – Tu‖∞ = sup
t≥

∫ ∞



G(t, s)
 + tq–

∣∣f (s,u(s),u′(s)
)
– f

(
s,un(s),u′

n(s)
)∣∣ds

→  as n→ ∞,

∥∥T ′un – T ′u
∥∥∞ = sup

t≥

∫ ∞



Gt(t, s)
 + tq–

∣∣f (s,u(s),u′(s)
)
– f

(
s,un(s),u′

n(s)
)∣∣ds

→  as n → ∞,

therefore

‖Tun – Tu‖ → , as n→ ∞.

Step : T is relatively compact. Let Br = {u ∈ E,‖u‖ < r}, first let us show that TBr is
uniformly bounded. Let u ∈ Br , taking (.) into account and the fact that ψ and ψ are
nondecreasing on R+, it yields

|Tu(t)|
 + tq–

≤ 
α

∫ ∞



∣∣f (s,u(s),u′(s)
)∣∣ds

=

α

∫ ∞



∣∣∣∣f
(
s,

(
 + sq–

) u(s)
 + sq–

,
(
 + sq–

) u′(s)
 + sq–

)∣∣∣∣ds
≤ 

α

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
.

Consequently

‖Tu‖∞ ≤ 
α

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/154
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Similarly, we prove that

∥∥T ′u
∥∥∞ ≤ 

α�(q – )

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
; (.)

this along with (.) yields

‖Tu‖ ≤ 
α�(q – )

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
(.)

thus TBr is uniformly bounded.
Next, we show that TBr is equicontinuous on any compact interval of R+. Let u ∈ Br ,

t, t ∈ [a,b],  ≤ a < b <∞, t ≤ t we have∣∣∣∣ Tu(t) + tq–
–

Tu(t)
 + tq–

∣∣∣∣
≤

∫ ∞



∣∣∣∣G(t, s) + tq–
–
G(t, s)
 + tq–

∣∣∣∣∣∣f (s,u(s),u′(s)
)∣∣ds

≤
∫ ∞



|G(t, s) –G(t, s)|
 + tq–

∣∣f (s,u(s),u′(s)
)∣∣ds

+
∫ ∞



G(t, s)(t
q–
 – tq– )

( + tq– )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

≤ 
α

(
(t – t)
 + tq–

+
(tq– – tq– )

( + tq– )( + tq– )

)(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
,

which approaches zero uniformly when t → t. On the other hand we have

∣∣∣∣T ′u(t)
 + tq–

–
T ′u(t)
 + tq–

∣∣∣∣
≤

∫ ∞



∣∣∣∣Gt(t, s)
 + tq–

–
Gt(t, s)
 + tq–

∣∣∣∣∣∣f (s,u(s),u′(s)
)∣∣ds

≤
∫ ∞



|Gt(t, s) –Gt(t, s)|
 + tq–

∣∣f (s,u(s),u′(s)
)∣∣ds

+
∫ ∞



Gt(t, s)(t
q–
 – tq– )

( + tq– )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds. (.)

Let us estimate the second integral on the right hand side of the inequality (.):

∫ ∞



Gt(t, s)(t
q–
 – tq– )

( + tq– )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

≤ 
α�(q – )

(tq– – tq– )
( + tq– )( + tq– )

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
,

which approaches zero uniformly when t → t. Now we analyze the first integral on the
right hand side of inequality (.) in different cases when the compact [a,b] contains  or
not.

http://www.advancesindifferenceequations.com/content/2014/1/154


Guezane-Lakoud and Kılıçman Advances in Difference Equations 2014, 2014:154 Page 8 of 15
http://www.advancesindifferenceequations.com/content/2014/1/154

If t < t ≤ , then
∫ ∞



|Gt(t, s) –Gt(t, s)|
 + tq–

∣∣f (s,u(s),u′(s)
)∣∣ds

=
∫ t



|(t – s)q– – (t – s)q–|
�(q – )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

+
∫ t

t

(t – s)q–

�(q – )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

≤ (q – )(t – t)
�(q – )( + tq– )

(
ψ(r)

∫ t


k(s)ds +ψ(r)

∫ t


h(s)ds

)

+


�(q – )( + tq– )

(
ψ(r)

∫ t

t
k(s)ds +ψ(r)

∫ t

t
h(s)ds

)
,

which approaches zero uniformly when t → t.
If t < ≤ t, then∫ ∞



|Gt(t, s) –Gt(t, s)|
 + tq–

∣∣f (s,u(s),u′(s)
)∣∣ds

=
∫ t



(t – s)q– – (t – s)q–

�(q – )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

+
∫ t

t

(t – s)q–

�(q – )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

≤ (t – t)q–

�(q – )( + tq– )

(
ψ(r)

∫ t


k(s)ds +ψ(r)

∫ t


h(s)ds

)

+
(t)q–

�(q – )( + tq– )

(
ψ(r)

∫ t

t
k(s)ds +ψ(r)

∫ t

t
h(s)ds

)

→ , uniformly as t → t.

If  ≤ t < t, then∫ ∞



|Gt(t, s) –Gt(t, s)|
 + tq–

∣∣f (s,u(s),u′(s)
)∣∣ds

=
∫ t



(t – s)q– – (t – s)q–

�(q – )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

+
∫ t

t

(t – s)q–

�(q – )( + tq– )

∣∣f (s,u(s),u′(s)
)∣∣ds

≤ (t – t)q–

�(q – )( + tq– )

(
ψ(r)

∫ t


k(s)ds +ψ(r)

∫ t


h(s)ds

)

+
tq–

�(q – )( + tq– )

(
ψ(r)

∫ t

t
k(s)ds +ψ(r)

∫ t

t
h(s)ds

)

→ , uniformly as t → t.

Thus T is equicontinuous on the compact [a,b].
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Step : T is equiconvergent at ∞. Since

∫ ∞



∣∣f (s,u(s),u′(s)
)∣∣ds≤

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
< ∞

we have

lim
t→+∞

∣∣∣∣ Tu(t)
 + tq–

∣∣∣∣ ≤ 
�(q)

∫ ∞



∣∣f (s,u(s),u′(s)
)∣∣ds <∞, lim

t→+∞

∣∣∣∣ T ′u(t)
 + tq–

∣∣∣∣ = ,

consequently T is equiconvergent at ∞. The proof is complete. �

Now, we can give an existence result.

Theorem  Assume that the hypotheses of Lemma  hold and that there exists r > ,
such that


α�(q – )

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
< r. (.)

Then the fractional boundary value problem (P) has at least one nontrivial solution u∗ ∈ E.

To prove this theorem, we apply the Leray-Schauder nonlinear alternative.

Lemma  [] Let F be a Banach space and � a bounded open subset of F ,  ∈ �. Let
T : � → F be a completely continuous operator. Then either there exist x ∈ ∂�, λ > , such
that T(x) = λx, or there exists a fixed point x∗ ∈ � of T .

Proof of Theorem  From the proof of Lemma , we know that T is a completely contin-
uous operator. Now we apply the nonlinear alternative of Leray-Schauder to prove that T
has at least one nontrivial solution in E. Let u ∈ ∂Br , such that u = λTu,  < λ < ; we get
with the help of (.):

‖u‖ = λ‖Tu‖ ≤ ‖Tu‖ ≤ 
α�(q – )

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
. (.)

This together with (.) implies

r = ‖u‖ ≤ 
α�(q – )

(
ψ(r)

∫ ∞


k(s)ds +ψ(r)

∫ ∞


h(s)ds

)
< r,

which contradicts the fact that u ∈ ∂Br . Lemma  allows one to conclude that the operator
T has a fixed point u∗ ∈ Br and then the fractional boundary value problem (P) has a
nontrivial solution u∗ ∈ E. The proof is complete. �

3 Positive solutions
To study the existence of positive solution of the problem (P), first, we will introduce a
positive cone constituted of continuous positive functions or some suitable subset of it.
Second, we will impose suitable assumptions on the nonlinear terms such that the hy-
potheses of the cone theorem are satisfied. Third, we will apply a fixed point theorem to
conclude the existence of a positive solution in the annular region.
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Definition  A function u is called positive solution of the problem (P) if u(t) ≥ ,
∀t ∈R+, and it satisfies the boundary conditions in (P).

Definition  A nonempty subset P of a Banach space E is called a cone if P is convex,
closed, and satisfies the conditions

(i) αx ∈ P for all x ∈ P and α ∈ R+;
(ii) x; –x ∈ P imply x = .

Lemma  Assume that  < α < �(q), then for  < τ ≤ t ≤ τ and s >  we have

G(t, s)
 + tq–

≥ γ τ

 + τ
q–


and
Gt(t, s)
 + tq–

≥ γ

 + τ
q–


,

where γ = 
α
– 

�(q) > .

Proof The proof is easy, we omit it. �

Let us make the following hypotheses on the nonlinear term f :
(H) f ∈ C(R

+,R+),
∫ ∞
 f (t,u, v)dt < ∞, f (t,u, v) = a(t)g(t,u, v), where a ∈ L(R+,R+),

g ∈ C(R
+,R+) and  <

∫ τ
τ

a(t)dt < ∞.
Define the cone K by

K =
{
u ∈ E,u(t)≥ ,u′(t) ≥ ,∀t ≥ , min

t∈[τ,τ]
u(t) + u′(t)
 + tq–

≥ γ‖u‖
}
,

where γ = γ α(+τ)�(q–)
(+τ )

.

Lemma  We have TK ⊂ K .

Proof Taking Lemma  into account, we get

Tu(t)
 + tq–

≤ 
α

∫ ∞


f
(
s,u(s),u′(s)

)
ds,

T ′u(t)
 + tq–

≤ 
α�(q – )

∫ ∞


f
(
s,u(s),u′(s)

)
ds,

thus

‖Tu‖ ≤ 
α�(q – )

∫ ∞


f
(
s,u(s),u′(s)

)
ds.

Lemma  implies for all t ∈ [τ, τ]

Tu(t)
 + tq–

≥ γ τ

 + τ
q–


∫ ∞


f
(
s,u(s),u′(s)

)
ds≥ γατ�(q – )

( + τ
q–
 )

‖Tu‖,

T ′u(t)
 + tq–

≥ γ

 + τ
q–


∫ ∞


f
(
s,u(s),u′(s)

)
ds≥ γα�(q – )

( + τ
q–
 )

‖Tu‖.

Therefore,

min
t∈[τ,τ]

Tu(t) + T ′u(t)
 + tq–

≥ γα( + τ)�(q – )
( + τ

q–
 )

‖Tu‖. �
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Let us introduce the following notation:

Aδ = lim
u+v→δ

sup
t≥

g(t, ( + tq–)u, ( + tq–)v)
u + v

,

Aδ = lim
u+v→δ

inf
t≥

g(t, ( + tq–)u, ( + tq–)v)
u + v

(
δ = + or +∞)

.

Theorem  Under the hypothesis (H) and if  < α < �(q), then the fractional boundary
value problem (P) has at least one positive solution in the case A =  and A∞ =∞.

To prove Theorem , we apply the well-known Guo-Krasnosel’skii fixed point theorem
on cone.

Theorem  [, ] Let E be a Banach space, and let K ⊂ E, be a cone. Assume � and
� are open subsets of E with  ∈ �, � ⊂ � and let

A : K ∩ (�\�) → K ,

be a completely continuous operator such that
(i) (Expansive form) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or
(ii) (Compressive form) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then A has a fixed point in K ∩ (�\�).

Proof of Theorem  From A = , we deduce that for any ε > , there exists R > , such
that if  < u + v ≤ R, then g(t, ( + tq–)u, ( + tq–)v) ≤ ε(u + v), ∀t ≥ . Let � = {u ∈
E,‖u‖ < R

 } and u ∈ K ∩ ∂�, by Lemma  we get

Tu(t)
 + tq–

≤ 
α

∫ ∞


a(s)g

(
s,u(s),u′(s)

)
ds

=

α

∫ ∞


a(s)g

(
s,

(
 + sq–

) u(s)
 + sq–

,
(
 + sq–

) u′(s)
 + sq–

)
ds

≤ ε
α

∫ ∞


a(s)

(
u(s)

 + sq–
+

u′(s)
 + sq–

)
ds

≤ ε

α
‖u‖

∫ ∞


a(s)ds.

Similarly we obtain

T ′u(t)
 + tq–

≤ ε
α�(q – )

‖u‖
∫ ∞


a(s)ds,

therefore,

‖Tu‖ ≤ ε
α�(q – )

‖u‖
∫ ∞


a(s)ds.

Choosing ε ≤ α�(q–)

∫ ∞
 a(s)ds , it yields ‖Tu‖ ≤ ‖u‖, for any u ∈ K ∩ ∂�.
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Now, since A∞ =∞, then for anyM > , there exists R > , such that ∀t ≥ 

g
(
t,

(
 + tq–

)
u,

(
 + tq–

)
v
) ≥M(u + v)

for u + v ≥ R. Let R >max{R , R
γ

} and denote by � = {u ∈ E : ‖u‖ < R}. For u ∈ K ∩ ∂�

and t ∈ [τ, τ], we obtain

u(t) + u′(t)
 + tq–

≥ min
[τ,τ]

u(t) + u′(t)
 + tq–

≥ γ‖u‖ = γR > R.

Using Lemma  and the fact that u ∈ K , we obtain for all t ∈ [τ, τ]

Tu(t)
 + tq–

≥ γ τ

 + τ
q–


∫ ∞


a(s)g

(
s,u(s),u′(s)

)
ds

=
γ τ

 + τ
q–


∫ ∞


a(s)g

(
s,

(
 + sq–

) u(s)
 + sq–

,
(
 + sq–

) u′(s)
 + sq–

)
ds

≥ γ τ

 + τ
q–


M
∫ ∞


a(s)

(
u(s)

 + sq–
+

u′(s)
 + sq–

)
ds

≥ γ τ

 + τ
q–


M
∫ τ

τ

a(s)
u(s) + u′(s)
 + sq–

ds

≥ γ τ

 + τ
q–


M min
t∈[τ,τ]

u(t) + u′(t)
 + tq–

∫ τ

τ

a(s)ds

≥ γ γτ

 + τ
q–


M‖u‖
∫ τ

τ

a(s)ds,

similarly, we get

T ′u(t)
 + tq–

≥ γ γ

 + τ
q–


M‖u‖
∫ τ

τ

a(s)ds.

Thus

‖Tu‖ ≥max(, τ)
γ γ

 + τ
q–


M‖u‖
∫ τ

τ

a(s)ds.

Let us chooseM such that

M ≥  + τ
q–


γ γmax(, τ)
∫ τ
τ

a(s)ds
,

then we obtain

‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂�.

The first statement of Theorem  implies that T has a fixed point in K ∩ (�\�). The
proof is complete. �
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Now define the function

A∗ :R+ →R+,

A∗(r) =max
{
sup
t≥

g
(
t,

(
 + tq–

)
u,

(
 + tq–

)
v
)
, (u + v) ∈ [, r]

}
,

A∗
 = lim

r→+
A∗(r)
r

, A∗
∞ = lim

r→+∞
A∗(r)
r

.

It is proved in [] that:

Lemma  If g is continuous then A∗
 = A and A∗∞ = A∞.

Theorem  Under the hypothesis (H) and if  < α < �(q) and g is decreasing according
to the both variables, then the problem (P) has at least one nontrivial positive solution in
the cone K , in the case A = +∞ and A∞ = .

Proof Since A = +∞, then for M ≥ +τ
q–


τγ
∫ ∞
 a(s)ds > , there exists r > , such that if  <

u + v ≤ r, then for all t ≥ , we have

g
(
t,

(
 + tq–

)
u,

(
 + tq–

)
v
) ≥M(u + v).

Let � = {u ∈ E,‖u‖ < r
 }, we should prove the second statement of Theorem . Suppose

u ∈ P ∩ ∂�, then

‖Tu‖ ≥ Tu(t)
( + tq–)

≥ γ τ

 + τ
q–


∫ ∞


a(s)g

(
s,

(
 + sq–

) u(s)
( + sq–)

,
(
 + sq–

) u′
(s)

( + sq–)

)
ds.

Now from the fact that g is decreasing, we get

‖Tu‖ ≥ γ τ

 + τ
q–


∫ ∞


a(s)g

(
s,

(
 + sq–

)‖u‖, ( + sq–
)‖u‖)ds

≥ γ τ‖u‖
 + τ

q–


M
∫ ∞


a(s)ds.

Thus

‖Tu‖ ≥ ‖u‖ on P ∩ ∂�.

From A∞ =  and Lemma , we get A∗∞ = , so for ε ≤ α�(q–)

∫ ∞
 a(s)ds , there exists R > ,

such that if r ≥ R, then A∗(r) ≤ εr. Let � = {u ∈ E,‖u‖ < r}, where r >max( r ,
R
 ), then

� ⊂ �. Suppose that u ∈ P ∩ ∂�, then it yields

Tu(t)
 + tq–

≤ 
α

∫ ∞


a(s)g

(
s,

(
 + sq–

) u(s)
( + sq–)

,
(
 + sq–

) u′
(s)

( + sq–)

)
ds

≤ A∗(r)
α

∫ ∞


a(s)ds≤ rε

α

∫ ∞


a(s)ds.
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On the other hand we get

T ′u(t)
 + tq–

≤ 
α�(q – )

∫ ∞


a(s)g

(
s,

(
 + sq–

) u(s)
( + sq–)

,
(
 + sq–

) u′
(s)

( + sq–)

)
ds

≤ A∗(r)
α�(q – )

∫ ∞


a(s)ds≤ rε

α�(q – )

∫ ∞


a(s)ds.

Therefore

‖Tu‖ ≤ rε
α�(q – )

∫ ∞


a(s)ds < r = ‖u‖

then from the second statement of Theorem , T has a fixed point in P ∩ (�\�). The
proof is complete. �

Remark If
∫ ∞
 f (t,u(t), v(t))dt < ∞, then every positive solution of the problem (P) is un-

bounded. Indeed

u(t) =


�(q)

[∫ t


(t – s)q–f

(
s,u(s),u′(s)

)
ds – t

∫ 


( – s)q–f

(
s,u(s),u′(s)

)
ds

]

+
t
α

∫ ∞


f
(
s,u(s),u′(s)

)
ds

≥ t
(

α

∫ ∞


f
(
s,u(s),u′(s)

)
ds –


�(q)

∫ 


( – s)q–f

(
s,u(s),u′(s)

)
ds

)

≥ t
(

α
–


�(q)

)∫ ∞


f
(
s,u(s),u′(s)

)
ds,

therefore our conclusion follows.

Example  Let us consider the problem (P) with

g(t,u, v) =
(u + v)

( + tq–)
, a(t) =


 + t

, q =


, α = ,

by direct calculation we obtain �(  ) = . > α,
∫ τ
τ


+s ds = arctan τ – arctan τ > ,

A =  and A∞ = ∞. Clearly hypothesis (H) is satisfied, so by Theorem  there exists at
least one nontrivial positive solution in the cone K .

Example  Let us reconsider the above example with

g(t,u, v) =
 + tq–

 + u + v
.

Easily we check the hypothesis (H) and find that g is decreasing with respect to u and v.
Furthermore we have the case A = +∞ and A∞ = . Thus by Theorem  there exists at
least one nontrivial positive solution in the cone K .
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