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Abstract
In this paper, we deal with the existence of infinitely many homoclinic solutions for a
class of second-order Hamiltonian systems. By using the dual fountain theorem, we
give some new criteria to guarantee that the second-order Hamiltonian systems have
infinitely many homoclinic solutions. Some recent results are generalised and
significantly improved.
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1 Introduction
Consider the following second-order Hamiltonian systems:

ü(t) – L(t)u(t) +Wu
(
t,u(t)

)
= , ∀t ∈R, (.)

where L ∈ C(R,RN×N ) is a symmetric matrix valued function, u ∈ R
N and W ∈ C(R ×

R
N ,R). As usual, we say that a solution u of system (.) is homoclinic to zero if u ∈

C(R,RN ), u �= , u(t) →  and u̇(t) →  as |t| → ∞.
Inspired by the excellent monographs [, ], the existence of periodic solutions and ho-

moclinic solutions for second-order Hamiltonian systems have been intensively studied
in many recent papers via variational methods; see [–] and references therein. Re-
cently, some researchers have begun to study the existence of solutions for second-order
Hamiltonian systems with impulses by using some critical points theorems of [, ]; see
[, ].
Homoclinic solutions of dynamical systems are very important in applications for a lot

of reasons. Theymay be ‘organizing centers’ for the dynamics in their neighborhood. From
their existence one may, under proper conditions, deduce the bifurcation behavior of pe-
riodic orbits or the existence of chaos nearby. In the past  years, with the aid of the vari-
ational methods, the existence and multiplicity of homoclinic solutions for system (.)
have been extensively investigated by many authors; see [, , –, –] and references
therein. Most of them treated the superquadratic case [, , , , , , , –]
treated subquadratic case and [, , ] treated asymptotically quadratic case. Particu-
larly, Yang and Zhang [] considered a superquadratic case and obtained system (.) has
infinitely many homoclinic solutions by using the following conditions.
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(A) W (t,u)/|u| → +∞, as |u| → ∞ uniformly for all t ∈R, and
(A) Wu(t,u(t)) = o(|u|), as |u| →  uniformly for all t ∈R.

Recently, Wei and Wang [] dealt with a case that W (t,u) = F(t,u) + G(t,u), where
F(t,u) is subquadratic andG(t,u) is superquadratic, by using the following condition, they
obtained system (.) has infinitely many homoclinic solutions.

(A) There exists ν <  such that

l(t)|t|ν– → ∞ as |t| → ∞,

where l(t) = inf|ξ |=(L(t)ξ , ξ ).

In [], Yang et al. obtained the following theorems by using the variant fountain theo-
rem.

Theorem . ([, Theorem .]) Assume that the following conditions are satisfied:

(C) L ∈ C(R,RN×N ) is a symmetric and positive definite matrix for all t ∈ R and there is a
continuous function β :R→R such that β(t) >  for all t ∈R and (L(t)u,u) ≥ β(t)|u|
and β(t)→ ∞ as |t| → ∞.

(C)′ c′(t)|u|γ ≤ (Wu(t,u),u), |Wu(t,u)| ≤ c′(t)|u|γ– + c′(t)|u|σ– where c′, c′, c′ :R →R
+

are positive continuous functions such that c′, c′ ∈ L


–γ (R,R+), c′ ∈ L 
–σ (R,R+) and

 < γ < ,  < σ <  are constants, W (t, ) = , W (t,u) =W (t, –u) for all (t,u) ∈ R ×
R

N .

Then system (.) possesses infinitely many homoclinic solutions.

Theorem . ([, Theorem .]) Assume that (C) hold. Moreover, we assume that the
following condition is satisfied:

(C)′ W (t,u) =m(t)|u|γ + d|u|q where m : R → R
+ is a positive continuous function such

thatm ∈ L


–γ (R,R+) and  < γ < , d ≥ , q >  are constants.

Then system (.) possesses infinitely many homoclinic solutions.

Motivated by the above facts, in this paper, we will improve and generalize some results
in the references that we have mentioned above.
Now, we state our main results.

Theorem . Assume that (C) hold. Moreover, we assume that the following conditions
are satisfied:

(C) W (t,u) = F(t,u) +G(t,u) where F(t, ) = , G(t, ) =  and F ,G ∈ C(R×R
N ,R) are

even in u.
(C) c(t)|u|γ ≤ (Fu(t,u),u), |Fu(t,u)| ≤ c(t)|u|γ– + c(t)|u|σ– where c, c, c : R → R

+

are positive continuous functions such that c, c ∈ L


–γ (R,R+), c ∈ L 
–σ (R,R+) and

 < γ < ,  < σ <  are constants.
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(C) G(t,u) ≥  for all (t,u) ∈ R×R
N and there exists μ >  such that

∣∣Gu(t,u)
∣∣ ≤ a(t) + c(t)|u|μ–,

where a, c : R → R
+ are positive continuous functions such that a ∈ L(R,R+) and

c ∈ L∞(R,R+).
(C) There exist ρ >  and  < δ <  such that

ρG(t,u) –
(
Gu(t,u),u

) ≤ h(t)|u|δ , ∀(t,u) ∈R×R
N ,

where h :R →R
+ is a positive continuous function such that h ∈ L


–δ (R,R+).

Then system (.) possesses infinitely many homoclinic solutions.

Remark . It is clear that there are many functions satisfying (C) but do not satisfying
(A); see [].

Remark . Obviously, Theorem . generalizes Theorem . in [], Theorem . in []
and Theorem . in []. In fact, let G(t,u) ≡ , then Theorem . coincides with Theo-
rem . in [], and contains Theorem . in [] and Theorem . in []. Furthermore,
there are many functionsW satisfying our Theorem . and not satisfying Theorem . in
[], Theorem . in [] and Theorem . in []. For example, the function

W (t,u) = F(t,u) +G(t,u), (.)

where F(t,u) = ( 
+t )


 |u|  + ( 

+|t| )

 |u|  and G(t,u) = 

+t |u|.

Remark . It is easy to see that there are many functionsW satisfying the conditions of
Theorem . but not satisfying (A), (A), the condition (C)′ in Theorem . or conditions
(R) and (R) in Theorem . in [], for example, the function (.) since ( 

+t )

 → ,

( 
+|t| )


 →  and 

+t |u| →  as |t| → ∞.

Theorem . Assume that (C)-(C) hold.Moreover, we assume that the following condi-
tions are satisfied:

(C) There exist λ >  and  ≤ h < β(λ–)
 such that

λG(t,u) –
(
Gu(t,u),u

) ≤ h|u|, ∀(t,u) ∈R×R
N ,

where β =mint∈R β(t).
(C) There exists  < θ < β such that limu→

Gu(t,u)
|u| < θ uniformly for t ∈R.

(C) G(t,u) ≥  for all (t,u) ∈R×R
N and there exist h >  and p >  such that

∣∣Gu(t,u)
∣∣ ≤ h

(
 + |u|p–).

Then system (.) possesses infinitely many homoclinic solutions.
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Remark . Obviously, all the conditions in Theorem . are more general than those in
Theorem .. Therefore, Theorem . is a complement of Theorem .. On the other hand,
there are many functions W satisfying our Theorem . and not satisfying Theorem ..
For example, the function

W (t,u) = F(t,u) +G(t,u), (.)

where F(t,u) = ( 
+t )


 |u|  + ( 

+|t| )

 |u|  and G(t,u) = |u| + β

 |u|. Thus, F(t,u) is sub-
quadratic and G(t,u) is superquadratic. To the best of our knowledge, with the exception
of [, ], the study of this case has received considerably less attention. Furthermore, it
is easy to see that the function (.) does not satisfy Theorem . in [].

Remark . InTheorem., there aremany functionsW satisfying (A) andnot satisfying
(A), for example, the function (.).

The remainder of this paper is organized as follows. In Section , some preliminary
results are presented. In Section , we give the proofs of Theorems . and ..

2 Preliminaries
Wewill present some definitions and lemmas that will be used in the proofs of our results.
Let

E =
{
u ∈H(

R,RN)
:
∫
R

[∣∣u̇(t)∣∣ + (
L(t)u(t),u(t)

)]
dt < +∞

}

equipped with the norm

‖u‖ =
(∫

R

[∣∣u̇(t)∣∣ + (
L(t)u(t),u(t)

)]
dt

) 

, ∀u ∈ X, (.)

and the inner product

〈u, v〉 =
∫
R

[(
u̇(t), v̇(t)

)
+

(
L(t)u(t), v(t)

)]
dt, ∀u, v ∈ X. (.)

Then E is a Hilbert space with this inner product. Denote by E∗ its dual space with the
associated operator norm ‖ · ‖E∗ . Note that E is continuously embedded in Lp(R,RN ) for
all p ∈ [, +∞]. Therefore, there exists a constant δp >  such that

‖u‖p ≤ δp‖u‖, ∀u ∈ E, (.)

where ‖ · ‖p denotes the usual norm on Lp(R,RN ).

Lemma . (see []) Suppose that L satisfies (C). Then the embedding of E in L(R,RN )
is compact.

Lemma . Suppose that (C), (C), (C) and (C) are satisfied. If uk ⇀ u in E, then
Wu(t,uk)→ Wu(t,u) in L(R,RN ).

http://www.advancesindifferenceequations.com/content/2014/1/161
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Proof Assume that uk ⇀ u. In view of (C), (C) and (C), we get

∣∣Wu(t,uk) –Wu(t,u)
∣∣

≤ c(t)
(|uk|γ– + |u|γ–) + c(t)

(|uk|σ– + |u|σ–)
+

∣∣Gu(t,uk) –Gu(t,u)
∣∣

≤ c(t)
(|uk|γ– + |u|γ–) + c(t)

(|uk|σ– + |u|σ–)
+ c(t)

(|uk|μ– + |u|μ–) + a(t)

≤ c(t)
(|uk – u|γ– + |u|γ–) + c(t)

(|uk – u|σ– + |u|σ–)
+ c(t)

[
μ–|uk – u|μ– + (

μ– + 
)|u|μ–] + a(t)

≤ c(t)
(|uk – u|γ– + |u|γ–) + c(t)

(|uk – u|σ– + |u|σ–)
+ μ–c(t)

(|uk – u|μ– + |u|μ–) + a(t), (.)

which yields

∣∣Wu(t,uk) –Wu(t,u)
∣∣ ≤ c(t)

(|uk – u|γ– + |u|γ–)
+ c(t)

(|uk – u|σ– + |u|σ–)
+ a(t) + × μ–c(t)

(|uk – u|μ– + |u|μ–). (.)

By virtue of (.), uk ⇀ u and the Banach-Steinhaus Theorem, one has

sup
k∈N

‖uk‖∞ ≤M, ‖u‖∞ ≤M, (.)

whereM >  is a constant. In view of μ –  > , (.) and (.), we have

∣∣Wu(t,uk) –Wu(t,u)
∣∣

≤ c(t)
(|uk – u|γ– + |u|γ–)

+ c(t)
(|uk – u|σ– + |u|σ–) + a(t)

+ × μ–c(t)
(|uk – u|μ– + |u|μ–)

≤ c(t)
(|uk – u|γ– + |u|γ–)

+ c(t)
(|uk – u|σ– + |u|σ–) + a(t)

+ × μ–c(t)
[
(M)μ–|uk – u| + |u|μ–]. (.)

Since uk ⇀ u, then uk → u in L(R,RN ), passing to a subsequence if necessary, we have

‖uk – u‖ →  as k → ∞.

So it can be assumed that

∞∑
k=

‖uk – u‖ < +∞,

http://www.advancesindifferenceequations.com/content/2014/1/161
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which implies that uk(t)→ u(t) for almost every t ∈R and

∞∑
k=

∣∣uk(t) – u(t)
∣∣ = e(t) ∈ L(R,R).

Then we have

∣∣Wu(t,uk) –Wu(t,u)
∣∣ ≤ c(t)

(∣∣e(t)∣∣γ– + |u|γ–)
+ c(t)

(∣∣e(t)∣∣σ– + |u|σ–) + a(t)

+ × μ–c(t)
[
(M)μ–

∣∣e(t)∣∣ + |u|μ–]. (.)

By (.), (.), μ –  >  and the Hölder inequality, we obtain

∫
R

∣∣Wu(t,uk) –Wu(t,u)
∣∣ dt

≤ 
∫
R

c(t)
(∣∣e(t)∣∣γ– + |u|γ–)dt

+ 
∫
R

c(t)
(∣∣e(t)∣∣σ– + |u|σ–)dt + 

∫
R

a(t)dt

+ × μ–‖c‖∞
∫
R

[
(M)μ–

∣∣e(t)∣∣ + |u|μ–]dt
≤ ‖c‖ 

–γ

(‖e‖γ– + ‖u‖γ–
)
+ ‖a‖

+ ‖c‖ 
–σ

(‖e‖σ– + ‖u‖σ–
)

+ × μ–‖c‖∞
[
(M)μ–‖e‖ + ‖u‖μ–μ–

]
≤ ‖c‖ 

–γ

(‖e‖γ– + δ
γ–
 ‖u‖γ–) + ‖a‖

+ ‖c‖ 
–σ

(‖e‖σ– + δσ– ‖u‖σ–)

+ × μ–‖c‖∞
[
(M)μ–‖e‖ + δ

μ–
μ–‖u‖μ–].

By using the Lebesgue dominated convergence theorem, the lemma is proved. �

Remark . Suppose that the condition (C) is replaced by conditions (C) and (C), then
we can obtain the same conclusion.

Define the functional � on E by

�(u) =



∫
R

[∣∣u̇(t)∣∣ + (
L(t)u(t),u(t)

)]
dt –

∫
R

W
(
t,u(t)

)
dt

=


‖u‖ – ϕ(u), (.)

where ϕ(u) =
∫
R
W (t,u(t))dt.

http://www.advancesindifferenceequations.com/content/2014/1/161
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Lemma . Under conditions (C)-(C), we have

� ′(u)v =
∫
R

[(
u̇(t), v̇(t)

)
+

(
L(t)u(t), v(t)

)]
dt –

∫
R

(
Wu

(
t,u(t)

)
, v(t)

)
dt

=
∫
R

[(
u̇(t), v̇(t)

)
+

(
L(t)u(t), v(t)

)]
dt – ϕ′(u)v (.)

for any u, v ∈ E, which yields

� ′(u)u = ‖u‖ –
∫
R

(
Wu

(
t,u(t)

)
,u(t)

)
dt. (.)

Moreover, � ∈ C(E,R), ϕ′ : E → E∗ is compact and any critical point of � on E is a clas-
sical solution for system (.) satisfying u ∈ C(R,RN ), u(t) →  and u̇(t)→  as |t| → ∞.

Proof We first show that � : E → R. It follows from (C), (C), (C), (.), μ >  and the
Hölder inequality that

 ≤
∫
R

W
(
t,u(t)

)
dt

≤
∫
R

(

γ
c(t)

∣∣u(t)∣∣γ +

σ
c(t)

∣∣u(t)∣∣σ
)
dt +

∫
R

(
a(t)

∣∣u(t)∣∣ + c(t)
∣∣u(t)∣∣μ)

dt

≤ 
γ

‖c‖ 
–γ

‖u‖γ
 +


σ

‖c‖ 
–σ

‖u‖σ
 + ‖a‖‖u‖ + ‖c‖∞‖u‖μ

μ

≤ 
γ

δ
γ
 ‖c‖ 

–γ
‖u‖γ +


σ

δσ
 ‖c‖ 

–σ
‖u‖σ + δ‖a‖‖u‖ + ‖c‖∞δμ

μ‖u‖μ.

Next, we prove that � ∈ C(E,R). It is sufficient to show that ϕ ∈ C(E,R). At first, we will
see that

ϕ′(u)v =
∫
R

(
Wu

(
t,u(t)

)
, v(t)

)
dt (.)

for any u, v ∈ E. For any given u ∈ E, let us define �(u) : E →R as follows:

�(u)v =
∫
R

(
Wu

(
t,u(t)

)
, v(t)

)
dt, ∀v ∈ E.

It is easy to see that �(u) is linear. In the following we show that �(u) is bounded. In fact,
for any u ∈ E, by (C), (C), (C), (.) and the Hölder inequality, we have

∣∣�(u)v
∣∣ =

∣∣∣∣
∫
R

(
Wu

(
t,u(t)

)
, v(t)

)
dt

∣∣∣∣
≤

∫
R

c(t)
∣∣u(t)∣∣γ–∣∣v(t)∣∣dt +

∫
R

c(t)
∣∣u(t)∣∣σ–∣∣v(t)∣∣dt

+
∫
R

a(t)
∣∣v(t)∣∣dt +

∫
R

c(t)
∣∣u(t)∣∣μ–∣∣v(t)∣∣dt

≤
(∫

R

c(t)
∣∣u(t)∣∣γ– dt

) 
 ‖v‖ +

(∫
R

c(t)
∣∣u(t)∣∣σ– dt

) 
 ‖v‖

http://www.advancesindifferenceequations.com/content/2014/1/161
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+ ‖a‖‖v‖ + ‖c‖∞
(∫

R

∣∣u(t)∣∣μ– dt
) 

 ‖v‖

≤ (‖c‖ 
–γ

‖u‖γ–
 + ‖c‖ 

–σ
‖u‖σ–

 + ‖a‖ + ‖c‖∞‖u‖μ–
μ–

)‖v‖
≤ δ

(
δ

γ–
 ‖c‖ 

–γ
‖u‖γ– + δσ–

 ‖c‖ 
–σ

‖u‖σ–

+ ‖a‖ + ‖c‖∞δ
μ–
μ–‖u‖μ–)‖v‖.

Moreover, for any u, v ∈ E, by the mean value theorem, we have

∫
R

[
W

(
t,u(t) + v(t)

)
–W

(
t,u(t)

)]
dt =

∫
R

(
Wu

(
t,u(t) + ϑ(t)v(t)

)
, v(t)

)
dt,

where ϑ(t) ∈ (, ). Thus, by Lemma . and the Hölder inequality, one has

∫
R

(
Wu

(
t,u(t) + ϑ(t)v(t)

)
–Wu

(
t,u(t)

)
, v(t)

)
dt →  as v→ .

Suppose that u→ u in E and note that

ϕ′(u)v – ϕ′(u)v =
∫
R

(
Wu

(
t,u(t)

)
–Wu

(
t,u(t)

)
, v(t)

)
dt.

Combining Lemma . and the Hölder inequality, we have

ϕ′(u)v – ϕ′(u)v→  as u→ u.

So ϕ′ is continuous and � ∈ C(E,R). Let uk ⇀ u in E, we get

∥∥ϕ′(uk) – ϕ′(u)
∥∥
E∗ = sup

‖v‖=

∥∥(
ϕ′(uk) – ϕ′(u)

)
v
∥∥

= sup
‖v‖=

∣∣∣∣
∫
R

(
Wu

(
t,uk(t)

)
–Wu

(
t,u(t)

)
, v(t)

)
dt

∣∣∣∣

≤ sup
‖v‖=

(∫
R

∣∣Wu
(
t,uk(t)

)
–Wu

(
t,u(t)

)∣∣ dt
) 

 ‖v‖

≤ δ

(∫
R

∣∣Wu
(
t,uk(t)

)
–Wu

(
t,u(t)

)∣∣ dt
) 

 → 

as k → ∞. Consequently, ϕ′ is weakly continuous. Therefore, ϕ′ is compact by the weakly
continuity of ϕ′ since E is a Hilbert space.
Finally, as in the discussion in Lemma . of [], we find that the critical points of �

are classical solutions of system (.) satisfying u ∈ C(R,RN ), u(t) →  and u̇(t) →  as
|t| → ∞. The proof is complete. �

Remark . If condition (C) is replaced by conditions (C) and (C), then we can obtain
the same conclusion.

In the next section we shall prove our results applying the dual fountain theorem ob-
tained in [] (see also Proposition . of []). Assume that E be a Banach space with the

http://www.advancesindifferenceequations.com/content/2014/1/161
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norm ‖ · ‖ and E =
⊕

j∈NXj, where Xj is a finite-dimensional subspace of E. For each k ∈N,
let Yk =

⊕k
j=Xj, Zk =

⊕∞
j=k Xj. The functional � is said to satisfy the (PS)∗ condition if

for any sequence {uj} for which {�(uj)} is bounded, uj ∈ Ykj for some kj with kj → ∞ and
(�|Ykj )′(uj)→  as j → ∞ has a subsequence converging to a critical point of � .

Theorem . Suppose that the functional � ∈ C(E,R) is even and satisfies the (PS)∗ con-
dition. Assume that for each sufficiently large k ∈ N, there exist ρk > rk >  such that

(H) ak := infu∈Zk ,‖u‖=ρk �(u)≥ .
(H) bk :=maxu∈Yk ,‖u‖=rk �(u) < .
(H) dk := infu∈Zk ,‖u‖≤ρk �(u) →  as k → ∞.

Then � has a sequence of negative critical values converging to .

3 Proof of Theorem 1.3 and 1.4
Now we give the proof of Theorem ..

Proof of Theorem . We choose a completely orthonormal basis {ej} of X and define Xj :=
Rej, then Zk and Yk can be defined as that in Section . By (C) and Lemma ., we see that
� ∈ C(E,R) is even. In the following, we will check that all conditions in Theorem . are
satisfied.
Step . We prove that � satisfies the (PS)∗ condition. Let {uj} be a (PS)∗ sequence, that

is, {�(uj)} is bounded, uj ∈ Ykj for some kj with kj → ∞ and (�|Ykj )′(uj) →  as j → ∞.
Nowwe show that {uj} is bounded in E. By virtue of (C), (C) and (C), for j large enough,
we have

ρM +M‖uj‖ ≥ ρ�(uj) –� ′(uj)uj

=
(

ρ


– 

)
‖uj‖ +

∫
R

[(
Wu(t,uj),uj

)
– ρW (t,uj)

]
dt

=
(

ρ


– 

)
‖uj‖ +

∫
R

[(
Fu(t,uj),uj

)
– ρF(t,uj)

]
dt

+
∫
R

[(
Gu(t,uj),uj

)
– ρG(t,uj)

]
dt

≥
(

ρ


– 

)
‖uj‖ – (ρ + )

∫
R

(
c(t)

∣∣uj(t)∣∣γ + c
∣∣uj(t)∣∣σ )

dt

–
∫
R

h(t)
∣∣uj(t)∣∣δ dt

≥
(

ρ


– 

)
‖uj‖ – (ρ + )

(‖c‖ 
–γ

‖uj‖γ
 + ‖c‖ 

–σ
‖uj‖σ


)

– ‖h‖ 
–δ

‖uj‖δ


≥
(

ρ


– 

)
‖uj‖ – (ρ + )

(
δ

γ
 ‖c‖ 

–γ
‖uj‖γ + δσ

 ‖c‖ 
–σ

‖uj‖σ
)

– δδ
‖h‖ 

–δ
‖uj‖δ (.)

for someM > ,M > . Since ρ >  and γ ,σ , δ < , it follows that {uj} is bounded in E.
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From the reflexivity of E, we may extract a weakly convergent subsequence, which, for
simplicity, we call {uj}, uj ⇀ u in E. In view of the Riesz representation theorem, (�|Ykj )′ :
Ykj → Y ∗

kj and ϕ′ : E → E∗ can be viewed as (�|Ykj )′ : Ykj → Ykj and ϕ′ : E → E, respectively,
where Y ∗

kj is the dual space of Ykj . Note that

(�|Ykj )′(uj) = uj – Pkjϕ
′(uj), ∀j ∈N, (.)

where Pkj : E → Ykj is the orthogonal projection for all j ∈N. That is,

uj = (�|Ykj )′(uj) + Pkjϕ
′(uj), ∀j ∈N. (.)

Due to the compactness of ϕ′ and uj ⇀ u, the right hand side of (.) converges strongly
in E and hence uj → u in E.
Step .We verify condition (H) in Theorem .. Set βk = supu∈Zk ,‖u‖= ‖u‖, then βk → 

as k → ∞ since E is compactly embedded into L(R,RN ). By (C), (C) and (C), we have

�(u) =


‖u‖ –

∫
R

W
(
t,u(t)

)
dt

≥ 

‖u‖ –

∫
R

(
c(t)

∣∣u(t)∣∣γ + c(t)
∣∣u(t)∣∣σ )

dt

–
∫
R

(
a(t)

∣∣u(t)∣∣ + c(t)
∣∣u(t)∣∣μ)

dt

≥ 

‖u‖ – ‖c‖ 

–γ
‖u‖γ

 – ‖c‖ 
–σ

‖u‖σ
 – ‖a‖‖u‖ – ‖c‖∞‖u‖μ

μ

≥ 

‖u‖ – β

γ

k ‖c‖ 
–γ

‖u‖γ – βσ
k ‖c‖ 

–σ
‖u‖σ – βk‖a‖‖u‖

– δμ
μ‖c‖∞‖u‖μ. (.)

In view of (.), μ >  and γ ,σ > , one has

�(u) ≥ 


‖u‖ – (
β

γ

k ‖c‖ 
–γ

+ βσ
k ‖c‖ 

–σ
+ βk‖a‖

)‖u‖ (.)

for ‖u‖ small enough. Let ρk = (βγ

k ‖c‖ 
–γ

+ βσ
k ‖c‖ 

–σ
+ βk‖a‖), it is easy to see that

ρk →  as k → ∞. Thus, for each sufficiently large k ∈N, by (.), we get

ak ≥ 

ρ
k > .

Step . We verify condition (H) in Theorem .. By (.), for any u ∈ Zk with ‖u‖ ≤ ρk ,
we have

�(u) ≥ –
(
β

γ

k ‖c‖ 
–γ

+ βσ
k ‖c‖ 

–σ
+ βk‖a‖

)‖u‖. (.)

Therefore, by (C), we obtain

 ≥ dk ≥ –
(
β

γ

k ‖c‖ 
–γ

+ βσ
k ‖c‖ 

–σ
+ βk‖a‖

)‖u‖. (.)
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Since βk ,ρk →  as k → ∞, one has

dk = inf
u∈Zk ,‖u‖≤ρk

�(u) →  as k → ∞.

Step . We verify condition (H) in Theorem .. Firstly, we claim that there exists ε > 
such that

meas
{
t ∈R : c(t)

∣∣u(t)∣∣γ ≥ ε‖u‖γ
} ≥ ε, ∀u ∈ Yk \ {}. (.)

If not, there exists a sequence {un} ⊂ Yk with ‖un‖ =  such that

meas

{
t ∈R : c(t)

∣∣un(t)∣∣γ ≥ 
n

}
≤ 

n
. (.)

Since dimYk < ∞, it follows from the compactness of the unit sphere of Yk that there
exists a subsequence, say {un}, such that un converges to some u in Yk . Hence, we have
‖u‖ = . Since all norms are equivalent in the finite-dimensional space, we have un → u
in L(R,RN ). By the Hölder inequality, one has

∫
R

c(t)|un – u|γ dt ≤ ‖c‖ 
–γ

(∫
R

|un – u| dt
) γ

 →  as n→ ∞. (.)

Thus there exist ε, ε >  such that

meas
{
t ∈R : c(t)

∣∣u(t)∣∣γ ≥ ε
} ≥ ε. (.)

In fact, if not, we have

meas

{
t ∈R : c(t)

∣∣u(t)∣∣γ ≥ 
n

}
= , (.)

for all positive integers n, which implies that

∫
R

c(t)
∣∣u(t)∣∣γ+ dt < 

n
‖u‖ ≤ δ

n
‖u‖ = δ

n
→ 

as n→ ∞. Hence u = , which contradicts ‖u‖ = . Therefore, (.) holds. Thus, define

� =
{
t ∈R : c(t)

∣∣u(t)∣∣γ ≥ ε
}
, �n =

{
t ∈ R : c(t)

∣∣un(t)∣∣γ <

n

}

and �c
n =R \ �n = {t ∈R : c(t)|un(t)|γ ≥ 

n }. Combining (.) and (.), we have

meas(�n ∩ �) = meas
(
� \ �c

n ∩ �
)

≥ meas(�) –meas
(
�c

n ∩ �
)

≥ ε –

n
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for all positive integers n. Let n be large enough such that ε – 
n ≥ 

ε and


γ– ε – 
n ≥


γ ε. Then we have

∫
R

c(t)|un – u|γ dt ≥
∫

�n∩�

c(t)|un – u|γ dt

≥ 
γ–

∫
�n∩�

c(t)|u|γ dt –
∫

�n∩�

c(t)|un|γ dt

≥
(


γ– ε –


n

)
meas(�n ∩ �)

≥ εε

γ+

for all large n, which is a contradiction to (.). Therefore, (.) holds. For the ε given in
(.), let

�u =
{
t ∈R : c(t)

∣∣u(t)∣∣γ ≥ ε‖u‖γ
}
, ∀u ∈ Yk \ {}. (.)

By (.), we obtain

meas(�u) ≥ ε, ∀u ∈ Yk \ {}. (.)

For any uk ∈ Yk , by (C), (C), (C), (.) and (.), we have

�(u) =


‖u‖ –

∫
R

W
(
t,u(t)

)
dt

≤ 

‖u‖ – 

γ

∫
R

c(t)
∣∣u(t)∣∣γ dt –

∫
R

G
(
t,u(t)

)
dt

≤ 

‖u‖ – 

γ

∫
R

c(t)
∣∣u(t)∣∣γ dt

≤ 

‖u‖ – 

γ

∫
�u

c(t)
∣∣u(t)∣∣γ dt

≤ 

‖u‖ – ε

γ
‖u‖γ meas(�u)

≤ 

‖u‖ – ε

γ
‖u‖γ .

Choose  < rk <min{ρk , (ε/γ )


–γ }. Direct computation shows that

bk ≤ –
rk

< , ∀k ∈N.

Thus, by Theorem ., � has infinitely many nontrivial critical points, that is, system (.)
possesses infinitely many homoclinic solutions. �

Now we give the proof of Theorem ..

Proof of Theorem . Step . We prove that � satisfies the (PS)∗ condition. Let {uj} be
a (PS)∗ sequence, that is, {�(uj)} is bounded, uj ∈ Ykj for some kj with kj → ∞ and

http://www.advancesindifferenceequations.com/content/2014/1/161
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(�|Ykj )′(uj) →  as j → ∞. Now we show that {uj} is bounded in E. In view of (C), (C),
(C) and (C), for j large enough, we obtain

λM +M‖uj‖ ≥ λ�(uj) –� ′(uj)uj

=
(

λ


– 

)
‖uj‖ +

∫
R

[(
Wu(t,uj),uj

)
– λW (t,uj)

]
dt

=
(

λ


– 

)
‖uj‖ +

∫
R

[(
Fu(t,uj),uj

)
– λF(t,uj)

]
dt

+
∫
R

[(
Gu(t,uj),uj

)
– λG(t,uj)

]
dt

≥
(

λ


– 

)
‖uj‖ – (λ + )

∫
R

(
c(t)

∣∣uj(t)∣∣γ + c
∣∣uj(t)∣∣σ )

dt

– h
∫
R

∣∣uj(t)∣∣ dt

≥
(

λ


– 

)
‖uj‖ – (λ + )

(‖c‖ 
–γ

‖uj‖γ
 + ‖c‖ 

–σ
‖uj‖σ


)

–
h
β

∫
R

(
L(t)uj(t),uj(t)

)
dt

≥
(

λ – 


–
h
β

)
‖uj‖

– (λ + )
(
δ

γ
 ‖c‖ 

–γ
‖uj‖γ + δσ

 ‖c‖ 
–σ

‖uj‖σ
)

(.)

for some M > , M > . Since  ≤ h < β(λ–)
 and  < γ ,σ < , it follows that {uj} is

bounded in E. In the following, the proof of the (PS)∗ condition is the same as that in
Theorem ., and we omit it here.
Step .We verify condition (H) in Theorem .. Set βk = supu∈Zk ,‖u‖= ‖u‖, then βk → 

as k → ∞ since E is compactly embedded into L(R,RN ). By (C), we have

∣∣G(t,u)∣∣ ≤ h
(|u| + |u|p). (.)

It follows from (C) that there exists δ >  such that

∣∣G(t,u)∣∣ ≤ θ


|u|, ∀|u| ≤ δ,∀t ∈R. (.)

Combining (.) and (.), we get

∣∣G(t,u)∣∣ ≤ θ


|u| + h|u|p , ∀(t,u) ∈R×R

N , (.)

where h = h( + δ
–p
 ). By (C), (C), (C) and (.), we have

�(u) =


‖u‖ –

∫
R

W
(
t,u(t)

)
dt

≥ 

‖u‖ –

∫
R

(
c(t)

∣∣u(t)∣∣γ + c(t)
∣∣u(t)∣∣σ )

dt –
∫
R

(
θ


∣∣u(t)∣∣ + h

∣∣u(t)∣∣p
)
dt
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≥ 

‖u‖ – ‖c‖ 

–γ
‖u‖γ

 – ‖c‖ 
–σ

‖u‖σ
 – h‖u‖pp

–
θ

β

∫
R

(
L(t)uj(t),uj(t)

)
dt

≥
(


–

θ

β

)
‖u‖ – β

γ

k ‖c‖ 
–γ

‖u‖γ – βσ
k ‖c‖ 

–σ
‖u‖σ – hδpp‖u‖p . (.)

Take θ = 
 –

θ
β

, by (C), we obtain θ > . By virtue of (.), p >  and γ ,σ > , one has

�(u) ≥ θ


‖u‖ – (

β
γ

k ‖c‖ 
–γ

+ βσ
k ‖c‖ 

–σ

)‖u‖ (.)

for ‖u‖ small enough. Let ρk = θ
 (β

γ

k ‖c‖ 
–γ

+ βσ
k ‖c‖ 

–σ
), it is easy to see that ρk →  as

k → ∞. Thus, for each sufficiently large k ∈N, by (.), we get

ak ≥ θ


ρ
k > .

Step . We verify condition (H) in Theorem .. The proof is similar to the Step  in
the proof of Theorem ., and we omit it.
Step .We verify condition (H) in Theorem .. The proof is the same as that the Step 

in the proof of Theorem ., and we omit it here.
Thus, by Theorem ., � has infinitely many nontrivial critical points, that is, system

(.) possesses infinitely many homoclinic solutions. �
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