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1 Introduction
In this paper, we consider the following third-order differential equation with singularity:

x′′′ + f
(
t,x′)x′′ + h(t,x)x′ = g(t,x), (.)

where f , h are continuous function andT-periodic about t, h(t,x)≤ , g : [,T]×(,∞)→
R is an L-Carathéodory function, i.e., it is measurable in the first variable and continu-
ous in the second variable, and for every  < r < s there exists hr,s ∈ L[,ω] such that
|f (t,x(t))| ≤ hr,s for all x ∈ [r, s] and a.e. t ∈ [,ω], f is ω-periodic function about t. Equa-
tion (.) is singular at , which means that g(t,x) becomes unbounded when x→ +. We
say that (.) is of repulsive type (resp. attractive type) if g(t,x) → +∞ (resp. g(t,x)→ –∞)
when x→ .
The study of singular differential equations began with the paper of Taliaferro. In ,

Taliaferro [] discussed the model equation with singularity

y′′ +
q(t)
yα

= ,  < t < , (.)

subject to

y() =  = y(),

and obtained the existence of a solution for the problem. Here α > , q ∈ C(, ) with q > 
on (, ) and

∫ 
 t( – t)q(t)dt < ∞. We call the equation a strong force condition if α ≥ 

and we call it a weak force condition if  < α < .
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Taliaferro’s work has attracted the attention of many specialists in differential equa-
tions and they have contributed to the research of singular differential equations (see,
e.g., [–]). Among these results, some are obtained for a second-order equation with
strong force condition; see, e.g., [, ]. With a strong singularity, the energy near the ori-
gin becomes infinite and this fact is helpful for obtaining either a priori bounds, which
are needed for a classical application of the degree theory, or the fast rotation, which is
needed in recent versions of the Poincaré-Birkhoff theorem. Afterwards, in  Torres
[] considered the periodic problem for a singular second-order equation with the weak
force condition and showed that weak singularities may help periodic solutions to exist,
which has driven the study of weak singularities (see []).
At the beginning,most of work concentrated on second-order singular differential equa-

tion, as in the references we mentioned above. Recently there have been published some
results on third-order singular differential equation (see [–]). For example, in [], Sun
and Liu considered the singular nonlinear third-order periodic boundary value problem

u′′′ + ρu = f (t,u),  ≤ t ≤ π (.)

with u(i)() = u(i)(π ), i = , , , where ρ ∈ (, /
√
) and f is singular at t = , t = , and

u = . Under suitable growth conditions, it is proved by constructing a special cone in
C[, π ] and employing fixed point index theory that the problem has at least one solution
or at least two positive solutions. Afterwards, Li [] investigated the third-order ordinary
differential equation

u′′′(t) = f
(
t,u(t),u′(t),u′′(t)

)
, t ∈R, (.)

where f ∈ C(R×(,∞)×R×R) isω-periodic in t, and f (t,u, v,w) may be singular at u = .
By applying of a fixed point theorem in cones, the author obtained that existence results
of positive ω-periodic solutions for (.). Recently, Ren et al. [] studied the third-order
nonlinear singular differential equation

x′′′(t) + ax′′(t) + bx′(t) + cx(t) = f
(
t,x(t)

)
+ e(t). (.)

Using Green’s function for a third-order differential equation and some fixed point the-
orems, i.e., the Leray-Schauder alternative principle and Schauder’s fixed point theorem,
they established three new existence results of periodic solutions for (.).
Based on the above work, in this paper we will study (.) and obtain the existence of pe-

riodic solutions by using topological degree theorem. The rest of this paper is organized as
follows. In Section , we give some lemmas. In Section , by using topological degree the-
orem byMawhin [], some sufficient conditions are obtained for the existence of positive
periodic solutions of (.). We, respectively, consider repulsive type and attractive type. In
Section , an example is given to show the feasibility of the main result of this paper.

2 Some lemmas
Lemma . [, Theorem .] Let X, Y be real normed spaces and L : D(L) ⊂ X → Y
a linear Fredholm map of index zero. Assume that � ⊂ X is an open bounded set and

http://www.advancesindifferenceequations.com/content/2014/1/162


Cheng Advances in Difference Equations 2014, 2014:162 Page 3 of 12
http://www.advancesindifferenceequations.com/content/2014/1/162

N : �̄ → Y is an L-compact mapping. Assume that the following conditions are satisfied:
(i) Lx + λNx 
= , for each (x,λ) ∈ [(D(L) \ kerL)∩ ∂�]× (, );
(ii) Nx /∈ ImL, for each x ∈ kerL∩ ∂�;
(iii) D(QN |kerL,� ∩ kerL) 
= , where Q : Y → Y is a continuous projector such that

kerQ = ImL and D is the Brouwer degree,
then the equation Lx +Nx =  has at least one solution in D(L)∩ �̄.

For the sake of convenience, throughout this paper we will adopt the following notation:

|u|∞ = max
t∈[,T]

∣∣u(t)∣∣, |u| = min
t∈[,T]

∣∣u(t)∣∣,

|u|p =
(∫ T


|u|p dt

) 
p
, h̄ =


T

∫ T


h(t)dt.

Lemma . [] If ω ∈ C(R,R) and ω() = ω(T) = , then

∫ T



∣∣ω(t)∣∣p dt ≤
(
T
πp

)p ∫ T



∣∣ω′(t)
∣∣p dt,

where ≤ p < ∞, πp = 
∫ (p–)/p


ds
(– sp

p– )
/p =

π (p–)/p
p sin(π/p) .

Remark . When p = , π = 
∫ (–)/


ds
(– s

– )/
= π (–)/

 sin(π/) = π .

Lemma . [] If x ∈ C(R,R) with x(t + T) = x(t), then

∣∣x′(t)
∣∣
 ≤

(
T
π

)∣∣x′′(t)
∣∣
.

Lemma . If x ∈ C(R,R) with x(t + T) = x(t), and t ∈ [,T] such that |x(t)| < d, then

(∫ T



∣∣x(t)∣∣p dt
) 

p
≤

(
T
πp

)(∫ T



∣∣x′(t)
∣∣p dt

) 
p
+ dT


p .

Proof Letω(t) = x(t+ t)–x(t), and thenω() = ω(T) = . By Lemma . andMinkowski’s
inequality, we have

(∫ T



∣∣x(t)∣∣p dt
) 

p
=

(∫ T



∣∣ω(t) + x(t)
∣∣p dt

) 
p

≤
(∫ T



∣∣ω(t)∣∣p dt
) 

p
+

(∫ T



∣∣x(t)∣∣p dt
) 

p

≤
(
T
πp

)(∫ T



∣∣ω′(t)
∣∣p dt

) 
p
+ dT


p

=
(
T
πp

)(∫ T



∣∣x′(t)
∣∣p dt

) 
p
+ dT


p .

This completes the proof of Lemma .. �
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Lemma . If x ∈ C(R,R) with x(t + T) = x(t), and t ∈ [,T] such that |x(t)| < d, then

(∫ T



∣∣x(t)∣∣ dt
) 

 ≤
(

T

π

)(∫ T



∣∣x′′(t)
∣∣ dt

) 

+ dT


 .

Proof From Lemma . and Lemma ., we know that, when p = , we have

(∫ T



∣∣x(t)∣∣ dt
) 

 ≤
(
T
π

)(∫ T



∣∣x′(t)
∣∣ dt

) 

+ dT




≤
(
T
π

)(
T
π

)(∫ T



∣∣x′′(t)
∣∣ dt

) 

+ dT




=
(

T

π

)(∫ T



∣∣x′′(t)
∣∣ dt

) 

+ dT


 .

This completes the proof of Lemma .. �

3 Main results
First we consider (.) when g(t,x) is of attractive type. Assume that

ϕ(t) = lim
x→+∞ sup

g(t,x)
x

(.)

exists uniformly a.e. t ∈ [,T], i.e., for any ε >  there is gε ∈ L(,T) such that

g(t,x)≤ (
ϕ(t) + ε

)
x + gε(t) (.)

for all x >  and a.e. t ∈ [,T]. Moreover, ϕ ∈ C(R,R) and ϕ(t + T) = ϕ(t).
For the sake of convenience, we list the following assumptions which will be used re-

peatedly in the sequel:

(H) There exist two positive constants D <D such that

g(t,x) < , for all  < x <D; and g(t,x) > , for all x >D.

(H) (Decomposition condition) g(t,x) = g(x) + g(t,x), where g ∈ C((,∞);R) and g :
[,T] × [,∞) → R is an L-Carathéodory function, i.e., it is measurable in the
first variable and continuous in the second variable, and for any b >  there is hb ∈
L(,T ;R+) such that

∣∣g(t,x)∣∣ ≤ hb(t), a.e. t ∈ [,T],∀≤ x ≤ b.

(H) (Strong force condition at x = )
∫ 
 g(x)dx = –∞.

(H) There exists a positive constant A such that |f (t,u)| ≤ A, for all (t,u) ∈ [,T]×R.

Theorem . Assume that (.), h(t,x) ≤ , and (H)-(H) hold. We have the following
condition:
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(H) A( T
π ) + |ϕ+|∞(T

π ) < .

Then (.) has at least one positive T-periodic solution.

Proof Let X = {x :R → R is C and satisfies x(t + T) ≡ x(t)}, endowed with the C-norm.
Let Y = L(,T ;R) with the L-norm.
Let D(L) = {x ∈ X : x′′′ is absolutely continuous on R} and let L : D(L) → Y be the oper-

ator defined by

(Lx)(t) = x′′′(t), t ∈R.

Define a nonlinear mapping N : Y → Y by

(Nx)(t) = f
(
t,x′)x′′(t) + h(t,x)x′(t) – g

(
t,x(t)

)
. (.)

Then (.) can be converted to the abstract equation Lx + Nx = . Define the projectors
P : X → X and Q : Y → Y by

Px =

T

∫ T


x(s)ds; Qy =


T

∫ T


y(s)ds. (.)

The real number Px and Qy are seen as elements of X and Y inasmuch constant function.
It is easy to see that kerL =R, ImL = {y ∈ Y :

∫ T
 y(t)dt = }, kerQ = ImL, ImP = kerL, and

then L is a Fredholm linear mapping with zero index.
Let K denote the inverse of L|kerP∩D(L). Then we have

[Ky](t) =
t


∫ T


(T – s)y(s)ds –

t
T

∫ T


(T – s)y(s)ds –

t

T

∫ T


(T – s)y(s)ds

+



∫ t


(t – s)y(s)ds. (.)

From (.), (.), and (.), it follows that QN and K (I –Q)N are continuous, and QN(�̄)
is bounded and then K (I –Q)N(�̄) is compact for any open bounded� ⊂ X, whichmeans
N is L-compact on �̄.
Now we consider the following (homotopy) family of (.):

x′′′ + λf
(
t,x′)x′′ + λh(t,x)x′ = λg(t,x), λ ∈ [, ], (.)

i.e., the abstract equation Lx + λNx = . We need to show that the set of all possible solu-
tions of the family of (.) is, a priori, bounded in C(R,R) by a constant independent of
λ ∈ [, ].
Suppose that x is a solution to (.) for some λ ∈ [, ]. Let t∗, t∗ be, respectively, the

global maximum point and global minimum point of x′(t) on [,T]; Firstly, we consider
x′(t∗) = maxt∈R x′(t) = maxt∈[,T] x′(t). Since

∫ T
 x′(t)dt = , we know that there exist two

points t, t such that x′(t) < , x′(t) > . So, we get x′(t∗) > x′(t) > . Because x′(t∗) is the
maximum value of x′(t), x′′(t∗) = . Furthermore, we conclude

x′′′(t∗) ≤ . (.)

http://www.advancesindifferenceequations.com/content/2014/1/162
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So, we have

x′′′(t∗) + λh
(
t∗,x

(
t∗

))
x′(t∗) = λg

(
t∗,x

(
t∗

))
,

since x′′′(t∗)≤  and h(t∗,x(t∗))x′(t∗) ≤ , and we get

g
(
t∗,x

(
t∗

)) ≤ .

From (H) we obtain

x
(
t∗

) ≤D. (.)

Similarly, we get

g
(
t∗,x(t∗)

) ≥ .

From (H) we obtain

x(t∗) ≥D. (.)

From (.) and (.), we know that there exists a point ξ ∈ [,T] such that

D ≤ x(ξ )≤D. (.)

Therefore, we have

∣∣x(t)∣∣ =
∣∣∣∣x(ξ ) +

∫ t

ξ

x′(s)ds
∣∣∣∣ ≤D +

∫ T



∣∣x′(s)
∣∣ds. (.)

Multiplying by x′(t) on both sides of (.) and integrating from  to T , we have

∫ T


x′′′(t)x′(t)dt + λ

∫ T


f
(
t,x′)x′′(t)x′(t)dt + λ

∫ T


h(t,x)

(
x′(t)

) dt

= λ

∫ T


g
(
t,x(t)

)
x′(t)dt.

Since
∫ T
 x′′′(t)x′(t) = –

∫ T
 |x′′(t)| dt, from (H) and h(t,x)≤ , we have

∫ T



∣∣x′′(t)
∣∣ dt = λ

∫ T


f
(
t,x′)x′′(t)x′(t)dt + λ

∫ T


h(t,x)

∣∣x′(t)
∣∣ dt

– λ

∫ T


g
(
t,x(t)

)
x′(t)dt

≤ λ

∫ T


f
(
t,x′)x′′(t)x′(t)dt – λ

∫ T


g
(
t,x(t)

)
x′(t)dt

≤
∫ T



∣∣f (t,x′)∣∣∣∣x′′(t)
∣∣∣∣x′(t)

∣∣dt +
∫ T



∣∣g(t,x(t))∣∣∣∣x′(t)
∣∣dt

http://www.advancesindifferenceequations.com/content/2014/1/162
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≤ A
∫ T



∣∣x′′(t)
∣∣∣∣x′(t)

∣∣dt +
∫ T



∣∣g(t,x(t))∣∣∣∣x′(t)
∣∣dt

≤ A
∫ T



∣∣x′′(t)
∣∣∣∣x′(t)

∣∣dt + ∣∣x′∣∣∞
∫ T



∣∣g(t,x(t))∣∣dt.

For any ε > , let gε ∈ L(,T) be as in (.). Thus we have

g+(t,x)≤ (
ϕ+(t) + ε

)
x(t) + g+ε (t).

Therefore,
∫ T



∣∣g+(t,x)∣∣dt ≤ (∣∣ϕ+∣∣∞ + ε
)∫ T



∣∣x(t)∣∣dt +
∫ T



∣∣g+ε (t)∣∣dt.

Since
∫ T
 g(t,x)dt = , we can get

∫ T
 |g(t,x)|dt = 

∫ T
 |g+(t,x)|dt. So, we have

∫ T



∣∣g(t,x)∣∣dt ≤ 
(∣∣ϕ+∣∣∞ + ε

)∫ T



∣∣x(t)∣∣dt + 
∫ T



∣∣g+ε (t)∣∣dt. (.)

From x() = x(T), we know that there exists a point ξ ∈ [,T] such that x′(ξ) = . So, we
have

∣∣x′∣∣∞ ≤
∫ T



∣∣x′′(t)
∣∣dt.

From (.) and the Hölder inequality, we have

∫ T



∣∣x′′(t)
∣∣ dt ≤ A

∫ T



∣∣x′′(t)
∣∣∣∣x′(t)

∣∣dt + 
(∣∣ϕ+∣∣∞ + ε

) ∫ T



∣∣x(t)∣∣dt
∫ T



∣∣x′′(t)
∣∣dt

+ 
∫ T



∣∣g+ε (t)∣∣dt
∫ T



∣∣x′′(t)
∣∣dt

≤ A
(∫ T



∣∣x′′(t)
∣∣ dt

) 

(∫ T



∣∣x′(t)
∣∣ dt

) 


+ 
(∣∣ϕ+∣∣∞ + ε

)
T

(∫ T



∣∣x(t)∣∣ dt
) 


(∫ T



∣∣x′′(t)
∣∣ dt

) 


+ T
(∫ T



∣∣x′′(t)
∣∣ dt

) 

(∫ T



∣∣g+ε (t)∣∣ dt
) 


.

From (.) and Lemma ., we have

(∫ T



∣∣x(t)∣∣ dt
) 

 ≤
(

T

π

)(∫ T



∣∣x′′(t)
∣∣ dt

) 

+D

√
T . (.)

From (.) and Lemma ., we have

∫ T



∣∣x′′(t)
∣∣ dt

≤ A
(∫ T



∣∣x′′(t)
∣∣ dt

) 
 ·

(
T
π

)(∫ T



∣∣x′′(t)
∣∣ dt

) 
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+ T
(∣∣ϕ+∣∣∞ + ε

)[(
T

π

)(∫ T



∣∣x′′(t)
∣∣ dt

) 

+D

√
T

](∫ T



∣∣x′′(t)
∣∣ dt

) 


+ T
(∫ T



∣∣x′′(t)
∣∣ dt

) 

(∫ T



∣∣g+ε (t)∣∣ dt
) 



= A
(

T
π

)∫ T



∣∣x′′(t)
∣∣ dt + (∣∣ϕ+∣∣∞ + ε

)(T

π

)∫ T



∣∣x′′(t)
∣∣ dt

+
[
T

(∣∣ϕ+∣∣∞ + ε
)
D

√
T + T

∣∣g+ε ∣∣


](∫ T



∣∣x′′(t)
∣∣ dt

) 


=
[
A

(
T
π

)
+

(∣∣ϕ+∣∣∞ + ε
)(T

π

)]∫ T



∣∣x′′(t)
∣∣ dt

+ T
[(∣∣ϕ+∣∣∞ + ε

)
D

√
T +

∣∣g+ε ∣∣


](∫ T



∣∣x′′(t)
∣∣ dt

) 

.

Since ε sufficiently small, from (H) we know that A( T
π ) + |ϕ+|∞(T

π ) < . Thus, it is easy
to see that there exists a positive constantM′

 such that

∫ T



∣∣x′′(t)
∣∣ dt ≤M′

.

So, by the Hölder inequality, we have

∣∣x′∣∣∞ ≤
∫ T



∣∣x′′(t)
∣∣dt ≤ √

T
(∫ T



∣∣x′′(t)
∣∣)


 ≤ √

TM′ 
 :=M. (.)

From (.), we have

|x|∞ ≤D +
∫ T



∣∣x′(t)
∣∣ds≤D +MT :=M. (.)

On the other hand, from x′() = x′(T), we know that there exists a point ξ ∈ [,T] such
that x′′(ξ) = . From (.), (.), and (.), and by (.), we have

∣∣x′′∣∣∞ ≤ max
t∈R

∣∣∣∣
∫ t

ξ

x′′′(s)ds
∣∣∣∣

≤ λ

∫ T



∣∣f (t,x′)∣∣∣∣x′′(t)
∣∣dt + λ

∫ T



∣∣h(t,x)∣∣∣∣x′(t)
∣∣dt + λ

∫ T



∣∣g(t,x)∣∣dt
≤ λ

(|f |M

√
TM′ 

 + |h|MTM + 
(∣∣ϕ+∣∣∞ + ε

)
TM + 

√
T

∣∣g+ε ∣∣


)
:= λM, (.)

where |h|M =max|x|≤M |h(t,x)|, |f |M =max|u|≤M |f (t,u)|.
Next, multiplying (.) by x′(t) we get

x′′′(t)x′(t) + λf
(
t,x′)x′′(t)x′(t) + λh(t,x)

(
x′(t)

)
= λ

(
g

(
x(t)

)
+ g

(
t,x(t)

))
x′(t). (.)
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Let τ ∈ [,T], for any τ ≤ t ≤ T , we integrate (.) on [τ , t] and get

λ

∫ x(t)

x(τ )
g(u)du = λ

∫ t

τ

g
(
x(s)

)
x′(s)ds

= x′′(t)x′(t) – x′′(τ )x′(τ ) –
∫ t

τ

∣∣x′′(s)
∣∣ dt + λ

∫ t

τ

f
(
s,x′)x′′(s)x′(s)ds

+ λ

∫ t

τ

h(s,x)
(
x′(t)

) dt – λ

∫ t

τ

g
(
s,x(s)

)
x′(s)ds. (.)

By (.), (.), and (.) we have

x′′(t)x′(t)≤ λMM,∣∣∣∣
∫ t

τ

∣∣x′′(s)
∣∣ ds

∣∣∣∣ ≤ λM
T ,

∣∣∣∣
∫ t

τ

f
(
s,x′)x′′(s)x′(s)ds

∣∣∣∣ ≤ λ|f |MMMT ,

∣∣∣∣
∫ t

τ

h(s,x)x′(s)x′(s)ds
∣∣∣∣ ≤ |h|MM


T ,

∣∣∣∣
∫ t

τ

g
(
s,x(s)

)
x′(s)ds

∣∣∣∣ ≤ √
TM|gM |,

where gM =max≤x≤M |g(t,x)| ∈ L(,T) is as in (H).
From these inequalities we can derive form (.) that

∣∣∣∣
∫ x(t)

x(τ )
g(u)du

∣∣∣∣ ≤M′
, (.)

for some constant M′
 which is independent on λ, x and t. In view of the strong force

condition (H), we know that there exists a constantM >  such that

x(t)≥M, ∀t ∈ [τ ,T]. (.)

The case t ∈ [, τ ] can be treated similarly.
From (.), (.), (.), (.), and (.), we let

� =
{
x ∈ X : E < x(t) < E,

∣∣x′(t)
∣∣ < E and

∣∣x′′(t)
∣∣ < E,∀t ∈ [,T]

}
, (.)

where  < E <min(M,D), E >max(M,D), E >M and E >M. Then the conditions
(i) and (ii) of Lemma . are satisfied. For a constant x ∈ kerL, x > , we have

QNx =

T

∫ T


g(t,x)dt.

The degree condition (H) shows that

D(QN |kerL,� ∩ kerL) = .

http://www.advancesindifferenceequations.com/content/2014/1/162
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Thus (iii) of Lemma . is also verified. Therefore Lx + Nx =  has at least one solution
in �̄, which means (.) has at least one positive T-periodic solution. �

Next we consider (.) when g(t,x) is of repulsive type.

Theorem . Assume that (.), h(t,x) ≤ , (H), and (H), (H) are satisfied. We have
the following condition:

(H′
) there exist two positive constants D <D such that

g
(
t,x(t)

)
> , for all  < x(t) <D; and g

(
t,x(t)

)
< , for all x(t) >D.

(H′
) (Strong force condition at x = )

∫ 
 g(x)dx = +∞.

Then (.) has at least one positive T-periodic solution.

Proof Let λ ∈ [, ] and consider the following:

x′′′ + λf
(
t,x′)x′′ + λh(t,x)x′ = λg(t,x). (.)

Let t∗, t∗ be, respectively, the global maximum point and global minimum point of x′(t)
on [,T]. First, we consider x′(t∗) =mint∈R x′(t) =mint∈[,T] x′(t). Since

∫ T
 x′(t)dt = , we

know that there exist two points t, t such that x′(t) < , x′(t) > . So, we get x′(t∗) <
x′(t) < . Because x′(t∗) is the minimum value of x′(t), x′′(t∗) = . Furthermore, we can
conclude

x′′′(t∗) ≥ . (.)

So, we have

x′′′(t∗) + λh
(
t∗,x(t∗)

)
x′(t∗) = λg

(
t∗,x(t∗)

)
,

since x′′′(t∗)≥  and h(t∗,x(t∗))x′(t∗) ≥ , we get

g
(
t∗,x(t∗)

) ≥ .

Hence, from (H′
) we know that there exists a positive constant D such that

x(t∗) ≤D. (.)

Similarly, we get

g
(
t∗,x

(
t∗

)) ≤ .

Hence, from (H′
) we know that there exists a positive constant D such that

x
(
t∗

) ≥D. (.)

http://www.advancesindifferenceequations.com/content/2014/1/162
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From (.) and (.), we know that there exists a point ζ ∈ [,T] such that

D ≤ x(ζ )≤D.

Therefore, we have

∣∣x(t)∣∣ =
∣∣∣∣x(ζ ) +

∫ t

ζ

x′(s)ds
∣∣∣∣ ≤D +

∫ T



∣∣x′(s)
∣∣ds. (.)

The rest of the proof is the same as that of Theorem .. �

4 Examples
Finally, we present some examples to illustrate our result.

Example . Consider the three-order differential equation with singularity:

x′′′(t) +


(
 sint cosx′(t) + 

)
x′′(t) +




(
–x(t) – 

)
x′(t)

=



(sint + )x(t) –


x(t)κ
, (.)

where κ ≥ .
It is clear that T = π , f (t,x′) = 

 ( sint cosx
′ + ), h(t,x) = 

 (–x
 – ) < , g(t,x) =


 (sint + )x – 

xr , ϕ(t) =

 (sint + ). It is obvious that (H)-(H) hold. Now we con-

sider the assumption (H). Since A≤ 
 , |ϕ+|∞ ≤ 

 , we have

A
(

T
π

)
+

∣∣ϕ+∣∣∞
(
T

π

)

≤ 


× π

π
+




×
(

π

π

)

=



× 

+




× π

=
 + π


< .

So by Theorem ., we know (.) has at least one positive π-periodic solution.
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