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Abstract
In this paper, we investigate the existence and stability of the positive steady-state
solutions for a Lotka-Volterra system with intraspecific competition by using the
Lyapunov-Schmidt reduction technique. To do this, we must firstly obtain the
semi-trivial steady states as their base, which extend the method used in the previous
studies. Our results show that the two competition species with intraspecific
competition can coexist for bigger regions of the diffusion rate μ and also complete
the existing works.
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1 Introduction
The maintenance of biodiversity has received increasing attention from ecologists and
mathematicians. Moreover, resource competition is thought as an important factor in
driving evolutionary diversification, in which intraspecific competition for resources plays
a major role; see [–]. The classical Lotka-Volterra competition system [–] gives a bet-
ter description of the population competition, whose dynamical behaviors have been stud-
ied extensively; see [–] and the references therein. In this paper a competitive Lotka-
Volterra diffusionmodel of two slightly different species is studied, namely, the two species
are identical except for their intraspecific competition rates. For this system, once the dif-
fusion is involved biologically, it would be very interesting to find out whether and when
the two species competing for the same limited resources to survive can coexist.
To begin with, we present the classical Lotka-Volterra system with spatially inhomoge-

neous terms as follows
⎧⎪⎨
⎪⎩
ut = μ�u + u[a(x) – u – v], x ∈ �, t > ,
vt = μ�v + v[a(x) – u – v], x ∈ �, t > ,
∂u
∂n = ∂v

∂n = , x ∈ ∂�, t > ,
(.)

where � is a bounded domain in RN with smooth boundary ∂�, μ is the diffusion rate,
u(x, t) and v(x, t) denote the densities of two competing species, and a(x) represents the
intrinsic growth rate of species.
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The system above shows that the two species have the same diffusion rates and intrinsic
growth rates. However, the two species with slight difference, such as the original species
and the mutant, are common in biology; they correspond to the perturbed systems of
(.), see [–] for example, and are originally introduced in []. The two species with
different diffusion rates discussed in [] correspond to the system

{
ut = μ�u + u[a(x) – u – v], x ∈ �, t > ,
vt = (μ + τ )�v + v[a(x) – u – v], x ∈ �, t > ,

where τ > . It is shown from (u, v) → (θ , ) (θ given in the next section) as t → ∞ that
the slower diffuser can drive the faster one to extinction, and thus the two species cannot
coexist. In [], it is further stated that the slower diffuser may fail with a time periodic
function a(x, t) instead of a(x). In [], the model with small variations of intrinsic growth
rates is given by

{
ut = μ�u + u[a(x) + τg(x) – u – v], x ∈ �, t > ,
vt = μ�v + v[a(x) – u – v], x ∈ �, t > .

It is shown that the stability of the two competing species varies in a complicated way
as μ increases, which implies that the two species only coexist for small regions of μ if
they could. For a(x) + τg(x) taking the form a+ τg(x) in [], the authors further illustrate
that the mutant can always survive and invade, but the original species can only coexist in
some cases. Furthermore, in [] the system with different interspecific competition rates
is given as

{
ut = μ�u + u[a(x) – u – ( + τg(x))v], x ∈ �, t > ,
vt = μ�v + v[a(x) – v – ( + τh(x))u], x ∈ �, t > .

Then a new structure of coexistence states is obtained and the two species can coexist
even for bigger regions of μ.
Motivated by the studies above, in this paper, we continue the analytic works for another

perturbation system

⎧⎪⎨
⎪⎩
ut = μ�u + u[a(x) – ( + τg(x))u – v], x ∈ �, t > ,
vt = μ�v + v[a(x) – ( + τh(x))v – u], x ∈ �, t > ,
∂u
∂n = ∂v

∂n = , x ∈ ∂�, t > ,
(.)

where τ is a small positive constant (i.e., τ � ) and g(x), h(x) are smooth functions, which
indicates that the two species only have different intraspecific competition rates. Ourmain
purpose is to study the existence and stability of the positive steady-state solutions (that is,
the coexistence states) of (.) by using the Lyapunov-Schmidt reduction technique, the
implicit function theorem combined with finite covering theorem and the perturbation
theory for completing the previous studies. To do this, however, we must firstly get the
semi-trivial steady-state solutions of (.) according to [], which is different from the
corresponding results already known, and extend the method used in the existing works.
The main results we obtained show that the two competition species with different in-
traspecific competition can also coexist for bigger regions of the diffusion rate μ, but it
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is also important to caution that the conclusions for stability obtained in this paper are
contrary to the ones analyzed in [].
The rest of this paper is organized as follows. In Section , from [] we firstly give the

semi-trivial steady-state solutions of (.), and then analyze the stability of the solutions.
In Section , on the basis of the semi-trivial solutions obtained in Section , we inves-
tigate the existence and nonexistence of positive steady-state solutions of (.) by using
the Lyapunov-Schmidt reduction technique, the implicit function theorem and the finite
covering theorem. In Section , combining stability theory with perturbation theory, we
further discuss the stability of positive steady-state solutions in detail.

2 Existence and stability of semi-trivial steady-state solutions
In this section we firstly establish the existence of semi-trivial steady-state solutions of
(.) by [], whose proof is omitted. Then we simply analyze the stability of the semi-
trivial solutions.

Lemma . (see []) Suppose that λ is a positive parameter and that either β(x) >  on
an open subset of ∂�, or the boundary condition is a Dirichlet condition on part of ∂�, or∫
�
m(x)dx <  holds. The principal eigenvalue σ of

∇ · (d(x)∇φ
)
+ λm(x)φ = σφ, x ∈ �,

d(x)
∂φ

∂n
+ β(x)φ = , x ∈ ∂�

is positive if and only if  < λ+ < λ, where λ+ is the positive principal eigenvalue of

∇ · (d(x)∇φ
)
+ λm(x)φ = , x ∈ �,

d(x)
∂φ

∂n
+ β(x)φ = , x ∈ ∂�.

If β(x)≡  and
∫
�
m(x)dx > , then σ >  for all λ > .

Consider the following system:

ut =∇ · d(x)∇u + f (x,u), x ∈ �, t > ,

d(x)
∂u
∂n

+ β(x)u = , x ∈ ∂�, t > ,
(.)

where d(x) ∈ C+α(�), d(x)≥ d > , β(x) ∈ C+α(�), β(x)≥ , f (x,u) is Lipschitz in u and
is a measurable function in x which is bounded if u is restricted to a bounded set and
f (x, ) = .

Lemma . (see []) Suppose that f (x,u) = q(x,u)u with q(x,u) of class C in u and Cα

in x, and there exists K >  such that q(x,u) <  for u > K . If the principal eigenvalue σ is
positive in the problem

∇ · d(x)∇ψ + q(x, )ψ = σψ , x ∈ �,

d(x)
∂ψ

∂n
+ β(x)ψ = , x ∈ ∂�,
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then (.) has a minimal positive equilibrium u∗, and all solutions to (.) that are initially
positive on an open subset of � are eventually bounded by orbits which increase toward u∗

as t → ∞.

Lemma . (see []) Suppose that the hypotheses of Lemma . are satisfied and that
f (x,u) = q(x,u)u with q(x,u) strictly decreasing in u for u ≥ . Then the minimal positive
equilibrium u∗is the only positive equilibrium for (.).

For the further discussions, we make the following assumption on a(x).
(H) a(x) is Hölder continuous on � and

∫
�
a(x)dx > .

Then, from Lemmas .-., it is well known that

μ�θ + θ
(
a(x) – θ

)
= , x ∈ �,

∂θ

∂n
= , x ∈ ∂� (.)

has only a positive solution θ (x,μ) denoted by θ (μ) when the condition (H) is valid, and it
is also easily found that

μ�u + u
[
a(x) –

(
 + τg(x)

)
u
]
= , x ∈ �,

∂u
∂n

= , x ∈ ∂�

and

μ�v + v
[
a(x) –

(
 + τh(x)

)
v
]
= , x ∈ �,

∂v
∂n

= , x ∈ ∂�

respectively have unique positive equilibriums ũ(x,μ, τ ) and ṽ(x,μ, τ ), denoted by ũ(μ, τ )
and ṽ(μ, τ ), for (H) and τ � . Hence, we can find the following result.

Theorem . Assume that (H) holds and τ � . Then (.) has semi-trivial steady-state
solutions (ũ(μ, τ ), ) and (, ṽ(μ, τ )).

To discuss the stability of semi-trivial steady-state solutions (ũ(μ, τ ), ) and (, ṽ(μ, τ )),
we need to consider the eigenvalue problem

μ�φ +
[
a(x) – 

(
 + τg(x)

)
u – v

]
φ – uψ = λφ, x ∈ �,

μ�ψ +
[
a(x) – 

(
 + τh(x)

)
v – u

]
ψ – vφ = λψ , x ∈ �, (.)

∂φ

∂n
=

∂ψ

∂n
= , x ∈ ∂�

corresponding to the solution (u, v). Due to [, ], one can show that (.) has a principal
eigenvalue λ(μ, τ ), which is real, algebraically simple, and all other eigenvalues have their
real parts less than λ(μ, τ ). Therefore, the stability of (ũ(μ, τ ), ) is decided by the principal
eigenvalue λ̂(μ, τ ) of the problem

μ�ψ +
[
a(x) – ũ

]
ψ = λψ , x ∈ �,

∂ψ

∂n
= , x ∈ ∂�.

Similarly, the stability of (, ṽ(μ, τ )) is dependent on the principal eigenvalue λ̃(μ, τ ) of the
problem

μ�φ +
[
a(x) – ṽ

]
φ = λφ, x ∈ �,

∂φ

∂n
= , x ∈ ∂�.
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Theorem. Suppose that the hypotheses of Theorem . are valid. If λ̂(μ, τ ) <  (λ̂(μ, τ ) >
), then (ũ(μ, τ ), ) is asymptotically stable (unstable). If λ̃(μ, τ ) <  (λ̃(μ, τ ) > ), then
(, ṽ(μ, τ )) is asymptotically stable (unstable).

Remark . In this section, we only give a simple conclusion for the stability of semi-
trivial steady-state solutions of (.), whose detailed proofs are analogous to Section 
of [].

3 Existence and nonexistence of positive steady-state solutions
The research on the steady-state solutions in a competition-diffusion system is always a
hot issue. In this section we establish the existence and nonexistence of positive steady
states of (.). For this purpose, we must make use of the semi-trivial solutions obtained
in Section  for the following results.
To discuss the steady states of (.), we deal with the elliptic system corresponding to

(.), which takes the form as follows

⎧⎪⎨
⎪⎩

μ�u + u[a(x) – ( + τg(x))u – v] = , x ∈ �,
μ�v + v[a(x) – ( + τh(x))v – u] = , x ∈ �,
∂u
∂n = ∂v

∂n = , x ∈ ∂�.
(.)

For convenience of the following discussions, we denote

G(μ) =
∫

�

g(x)θ(x,μ)dx,

H(μ) =
∫

�

h(x)θ(x,μ)dx

and give the Sobolev spaces

X =
{
(y, z) ∈W ,p(�)×W ,p(�) :

∂y
∂n

=
∂z
∂n

= ,x ∈ ∂�

}
,

X = span
{
(θ , –θ )

}
,

X =
{
(y, z) ∈ X :

∫
�

(y – z)θ dx = 
}
,

Y = Lp(�)× Lp(�),

where p >N such thatW ,p ↪→ C(�).
According to (.), it is obvious that (.) has nontrivial nonnegative solutions ϒμ =

{(sθ (x,μ), ( – s)θ (x,μ)) : s ∈ [, ]} for τ = . Then for τ �  we will look for the solutions
of (.) near ϒμ, namely, the steady states of (.).

Theorem . Suppose that G(μ) and H(μ) have no common roots, and set μ and μ are
the consecutive and simple roots of G(μ)H(μ).
(i) If G(μ)H(μ) <  in (μ,μ), then there exists δ >  such that for μ ∈ (μ + δ,μ – δ)

such that (.) has no positive steady-state solutions other than semi-trivial ones for τ � .
(ii) If G(μ)H(μ) >  in (μ,μ), then for any sufficiently small δ >  and τ � , (.)

has the positive steady-state solutions (u(μ, τ ), v(μ, τ )) satisfying (μ,u(μ, τ ), v(μ, τ )) in the
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neighborhood of (μ – δ,μ + δ)× ϒμ besides semi-trivial ones. Here

u(μ, τ ) = s(μ, τ )
[
θ (μ) + ỹ(μ, τ )

]
,

v(μ, τ ) =
[
 – s(μ, τ )

][
θ (μ) + z̃(μ, τ )

] (.)

with s(μ, ) = s(μ) := H(μ)
G(μ)+H(μ) , ỹ(μ, ) =  and z̃(μ, ) = .Moreover, the positive steady-

state solution branches (u(μ, τ ), v(μ, τ )) connect with the semi-trivial ones (u(μ(τ ), τ ),
v(μ(τ ), τ )) and (u(μ̄(τ ), τ ), v(μ̄(τ ), τ )), and the smooth functions μ(τ ) and μ̄(τ ) are defined
on {τ : τ ≥ } such that μ() = μ and μ̄() = μ.

Proof For τ � , our purpose is to find the positive solutions of (.) near ϒμ. Following
the Lyapunov-Schmidt reduction technique [], we know that X = X ⊕ X on the basis
of the spaces defined above. Then we can set

(u, v – θ ) = s
(
θ (μ), –θ (μ)

)
+ (y, z),

that is to say, the solution form we will look for is given by

(u, v) =
(
sθ (μ), ( – s)θ (μ)

)
+ (y, z),

where s ∈ [, ] and (y, z) ∈ X near (, ).
Substituting the expression above into (.), we have

F(y, z,μ, τ , s) :=
(

μ�y + (a – θ )y – sθ (y + z) + f(y, z,μ, τ , s)
μ�z + (a – θ )z – ( – s)θ (y + z) + f(y, z,μ, τ , s)

)
=

(



)
, (.)

where

f(y, z,μ, τ , s) = –y(y + z) – τg(sθ + y),

f(y, z,μ, τ , s) = –z(y + z) – τh
[
( – s)θ + z

],
and the map F : X × (μ – δ,μ + δ) × (–δ, δ) × (–δ,  + δ) → Y defined above is
a smooth function. Obviously, on the basis of the semi-trivial steady states obtained in
Section , we have

F(, ,μ, , s) = , F(, ṽ – θ ,μ, τ , ) = , F(ũ – θ , ,μ, τ , ) = . (.)

Let L(μ, s) =D(y,z)F(, ,μ, , s) ∈L(X,Y ). Then

L(μ, s) =

(
μ� + a – θ – sθ –sθ

–( – s)θ μ� + a – θ – ( – s)θ

)
,

which is denoted by L, and L is a Fredholm operator of index zero since X is compactly
imbedded in Y . It is easy to check that (θ , –θ ) is in the kernel of L. Due to θ > , we know
that  is a simple eigenvalue of L, which leads to

ker(L) = span
{
(θ , –θ )

}
= X.

http://www.advancesindifferenceequations.com/content/2014/1/159
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Define the projection operator P = P(μ, s) : Y → X as

P
(
y
z

)
=

∫
�

θ(x,μ)dx

[
( – s)

∫
�

θydx – s
∫

�

θz dx
](

θ

–θ

)
. (.)

It is easily found that

R(P) = X, P = P, LP = PL = , (.)

which results in

R(L) =
{
(y, z) ∈ Y : ( – s)

∫
�

θydx – s
∫

�

θz dx = 
}
.

According to the Lyapunov-Schmidt reduction technique, the equivalent expression of
(.) is

{
P(μ, s)F(y, z,μ, τ , s) = ,
[I – P(μ, s)]F(y, z,μ, τ , s) = .

(.)

We know that L is an isomorphic mapping from X to Y , then, by applying the implicit
theorem to the second equation of (.), it can be solved to get a unique solution (y, z) =
(y(μ, τ , s), z(μ, τ , s)) near (, ). Furthermore, combining the finite covering theorem, there
exists δ >  such that

(
y(μ, τ , s), z(μ, τ , s)

)
: (μ – δ,μ + δ)× (–δ, δ)× (–δ,  + δ) → X

and

y(μ, , s) = , z(μ, , s) = . (.)

Thus, the solvability of (.) is converted to that (y(μ, τ , s), z(μ, τ , s)) satisfies the first equa-
tion of (.), that is,

PF
(
y(μ, τ , s), z(μ, τ , s),μ, τ , s

)
= .

Combining with (.), we have

y(μ, τ , ) = , z(μ, τ , ) = ṽ – θ ,

y(μ, τ , ) = ũ – θ , z(μ, τ , ) = .
(.)

On the basis of the definition of P, we can get a smooth function ξ (μ, τ , s) satisfying

ξ (μ, τ , s)
(

θ

–θ

)
= P(μ, s)F

(
y(μ, τ , s), z(μ, τ , s),μ, τ , s

)
. (.)

Hence we need to solve ξ (μ, τ , s) = . From (.) and (.), we can find

ξ (μ, , s) = ξ (μ, τ , ) = ξ (μ, τ , )≡ ,

http://www.advancesindifferenceequations.com/content/2014/1/159
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and then there exists a smooth function ξ(μ, τ , s) such that

ξ (μ, τ , s) = τ s( – s)ξ(μ, τ , s). (.)

Moreover, we know that the solutions s =  and s =  correspond to the semi-trivial solu-
tions (, ṽ) and (ũ, ) of (.), respectively. Consequently, it remains to solve ξ(μ, τ , s) = .
From (.), it follows that

ξτ (μ, , s) = s( – s)ξ(μ, , s). (.)

Differentiate (.) with respect to τ , set τ =  and combine with (.) and (.), which
leads to

ξτ (μ, , s)
(

θ

–θ

)
= P(μ, s)L(μ, s)

(
yτ (μ, , s)
zτ (μ, , s)

)
+ P(μ, s)Fτ (, ,μ, , s)

= P(μ, s)Fτ (, ,μ, , s). (.)

From (.), we obtain

Fτ (, ,μ, , s) =
(

–sgθ

–( – s)hθ

)
,

and then it follows from (.) that

P(μ, s)Fτ (, ,μ, , s) = s( – s)
( – s)H(μ) – sG(μ)∫

�
θ(x,μ)dx

(
θ

–θ

)
. (.)

Hence, according to (.)-(.), we have

ξ(μ, , s) =
( – s)H(μ) – sG(μ)∫

�
θ(x,μ)dx

.

For G(μ)H(μ) <  in (μ,μ), for example, we let G(μ̃)H(μ̃) < , μ̃ ∈ (μ,μ), and then
we obtain ξ(μ̃, , s) �=  when μ̃ ∈ (μ,μ) and s ∈ [, ]. By using the finite covering theo-
rem, there exists δ >  taken smaller if necessary such that ξ(μ, τ , s) =  has no solution
for (μ, τ , s) ∈ (μ + δ,μ – δ) × (–δ, δ) × (–δ,  + δ). This results in statement (i) of
Theorem ..
For G(μ)H(μ) >  in (μ,μ), we can see that ξ(μ̃, , s(μ̃)) =  with s(μ) = H(μ)

G(μ)+H(μ)
and ξ,s(μ̃, , s(μ̃)) = – G(μ̃)+H(μ̃)∫

� θ(x,μ̃)dx �=  for μ̃ ∈ [μ,μ] and s ∈ [, ] since G(μ) and H(μ)
have no common roots. Combining the implicit function theorem with the finite cov-
ering theorem, we have that for δ >  chosen yet smaller if necessary and (μ, τ , s) ∈
(μ – δ,μ + δ) × (–δ, δ) × (–δ,  + δ), the equation ξ(μ, τ , s) =  has only solution
given by the smooth function s = s(μ, τ ) with s(μ, ) = s(μ), which shows that (.) has
solutions (y, z) = (y(μ, τ , s), z(μ, τ , s)) with s = s(μ, τ ). Due to y(μ, τ , ) =  and z(μ, τ , ) = 
given in (.), we see

y(μ, τ , s) = sy(μ, τ , s), z(μ, τ , s) = ( – s)z(μ, τ , s),

http://www.advancesindifferenceequations.com/content/2014/1/159
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and then denote y(μ, τ , s(μ, τ )) and z(μ, τ , s(μ, τ )) by ỹ(μ, τ ) and z̃(μ, τ ), respectively.
From (.), it follows that ỹ(μ, ) =  and z̃(μ, ) = . Therefore, for (μ, τ , s) ∈ (μ –
δ,μ + δ) × (–δ, δ) × (–δ,  + δ), the equation ξ (μ, τ , s) =  has solutions given by
s = , s =  and s = s(μ, τ ), which shows that (.) has not only semi-trivial steady-state
solution branches, but also positive branches given by (.) which meet the semi-trivial
ones whose form is discussed below.
Clearly, s(μ, τ ) =  and s(μ, τ ) =  correspond to the semi-trivial stationary solution of

(.). For μ = μ, there is either G(μ) =  or H(μ) =  due to that G(μ) and H(μ) have
no common roots. Without loss of generality, we take G(μ) = , and then  – s(μ, ) =
 – s(μ) = . Moreover, [ – s(μ, τ )]μ|(μ,τ )=(μ,) = [ – s(μ, )]μ|μ=μ =

G′(μ)
H(μ)

�=  since
μ is the simple root of G(μ)H(μ). Thus, by the implicit function theorem, we can ob-
tain a unique solution of  – s(μ, τ ) =  defined by a smooth function μ = μ(τ ) for
τ ∈ [, δ) with δ >  small enough and μ() = μ, which implies that the correspond-
ing semi-trivial steady-state solution of (.) can be described by (u(μ(τ ), τ ), v(μ(τ ), τ )) =
(ũ(μ(τ ), τ ), ). Similarly, for the case H(μ) = , we can get only the solution of s(μ, τ ) =
 still given by μ = μ(τ ), which corresponds to the semi-trivial steady-state solution
(u(μ(τ ), τ ), v(μ(τ ), τ )) = (, ṽ(μ(τ ), τ )) of (.). Moreover, for μ = μ, similar results hold
true, and the unique solution of  – s(μ, τ ) =  or s(μ, τ ) =  is denoted by μ = μ̄(τ )
with μ̄() = μ. Thus the relevant solution of (.) is given by (u(μ̄(τ ), τ ), v(μ̄(τ ), τ )) =
(ũ(μ̄(τ ), τ ), ) or (u(μ̄(τ ), τ ), v(μ̄(τ ), τ )) = (, ṽ(μ̄(τ ), τ )). �

Remark. Theproof of Theorem. shows the existence of loops or branches of positive
steady states just as [], whose details are omitted here.

4 Stability of positive steady-state solutions
In this section, we analyze the stability of positive steady states (u(μ, τ ), v(μ, τ )) of (.).
For τ = , we know (u(μ, ), v(μ, )) = (sθ (μ), (–s)θ (μ)), and then the principal eigenvalue
of the corresponding eigenvalue problem (.) is λ =  because of θ (μ) > , which shows
that all other eigenvalues have negative real parts. Furthermore, for τ � , since all other
eigenvalues also have negative real parts by the perturbation theory [], the stability of
(u(μ, τ ), v(μ, τ )) is determined by the principal eigenvalue λ(μ, τ ) near  of (.), that is,

μ�φ +
[
a(x) – 

(
 + τg(x)

)
u – v

]
φ – uψ = λ(μ, τ )φ, x ∈ �,

μ�ψ +
[
a(x) – 

(
 + τh(x)

)
v – u

]
ψ – vφ = λ(μ, τ )ψ , x ∈ �, (.)

∂φ

∂n
=

∂ψ

∂n
= , x ∈ ∂�.

Firstly, for τ � , we can set

φ(μ, τ ) = θ (μ) + τφ(μ, τ ), ψ(μ, τ ) = –θ (μ) + τψ(μ, τ ) (.)

in (.) with smooth functions φ(μ, τ ) and ψ(μ, τ ). Furthermore, the emphasis is on the
sign of λ(μ, τ ). Hence, for small τ , we divide the discussions of the sign of λ(μ, τ ) into
three cases, that is, μ close to μ, μ close to μ and μ bounded away from μ and μ. To
do this, we must first prove the following lemmas.

http://www.advancesindifferenceequations.com/content/2014/1/159
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Lemma . For τ � , the principal eigenvalue λ(μ, τ ) of (.) satisfies

λ(μ, τ )
τ

∫
�

(ψu – φv)dx =
∫

�

[
gφuv – hψuv + gψu – hφv

]
dx. (.)

Proof Multiply the first equation of (.) by v and integrate over � to get

∫
�

φv[τhv – u – τgu] –ψuvdx = λ(μ, τ )
∫

�

φvdx. (.)

In the same way, multiplying the second equation of (.) by u and integrating by parts,
we can obtain∫

�

ψu[τgu – v – τhv] – φuvdx = λ(μ, τ )
∫

�

ψudx. (.)

From (.) and (.), it suffices to show that (.) is valid. �

Furthermore, on the basis of Lemma ., we can discuss the sign of λ(μ, τ ).

Lemma . For μ ∈ [μ + ε,μ – ε], ε > , we have the following conclusion:

lim
τ→+

λ(μ, τ )
τ

= –
G(μ)H(μ)
G(μ) +H(μ)

∫
�

θ(x,μ)dx
. (.)

Proof It is obvious that (u(μ, τ ), v(μ, τ )) → (s(μ)θ (μ), [ – s(μ)]θ (μ)) and (φ(μ, τ ),ψ(μ,
τ )) → (θ (μ), –θ (μ)) as τ → + from (.) and (.). Then, for τ → +, it follows that

∫
�

(ψu – φv)dx → –
∫

�

θ(x,μ)dx, (.)
∫

�

[
gφuv – hψuv + gψu – hφv

]
dx

→ s(μ)
[
 – s(μ)

]
G(μ) + s(μ)

[
 – s(μ)

]
H(μ) – s(μ)G(μ)

–
[
 – s(μ)

]H(μ)

=
G(μ)H(μ)
G(μ) +H(μ)

. (.)

Thus, we can obtain (.) from (.), (.) and (.). �

For the discussions below, without loss of generality, we can assume the case G(μ) =
 (the case H(μ) =  is similar), and then  – s(μ(τ )) =  and (u(μ(τ ), τ ), v(μ(τ ), τ )) =
(ũ(μ(τ ), τ ), ).

Lemma . Assume that G(μ) = . Then we have the following conclusion:

lim
(μ,τ )→(μ,+)

λ(μ, τ )
τ (μ –μ(τ ))

= –
G′(μ)∫

�
θ(x,μ)dx

. (.)

Proof According to Theorem ., we know that (μ(τ ),u(μ(τ ), τ ), v(μ(τ ), τ )) = (μ(τ ),
ũ(μ(τ ), τ ), ) is the bifurcation point of the positive solutions to (.). Then λ(μ(τ ), τ ) = 

http://www.advancesindifferenceequations.com/content/2014/1/159
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and the eigenfunction ψ(μ(τ ), τ ) satisfies

μ�ψ +
[
a(x) – ũ

(
μ(τ ), τ

)]
ψ = , x ∈ �,

∂ψ

∂n
= , x ∈ ∂�.

Multiplying the equation above by ũ(μ(τ ), τ ) and integrating by parts, we can get

∫
�

gψ
(
μ(τ ), τ

)
ũ

(
μ(τ ), τ

)
dx = ,

and then combining with v(μ(τ ), τ ) =  it follows that χ (μ(τ ), τ ) = , where

χ (μ, τ ) :=
∫

�

[
gφuv – hψuv + gψu – hφv

]
dx (.)

in (.). Thus it leads to

χ (μ, τ ) = χμ

(
μ̃(τ ), τ

)(
μ –μ(τ )

)
(.)

by the mean value theorem for μ̃ between μ and μ(τ ).
For G(μ) = , we know that (u(μ, τ ), v(μ, τ )) → (θ (μ), ), (φ(μ, τ ),ψ(μ, τ )) → (θ (μ),

–θ (μ)), (uμ(μ, τ ), vμ(μ, τ ))→ (sμ(μ)θ (μ)+θμ(μ), –sμ(μ)θ (μ)), (φμ(μ, τ ),ψμ(μ, τ )) →
(θμ(μ), –θμ(μ)) as τ → + and μ → μ. Then, differentiating (.) with respect to μ,
we obtain

χμ(μ, τ ) =
∫

�

[
g(φμuv + φuμv + φuvμ) – h(ψμuv +ψuμv +ψuvμ)

+ g
(
ψμu + ψuuμ

)
– h

(
φμv + φvvμ

)]
dx

→ –sμ(μ)H(μ) –G′(μ)

= 
G′(μ)
H(μ)

H(μ) –G′(μ)

= G′(μ) (.)

as τ → + and μ → μ. From (.), (.) and (.), we can get the relation (.). �

In the same way, for μ close to μ, the sign of λ(μ, τ ) is decided by the result below,
whose details are omitted here.

Lemma . Assume that G(μ) = . Then we have the following conclusion:

lim
(μ,τ )→(μ,+)

λ(μ, τ )
τ (μ – μ̄(τ ))

= –
G′(μ)∫

�
θ(x,μ)dx

.

Finally, based on Lemmas .-., the main result of this section is presented as follows.

Theorem . Suppose that G(μ) and H(μ) have no common roots, μ < μ are two con-
secutive and simple roots of G(μ)H(μ) and G(μ)H(μ) >  in (μ,μ). Then, for τ �  and
μ ∈ (μ(τ ), μ̄(τ )), we have:

http://www.advancesindifferenceequations.com/content/2014/1/159
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(i) If G(μ) >  and H(μ) >  in (μ,μ), then the positive steady states (u(μ, τ ), v(μ, τ ))
of (.) are asymptotically stable;

(ii) If G(μ) <  and H(μ) <  in (μ,μ), then (u(μ, τ ), v(μ, τ )) is unstable.

Proof Now, we only consider the statement (i) (the statement (ii) can be proved similarly).
The key point in the proof of (i) is to obtain λ(μ, τ ) <  by contradiction. Suppose that
there exist τi → + and μi ∈ (μ(τi), μ̄(τi)) such that λ(μi, τi) ≥  for i = , , . . . . By passing
to the limit, we have μ(τi) → μ, μ̄(τi) → μ and μi → μ̃ as i→ ∞ with μ̃ ∈ [μ,μ].
For μ̃ ∈ (μ,μ), we know that

lim
i→∞

λ(μi, τi)
τi

= –
G(μ̃)H(μ̃)
G(μ̃) +H(μ̃)

∫
�

θ(x, μ̃)dx
< 

fromLemma . andG(μ) > ,H(μ) >  in (μ,μ). Thus, for large i, we have λ(μi, τi) < ,
which contradicts the assumption.
For μ̃ = μ or μ̃ = μ, we still only consider the case μ̃ = μ, and then the case μ̃ = μ

can be treated similarly. In this case, we may suppose G(μ) =  (if H(μ) = , then it is
analogous). It is clear that G′(μ) >  since G(μ) >  in (μ,μ) and μ is the simple root
of G(μ). Therefore, we see

lim
i→∞

λ(μi, τi)
τi(μi –μ(τi))

= –
G′(μ)∫

�
θ(x,μ)dx

< ,

which also leads to λ(μi, τi) <  for large i combining with τi → + and μi ∈ (μ(τi), μ̄(τi)).
The contradiction completes the proof. �

Remark . Theorem . is contrary to the stability results in []. But it is shown that
the two competition species with different intraspecific competition rates can also coexist
for bigger regions of μ, which is similar to [].
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