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1 Introduction
In this paper, we investigate the existence of solutions for a fractional boundary value prob-
lem (P) on the half line:

DL u(t) =f(t,u(t),u'(t), t>0, ®)
u(0)=u"(0)=0, im0 DL u(t) = au(l),
wheref : [0,00[ x R x R — Risa given function, 2 < g < 3, @ > 0, °D{, denotes the Caputo
fractional derivative. Note that few papers in the literature dealing with fractional differ-
ential equations considered the nonlinearity f in (P) depending on the derivative of u.
Since many problems in the natural sciences require a notion of positivity (only non-
negative densities, population sizes or probabilities make sense in real life), in the present
study we discuss the existence of positive solutions for the problem (P). The proofs of the
main results are based on the properties of the associated Green function, Leray-Schauder
nonlinear alternative and Guo-Krasnosel’skii fixed point theorem on cone. Different meth-
ods are applied to investigate such boundary value problems, we can cite fixed point the-
ory, topological degree methods, Mawhin theory, upper and lower solutions. ..; see [1-13].
Fractional boundary value problems on infinite intervals often appear in applied math-
ematics and physics. They can model some physical phenomena, such as the models of
gas pressure in a semi-infinite porous medium; see [13]. The population growth model
can also be characterized by a nonlinear fractional Volterra integrodifferential equation
on the half line [14]. For more results on fractional differential equations in science and

engineering and their applications we refer to [15-17].
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Fractional boundary value problems on infinite intervals have been investigated by many
authors; see [1, 2, 4, 5, 8, 11-13]. In [12], the authors proved the existence of unbounded
solutions for the following nonlinear fractional boundary value problem:

D.u(t) +f(t,u(t)) =0, t>0,
M(O) =0, limt—>oo Dg:lu(t) = 05“(’7),

by using Leray-Schauder nonlinear alternative. Here 1 < & < 2, and D{, denotes the
Riemann-Liouville fractional derivative.

In [5] by means of fixed point theorem on cone, the authors discussed the exis-
tence of multiple positive solutions for m-point fractional boundary value problems with
p-Laplacian operator on infinite interval.

Further, in [13], the authors studied the following second order nonlinear differential
equation on the half line:

u'(t) + q@)f (&, u(®),u'(¢)) =0, >0,
au(0) — Bu'(0) =0, u'(00) = uso > 0.

Applying a fixed point theorem and the monotone iterative technique, they proved the
existence of positive solution.

The organization of this paper is as follows. In Section 2, we provide necessary back-
ground and properties of the Green function. The existence result is established under
some sufficient conditions on the nonlinear term f. Section 3 is devoted to the existence
of positive solutions on a cone. We conclude the paper with some examples.

2 Existence results
For the convenience of the readers, we first present some useful definitions and funda-
mental facts of fractional calculus theory, which can be found in [15, 18].

Definition 1 The Riemann-Liouville fractional integral of order « of a function g is de-
fined by

o o L [t gls)
lee® =15 / - %

where ') = [ et~ dt is the Gamma function, « > 0.

Definition 2 The Caputo fractional derivative of order g of a function g is defined by

1 b g"(s)
DI o(t) = ds,
w8(?) r(n—q)/a (t sy &

where n = [q] + 1 ([q] is the entire part of g).

Lemma 3 For g > 0, g € C([0,1]), the homogeneous fractional differential equation
CDZ+ g(t) = 0 has a solution

gt)=ci+ert+cst® + -+t

wherec; €R,i=0,...,n,andn=q] +1.
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Lemma4 Letp,q>0,f € Li[a,b]. Then I} I f(¢) = I57f (¢) = IL I f (¢) and D2 1L, f (¢) =
f(t), forallt € [a,b].

Lemma5 Let o, >0 and n = [a] + 1, then the following relations hold:

L) aan
(B -a)

D%tk =0, k=0,1,2,...,n—1.

-1
‘D Pt = . B>n,
To prove the main results of this paper we need the following lemma.

Lemma 6 Let y € C(R,,R) with fooo y(s) ds < oo, the linear nonhomogeneous boundary
value problem

CDZ+ u(t)=y(), t>0,

w0)=u"(0)=0,  lim “Df. u(t) = au(l),

has a unique solution

u(t) = /OO G(t,9)y(s)ds,
0

where
(t=s)11 ¢ t 1 p
TQ + Pl Tq)(l —S)q , §=< mlIl(t, 1),
=911t
Glt,s)={ T@ "o 1=s=t,
5_(%4)(1_5)4—1’ tSSSL
L, s> max(t,1).

Proof By Lemmas 3 and 4, we obtain

u(t) = ILy(t) + a + bt + ct*.
The boundary conditions #(0) = #”(0) = 0, imply that

u(t) = I3, y(t) + bt;
applying Lemma 5 and the condition lim,_, o CDgilu(t) = au(l), we obtain

lim DI u(e) = lim (Io+(2) + DI (bt))

[o¢]
= lim Ty+y(f) = / y(s)ds,
t—>00 0
u(l) = ILy(1) + b,

consequently

1

1
o /0 (L= (s) s,

L TRV I _
b= /0 y(s)ds I()J,y(l)—()l/0 y(s)ds

o
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substituting b by its value, it yields

= L t _g)1 ds — ' _g)a1 d ] E > d
u(t) ) |:/0 (t-5)T"y(s)ds t/(; (1-9)T"y(s)ds +a/0 y(s) ds.
The proof is complete. d

Lemma 7 Assume that 0 <« <I'(q), then for all s,t > 0 we have

0< Gl(t,s) < 4

0< .
- T 1+t T al(g-1)

G(t,s) 2
< R
1+t~

Proof Simple computations give

=12 1 _ 1 (q_ gl i
e ta T (1-s)7", s<min(1),
9172 1

G,(t,s) = ll"(q—l)l T 1 1<s<¢
T, t<s<l],
L s > max(t, 1).
o

Let us consider the case s < min(z, 1), then we get

Sttt g e (T@-a)
Glts)z F(qf)(1 9 Zt( al'(g) )‘0'
Gi(t,s) > é — %q)(l —s)i >0,

Firstly if s <t <1, then

G(t,s) - (t=s)T1+t
1+t771 = ol +tal)
G;(t,s) - alt-s)12+T(g-1) oot I'g-1) - 4
1+1471 7 oI+t ) (g-1) ~ al(g-1)1A+141) ~ al(g-1)

2
S_Y
o

Secondly if s <1 < ¢, then

G(t, S) (t _S)q—l +t tq—l +t th—l 2
< < < <-
1+ tq—l - O{(l + tq_l) - Ol(l + tq_l) - 05(1 + tq_l) T o
G(t,5) - a(t-s)T2+T(g-1) . 4

1+201 =~ a(l+64)(g-1) —al(g-1)

Applying the same techniques to the other cases, the conclusion follows. O

In this paper, we will use the Banach space E defined by

t (¢t
E-luco®or), tim Y oo tim 4P o
t—>oo 1 + t4-1 t—>o0 1 + t4-1

u(0)|

1+24-1 and

and equipped with the norm ||| = max(||u||oc, |#/llo), Where [[#]lo = sup;-
R, =[0,00].

Page 4 of 15
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Define the integral operator T : E — E by

Tu(t) = /000 G(t,s)f(s, u(s), u’(s)) ds,

so we have transformed the problem (P) to a Hammerstein integral equation by using the

Green function.

Lemma 8 The function u € E is solution of the boundary value problem (P) if and only if
Tu(t) = u(t), forall t e R,.

From this we see that to solve the problem (P) it remains to prove that the map T has a
fixed point in E. Since the Arzela-Ascoli theorem cannot be applied in this situation, then,

to prove that T is completely continuous, we need the following compactness criterion:

Lemma 9 [19] Let V = {u € Cu, ||| < I, wherel > 0}, V(¢) = {13;;)_1,14 eV}, V() =
{lf/tf;_)l ,u € V). V is relatively compact in E, if V(t) and V'(t) are both equicontinuous on

any finite subinterval of R, and equiconvergent at oo, that is for any € > 0, there exists

n =n(g) > 0 such that

ut)  u(h)
1+£70 14407

u(t) B u(ty)
1+ 14407

’

Yu eV, ty,ty > n (uniformly according to u).

We recall that a continuous mapping F from a subset M of a normed space X into an-
other normed space Y is called completely continuous iff F maps bounded subset of M
into relatively compact subset of Y.

Lemma 10 Assume thatf € C(R, x R x R,R), f(¢,0,0) # 0 on any subinterval of R, and
there exist non-negative functions h,k € L'(R,,R.) and ¥, ¥ € C(R,R*) nondecreasing
on R,, such that

IF (& (L+ 7Y, (L+ 697Y)x)| < k@y(Ix]) + @Y (17]),  V(6x%) e R x R?, (2.1)
then T is completely continuous. (Here R =]0,00].)

Proof The proof will be done in some steps.
Step 1: T is continuous. Let (u,),en € E be a convergent sequence to « in E. Let r; >
max( |||, SUP [ #nloo) and ry > max(||z || oo, sup ||, |loc), then we obtain with the help of

Lemma 7, hypothesis (2.1) and some elementary inequalities

1+at

- 2 /j/(s, 1+ tq‘l)u(s), 1+ tq‘l)u’(s))‘
a Jo 1+t 1+t

P( 1+ YHu,(s) 1+ t’“)u/n(s)> ’
—Ifls, ds

T+t 7 14!
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- 2 /"O (P(S: 1+ tq‘llu(s), 1+ tq‘l)_u/(s)) ‘
aJo 141 1+ ta1
A+ 1w, (s) 1+ 297N u,(s)
+ s, ds
P( 1+t1 7 1+ta) )D
2 [ u(s) u'(s)
<2 [Tk (115 ) 0w (1 ) o
2 [ U, (s) u,,(s)
+E/O k(S)l/ﬁ(m)+h(S)1/f2<1+tq_1>dS

< g(wl(rl)/o k(s)ds + wz(rz)/o h(s)ds> < 00.

Using similar techniques we prove that

/ooo Gy(t,9) If (s, u(s), t/ () = f (5, t4u(s), 1, (5)) | ds < 00,

1+ a1

hence the integrals are convergent. With the help of Lebesgue dominated convergence

theorem and the fact that f is continuous we get

© G(t,
| Ty — Tt oo = sup‘/0 KiUD) If (s, 24(5), ' (5)) = f (5, (), 14}, (5)) | ds

t>0 1+ tq_l

— 0 asn— oo,

H T u, - T’u”oo = iup/O Gilt,s) [f(s, u(s), u’(s)) —f(s, u,(s), u;(s)) ’ ds

0 1+¢a!

— 0 asun— oo,
therefore
|| Tu,, — Tu|| — 0, asn— oo.
Step 2: T is relatively compact. Let B, = {u € E, ||u|| < r}, first let us show that 7B, is

uniformly bounded. Let u € B,, taking (2.1) into account and the fact that v; and ¥, are

nondecreasing on R, it yields

|Tu@)| _ 2

1+t = &/0 If (s, u(s), /() | ds
9 [o° 1 uls) o w(s)
2l e 2

;(wl(r)/oook(s) ds + wz(r)/ooo h(s)ds ).

IA

Consequently

1Tl < §<w1(r) /0 k(s)ds + (1) /0 H(s) ds>. 2.2)

Page 6 of 15
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Similarly, we prove that

, 4 oo o0
” T u”oo < m (1&1(;")‘/0 k(s)ds + lpz(r)/o h(s) ds); (2.3)

this along with (2.3) yields
1Tl < —— (w) / k(s)ds+ (1) f H(s) ds) (2.4)
al(g-1) 0 0

thus TB, is uniformly bounded.
Next, we show that 7B, is equicontinuous on any compact interval of R,. Let u € B,,

t,ty € [a,b],0 <a<b< oo, <t we have

Tu(t,)  Tu(t)
1+ 1447
- /w‘ G(ta,s)  Glt,s)

0

1+ 14407

3 /0°° 16062,9) = Gl o is), () | ds

14607

V(s, u(s), u’(s)) | ds

Gt - ) ,
4 ) d
+/0 A+ + 67 (5, 4(5),u'(5)) | s

2((t-1) (G -4 )( > > >
= k(s)d h(s)ds ),
= (1+t§‘1 R e Wr)/o © s+1//2(r)/0 s

o

which approaches zero uniformly when #; — £;. On the other hand we have

T/M(tz) T/M(tl)

1+ 1447

S/ ‘Gt(tbs) Gy(t1,5)
0

1+ 14407

[f(s, u(s), u’(s)) | ds

1+ tg_l

~ 1 g1
. /0 Gt(tly S)(tZ — th ) V(Sy M(S), M/(S)) | ds. (25)

A+Ha+h

Let us estimate the second integral on the right hand side of the inequality (2.5):

~ Gt )& -1 /
»US), d
/0 A+ +h If (s, u(s), ' (s))| ds

4 @ - ( o o )
k(s) d his)ds ),
= alg-1 1+ 1+ 47 1pl(r)/o © H%('ﬂ)/o s

which approaches zero uniformly when #; — t,. Now we analyze the first integral on the
right hand side of inequality (2.5) in different cases when the compact [4, ] contains 1 or

not.
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If 1 <t, <1, then

/<oo |Gt(t215) - Gt(t1,5)|
0

1+ tg_l

[f (s, u(s), ()| ds

If (s, u(s), u'(5)) | ds

[ a9 -
0 T(g-1)1 -+

B (ty —s)172
Gk S PR .
+/ﬁ M'g-1)1+ tg‘l) lf(s u(s), u (s))| s

- F(g-1DA+£7) W’)/O k(s) S+1/fz(r)/0 h(s) ds

+

— " k(s)d ® s ds),
F(q—1)(1+tg-l)(‘”l(’)/h st [ )

which approaches zero uniformly when t; — .
If 1 <1<t,then

[ 1= SO s 6

1+ tg_l

_ / ity —5)172 — (- 5)172
“Jo T@-Da+£N

” (ty—5)72 /
oo S eueu6)|d
+/‘1 Mg-1)+7 (5, 0(s), ' (5)) | s

M( a 1 )
< F(q—l)(1+tg_1) 1/f1(r)/; k(s)ds+1/f2(r)/0 h(s) ds

(t)12 ) t
m("’l‘r’/q ks ds-+va0r) | ho ds)

(s, u(s), 1 (5) | ds

— 0, uniformly ast; — #,.

If1 <t <t then

/Oo |Gi(t,8) — Gi(t1, )]
0 1+207
_ /‘1 (ty — )17 = (t — 5)172
o T@-D0+g)

If (s, 4(s), ' (5)) | s

(s, (), s)) | dis

2 (ty—s)T? /
e S us)|d
+/‘1 Mg-D+8) (5, 4(5), ) ds

M( a f >
< F(q—l)(1+t§_1) 1/f1(r)/0 k(s)ds+1/f2(r)/0 h(s) ds

B f t
Ta—D+2h k(s)d h(s)d.
' T(g-1)1+£7 (Wl(r)/tl (s)ds + 1/’2(’)/t1 (s) S>

— 0, uniformly ast — #,.

Thus T is equicontinuous on the compact [4, b].

Page 8 of 15
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Step 3: T is equiconvergent at oco. Since

/ [f(s, u(s), u’(s))|ds < (1/f1(r)/ k(s)ds + 1//2(1’)/ h(s) ds) <00
0 0 0

we have
Tu(t 1 o0 T u(t
lim ut) < —/ [f(s, u(s), u’(s))|ds < 00, lim ut) =0,
t—>+o0|1 + 41 ]"(q) 0 t—+o00| 1 + 4~
consequently T is equiconvergent at co. The proof is complete. d

Now, we can give an existence result.

Theorem 11 Assume that the hypotheses of Lemma 10 hold and that there exists r > 0,
such that

ﬁ(wlm /0 k() ds + ¥ (r) /0 h(s)ds><r. 2.6)

Then the fractional boundary value problem (P) has at least one nontrivial solution u* € E.
To prove this theorem, we apply the Leray-Schauder nonlinear alternative.

Lemma 12 [20] Let F be a Banach space and Q2 a bounded open subset of F, 0 € Q. Let
T : Q — F be a completely continuous operator. Then either there exist x € 92, A > 1, such
that T (x) = Ax, or there exists a fixed point x* € Q of T.

Proof of Theorem 11 From the proof of Lemma 10, we know that 7 is a completely contin-
uous operator. Now we apply the nonlinear alternative of Leray-Schauder to prove that T
has at least one nontrivial solution in E. Let u € 9B,, such that u = ATu, 0 < A < 1; we get
with the help of (2.4):

uall = 3| Tl < | Ta] < ﬁ(w) fo " k) ds + () [0 " i) ds). 27)

This together with (2.6) implies

r =l < ﬁ(wm fo " ks) ds + () /0 wh(s)ds) <

which contradicts the fact that i € 3B,. Lemma 12 allows one to conclude that the operator
T has a fixed point #* € B, and then the fractional boundary value problem (P) has a
nontrivial solution u* € E. The proof is complete. d

3 Positive solutions

To study the existence of positive solution of the problem (P), first, we will introduce a
positive cone constituted of continuous positive functions or some suitable subset of it.
Second, we will impose suitable assumptions on the nonlinear terms such that the hy-
potheses of the cone theorem are satisfied. Third, we will apply a fixed point theorem to
conclude the existence of a positive solution in the annular region.
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Definition 13 A function u is called positive solution of the problem (P) if u(f) > 0,
Vt € R,, and it satisfies the boundary conditions in (P).

Definition 14 A nonempty subset P of a Banach space E is called a cone if P is convex,
closed, and satisfies the conditions

(i) axePforallx € Pand @ € R,;

(ii) #—x € Pimply x = 0.

Lemma 15 Assume that 0 < o < T'(q), then for 0 < 1y <t < 1, and s > 0 we have

G(t,s) . _rm ud G(t,s) oY

1+tq_1_1+7571 1+tq—l_1+7:q1
wherey:é—%q)>0.
Proof The proof is easy, we omit it. O

Let us make the following hypotheses on the nonlinear term f:

(H) f e CR3R,), fo flt,u,v) dt< 00, f(t,u,v) = a(t)g(t, u,v), where a € L;(R,,R,),
geC(R? )and0<f t)dt < co.

Define the cone K by

, Cou(t) +u/(2)
K=JueEu(t)>0,u'(t)>0,Vt >0, min ———— >y |lul¢,
te[r1,12] 1+ tq_l

ye(+7)l(g-1)

where y; = prove)

Lemma 16 We have TK C K.

Proof Taking Lemma 7 into account, we get

Tu(t) 2 [ , T'u(®) _
e < E/o S (s, u(s),u'(s)) ds, . t‘l—l = aTG-D / (s, u(s), u )) ds,

thus

4 o ,
1Tull < C = fo S (s,uls),u'(s)) ds

Lemma 15 implies for all £ € 1, 75]

Tut) _ _vm l/ooof(s,u(s) W (s)) ds M”Tu”,

IR 41+ Y

T'u(t) y * yal'(g—1)
LA / Flsuls) () ds = LI gy

L+t =147 o 41+

Therefore,

Tu(t) + T u(t) - yal+n)l(g-1) | T

min
elmml 1+ T 4140 0

Page 10 of 15
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Let us introduce the following notation:

pg(t, 1+t Dy, 1+t N)y)

A% = lim su

u+v—>3 >0 u+v
1+t Yy, (1+ 1Yy
As = lim infg( ( Ju, ) ((S:O+ or +oo).
u+v—56t>0 u+v

Theorem 17 Under the hypothesis (H) and if 0 < o < I'(q), then the fractional boundary
value problem (P) has at least one positive solution in the case A° = 0 and A, = co.

To prove Theorem 17, we apply the well-known Guo-Krasnosel’skii fixed point theorem

on cone.

Theorem 18 [21, 22] Let E be a Banach space, and let K C E, be a cone. Assume 21 and
Q, are open subsets of E with 0 € Qy, Q1 C Qy and let

A KN (Q\Q) — K,

be a completely continuous operator such that
(i) (Expansive form) || Aull < ||u|, u € K N3y, and || Aul|| > ||u|, u € K N dQy; or
(ii) (Compressive form) || Aull > ||u|, u € K N3, and || Aul| < ||u|, u € KN IQ;.
Then A has a fixed point in K N (Q2,\1).

Proof of Theorem 17 From A9 = 0, we deduce that for any ¢ > 0, there exists R; > 0, such
that if 0 < u + v < Ry, then g(t,(1 + t7V)u, 1 + 97Y)v) < e(u +v), V£ > 0. Let Q = {u €
E, |lull < %} and u € K N 92, by Lemma 7 we get

Ti 2
% <5 /0 als)g (s u(s),u'(s)) ds

9 [ o uls) 1y 4(s)
Efo a(s)g(s,(lﬂq ) e (1 )1+sql>ds

7
+ 571

52_8 ooa(s)( ) + “(s) )ds

a Jo 1+s771  1+s271

4 o0
=< i ||M||/ a(s) ds.
o 0

Similarly we obtain

T ul(t 8 o
“ __8e | awas

1+t —al(g-1) 0

therefore,
8¢ o
e L AL
al'(g-1) 0

Choosing ¢ < o) e yields || Tu|| < |lu||, for any u € K N 9.

8 jooc a(s)ds’

Page 11 of 15
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Now, since A = 00, then for any M > 0, there exists R > 0, such that V¢ > 0
g6 (L+ 7 u, (1 + 677 v) > M(u +v)

foru+v>R LetR, > max{%, %} and denote by Q; = {u € E: |lu|| < Ry}. For u € KN 92,

and t € [11, T2], we obtain

u(t) + u'(t) ou(®) +u ()

> Ry > R.
Lt o L 2=k
Using Lemma 15 and the fact that # € K, we obtain for all £ € [}, 73]

Tu(t) . _rm
L+e70 7 14 ¢f

- _ru /oo a(s)g (s, (1+s77) I Z(;q)_l, (1+s77) IL:SI)—l) ds

1+‘L’
VT1 M / a(s) u(s) u'(s) s
T4stl 1401
1Mf u(s)+u(s) us) +u'ls)
1+t§ 7 Clestl

YU M min M/Qa(s)ds

- 1+ -L—q_l telr,1] 1+ tq71

= LI Ml ||f 9 ds,

= /oo a(s)g(s,u(s), M/(S)) ds
0

I \Y

similarly, we get

T/ t ¥}
ue) W{anun/ a(s) ds
+T2q k51

1+t 71

Thus

1Tl = max(t, 7)) — Y Milu / a(s) ds.
+T2

Let us choose M such that

1
1+t

> b
~ yyimax(l, 1) f;lz a(s)ds

then we obtain
| Tull = ul, YueKNaQ.

The first statement of Theorem 18 implies that T has a fixed point in K N (2,\2;). The

proof is complete. d


http://www.advancesindifferenceequations.com/content/2014/1/154

Guezane-Lakoud and Kiligman Advances in Difference Equations 2014, 2014:154 Page 13 0of 15
http://www.advancesindifferenceequations.com/content/2014/1/154

Now define the function

A*: R, - R,,
A*(r) = max{supg(t, 1+, (1+ 7)), (w+v) €[0,7] },
t>0
« .. A . . AX(r)
Ao = ,L0+ r A= rEIPOO ro

It is proved in [9] that:
Lemma 19 Ifg is continuous then A} = A° and A’ = A™.

Theorem 20 Under the hypothesis (H) and if 0 < o« < T'(q) and g is decreasing according
to the both variables, then the problem (P) has at least one nontrivial positive solution in
the cone K, in the case Ay = +00 and A*° = 0.

q-1
Proof Since Ag = +00, then for M > [H;?Tzd
u+v <ry, then for all £> 0, we have

> 0, there exists r; > 0, such that if 0 <

g(t, (1 + tq_l)u, (1 + tq_l)v) > M(u+v).

Let Q) ={u ek, |u| < %}, we should prove the second statement of Theorem 18. Suppose
u € PN an, then

Tuy (¢)
1+ 1)

YT > 1y ) 1y #(s)
Tl e e S

Now from the fact that g is decreasing, we get

[ Tur || =

o0
I Toy || > ) Vﬁ_lf a($)g(s, (1 + sl ll, (L + 77" | ||) ds
+

rg 0
2 T1||lu
_ 2ral 1||M/ als)ds.
1+71,

Thus

[Tl = |l ]l on PN 32

_al(g-1)
8[00 s)ds ’
such that if » > R, then A*(r) < er. Let Qy = {u € E, || u|| < rp}, where r, > max(%
Q) C Q,. Suppose that u, € PN 3Q;, then it yields

Tup(t) 2 ™ 1 Ua(s) 1 U(S)
1+ a1 = ;A ﬂ(S)g(S,(l-FSq 1)m,(1+sq 1)(1-'_27_1)) ds

< 20 % s <47 [T ayas
0 o 0

o

From A = 0 and Lemma 19, we get A% =0, so for ¢ < there exists R > 0,

-y 2) then
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On the other hand we get

T us(t) 4 o i\ U(s) o ub(s)
T+61 = al(g-1) /o a(s)g(s’ (e l)m’ (s l)ﬁ) “
4A*(2ry) [ 8rye *©
= al"(q—l)/o al(s)ds = al'(g-1) Jo

a(s)ds.

Therefore

Hmﬁ_lx n/ 9 ds<ry = s

then from the second statement of Theorem 18, T has a fixed point in P N (2,\ ;). The

proof is complete. 0

Remark If fo f(t, u(t),v(t)) dt < oo, then every positive solution of the problem (P) is un-
bounded. Indeed

x a1 — ' — q-1 / ]
= F(q [/0 T (s, u(s), u'(s)) ds t/o (1= )T (s, uls), ' (s)) ds

- Oof s, u(s),u'(s)) ds

@ Jo

1°o 1 !
<;A »@—ﬁaﬂ( 99 (5,(s), 1)) d. )

1
> ( ) £ (s, uls),u'(s)) ds,
therefore our conclusion follows.

Example 21 Let us consider the problem (P) with

u +v)? 1 5
( ) a(t):—x 6125, a=1,

tu,v)= ———,
&l ) 1 +ta-1)2 1+¢£2

by direct calculation we obtain 1"( ) =1.3293 > «, f 2 ds = arctan ty — arctant; > 0,
A® =0 and A, = co. Clearly hypothesis (H) is satisfied, so by Theorem 17 there exists at
least one nontrivial positive solution in the cone K.

Example 22 Let us reconsider the above example with

a1

t,u,v) = —.
& ) l+u+v

Easily we check the hypothesis (H) and find that g is decreasing with respect to u and v.
Furthermore we have the case Ag = +00 and A* = 0. Thus by Theorem 20 there exists at

least one nontrivial positive solution in the cone K.
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