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Abstract
What stands out in this article is the sequence spaces of a new brand cλ0 (̃B) and cλ (̃B),
derived by using a double sequential band matrix B(r̃, s̃) which generalizes the
previous work of Sönmez and Başar (Abstr. Appl. Anal. 2012:435076, 2012), where
(rn)∞n=0 and (sn)∞n=0 are given convergent sequences of positive real numbers. The
aforementioned spaces are in fact the BK-spaces of non-absolute type. Moreover,
they are norm isomorphic to the spaces c0 and c, respectively. Then, some inclusion
relations are derived to determine the α-, β- and γ -duals of these spaces. Next, their
Schauder bases are constructed. In conclusion, some matrix classes from the spaces
cλ0 (̃B) and cλ (̃B) to the spaces �p, c0 and c are characterized. When compared with the
corresponding results in the literature, it is seen that the results of the present study
are more general and more inclusive.
MSC: 46A45; 40C05
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1 Fundamental facts
There are many ways to construct new sequence spaces from old ones. In recent years the
construction of a new sequence space by means of the domain of triangle matrix has been
used by some of the researchers in many scientific articles. Purely for the development of
this approach, the very readable book of Başar [] is recommended especially for interest-
ing historical developments. Let us start here with a definition of just what a sequence is.
There is a variety of ways to define a sequence, each of which is an equivalent way of defin-
ing the same thing. Instead, we prefer the following definition. A sequence can easily be
described as an ordered list of numbers. Although these lists may or may not include infi-
nite number of terms, herewewill exclusively deal with those consisting of infinite number
of terms. A sequence can be described as a function having a domain {k,k + ,k + , . . .}
assuming values in R or C, here k is any given integer, mostly k =  or . Usually, sub-
script notation is used and (xn) is written instead of x(n). A sequence (xn) converges to
limit a if each neighborhood of a contains almost all terms of the sequence. In this case
we say that (xn) converges to a as n goes to ∞. We denote by c, the set of all convergent
sequences in K, where K denotes either of fields R and C. A sequence (xn) in K is called
a null sequence if it converges to zero. We denote the set of all null sequences in K by c.
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A sequence is bounded if the set of its terms is bounded. The set of all bounded sequences
is denoted by �∞. Any vector subspace of ω = ω(K) = K

N is known as a sequence space.
It is clear that the sets c, c and �∞ are the subspaces of the ω. Therefore, c, c and �∞,
equipped with a vector space structure, form a sequence space. Also by bs, cs, � and �p

we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent
series, respectively. As is well known, we call a sequence space X with a linear topology a
K-space if and only if each of the maps pn : X →R defined by pn(x) = xn is continuous for
all n ∈ N. A K-space X is called an FK-space if and only if X is a complete linear metric
space. In other words, we can say that an FK-space is a complete total paranormed space.
Note here that some discussion of FK-spaces is given in []. An FK-space whose topology
is normable is called a BK-space or a Banach coordinate space, so a BK-space is a normed
FK-space. The space �p ( ≤ p < ∞) is a BK-space with ‖x‖p = (

∑
k |xk|p)


p and c, c and

�∞ are BK-spaces with ‖x‖∞ = supk |xk|. An FK-space X is said to have the AK property
if φ ⊂ X and {e(k)} is a basis for X, where ek is a sequence whose only non-zero term is a
 in kth place for each k ∈ N and φ = span{ek}, the set of all finitely non-zero sequences.
If φ is dense in X, then X is called an AD-space, thus AK implies AD. We know that the
spaces c, cs and �p are AK-spaces, where  ≤ p < ∞. In addition to this, by F we denote
the collection consisting of all non-empty and finite subsets of N.
Another notion we need is that of matrix transformation. For this reason, in this para-

graph, we shall be concerned with matrix transformation from a sequence space X to a
sequence space Y . Given any infinite matrix A = (ank) of real numbers ank , where n,k ∈N,
any sequence x, we writeAx = ((Ax)n), theA-transform of x, if (Ax)n =

∑
k ankxk converges

for each n ∈N. For simplicity in notation, here and in what follows, the summation with-
out limits runs from  to ∞. If x ∈ X implies that Ax ∈ Y , then we say that A defines a
matrix mapping from X into Y and denote it by A : X → Y . By (X : Y ) we mean the class
of all infinite matrices such that A : X → Y .
The matrix domain has fundamental importance for this article. Therefore, the concept

is presented in this paragraph. The λA is said to be matrix domain of an infinite matrix A
for any subspace λ of the all real-valued sequence space w(R) and is described as

λA :=
{
x = (xk) ∈ ω : Ax ∈ λ

}
. (.)

The new sequence space λA generated by the limitation matrix A from the space λ ei-
ther includes the space λ or is included by the space λ, in general, i.e., the space λA is the
expansion or the contraction of the original space λ.
In order to establish a new brand sequence space, a triangle matrix was previously used.

To obtain detailed information, one must search the articles [–]. These references will
reflect the fact.
The layout of the rest of the present paper is as follows. At the beginning of Section ,

essential fundamental concepts and some historical materials are given; also the sequence
spaces cλ(̃B) and cλ (̃B) are introduced and they are proved to be linearly isomorphic to the
sequence spaces c and c, respectively. The goal of Section  is to derive some inclusion
relations between them (the new defined spaces above). In Sections  and , the Schauder
bases of the spaces cλ(̃B) and cλ (̃B) are obtained and the α-, β- and γ -duals of their general-
izations (the generalized difference sequence spaces cλ(̃B) and cλ (̃B) of non-absolute type)
are determined, respectively. In Section , we characterize the matrix classes (cλ (̃B) : �p),

http://www.advancesindifferenceequations.com/content/2014/1/163


Candan Advances in Difference Equations 2014, 2014:163 Page 3 of 18
http://www.advancesindifferenceequations.com/content/2014/1/163

(cλ(̃B) : �p), (cλ (̃B) : c), (cλ (̃B) : c), (cλ(̃B) : c) and (cλ(̃B) : c), where  ≤ p ≤ ∞. We also
derive the properties of some other classes including Euler, difference, Riesz and Cesàro
sequence spaces, using some old results. In the last section of the text, we note the signif-
icance of the present results in the literature related with difference sequence spaces and
record some further suggestions.

2 The difference sequence spaces cλ0 (˜B) and cλ(˜B) of non-absolute type
The difference sequence spaces are shortly analyzed here and we introduce sequence
spaces both cλ(̃B) and cλ (̃B), and show that these spaces are BK-spaces of non-absolute
type cλ (̃B) and they are proved to be norm isomorphic to the well-known sequence spaces
c and c, respectively. For historical developments related to this approach, we must refer
the reader to the articles [, , , , ] studied by many authors. We note here that
research into this field is continuing.
From now on, let us assume that λ = (λk)∞k= is a strictly increasing sequence of positive

reals tending to infinity; in other words,

 < λ < λ < · · · and lim
k→∞

λk =∞.

Here and after, we use the convention that any term with a negative subscript is equal to
zero, e.g., λ– =  and x– = .
Recently, Mursaleen and Noman [] studied the sequence spaces cλ and cλ of non-

absolute type, and later they introduced the difference sequence spaces cλ(	) and cλ(	)
in [] of non-absolute type. With the help of (.) the spaces cλ(	) and cλ(	) can be
rewritten as follows: cλ(	) = (cλ)	 and cλ(	) = (cλ)	; respectively, where 	 denotes the
bandmatrix representing the difference operator, i.e., 	x = (xk –xk–) ∈ ω for x = (xk) ∈ ω.
Let r and s be non-zero real numbers, and define the generalized difference matrix

B(r, s) = {bnk(r, s)} by

bnk(r, s) :=

⎧⎪⎨⎪⎩
r, k = n,
s, k = n – ,
, otherwise

(.)

for all k,n ∈N. The B(r, s)-transform of a sequence x = (xk) is B(r, s)(x) = rxk + sxk– for all
k ∈N. Now, we proceed slightly differently to Kızmaz [] and the other authors following
him, and employ a technique of obtaining a new sequence space by means of the matrix
domain of a triangle limitation method.
Recently, Sönmez and Başar [] have introduced the difference sequence spaces cλ(B)

and cλ(B), which are the generalizations of the spaces cλ(	) and cλ(	) introduced by
Mursaleen and Noman []. Again, the spaces cλ(B) and cλ(B) can be written as cλ(B) =
(cλ)B and cλ(B) = (cλ)B using (.), where B denotes the generalized difference matrix
B(r, s) = {bnk(r, s)} defined by (.).
Let r̃ = (rn)∞n= and s̃ = (sn)∞n= be given convergent sequences of positive real numbers.

Define the sequential generalized difference matrix B(r̃, s̃) = {bnk(r̃, s̃)} by

bnk(r̃, s̃) :=

⎧⎪⎨⎪⎩
rn, k = n,
sn, k = n – ,
,  ≤ k < n –  or k > n

(.)
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for all k,n ∈ N, the set of natural numbers. We should record here that the matrix B(r̃, s̃)
can be reduced to the generalized difference matrix B(r, s) in the case rn = r and sn = s for
all n ∈ N. These choices are possible by the definition of sequential bandmatrix B(r̃, s̃). So,
the results related to the matrix domain of the matrix B(r̃, s̃) are more general and more
comprehensive than the corresponding consequences of the matrix domain of B(r, s), and
we include them.
We thus introduce the difference sequence spaces cλ(̃B) and cλ (̃B), which are the gener-

alizations of the spaces cλ(B) and cλ(B) introduced by Sönmez and Başar [], as follows:

cλ(̃B) =

{
x = (xk) ∈ ω : lim

n→∞

λn

n∑
k=

(λk – λk–)(rkxk + sk–xk–) = 

}
,

cλ (̃B) =

{
x = (xk) ∈ ω : lim

n→∞

λn

n∑
k=

(λk – λk–)(rkxk + sk–xk–) exists

}
.

With the notation of (.), we can redefine the spaces cλ(̃B) and cλ (̃B) as cλ(̃B) = (cλ)B̃
and cλ (̃B) = (cλ)B̃, where B̃ denotes the sequential band matrix B(r̃, s̃) = {bnk(r̃, s̃)} defined
by (.).
Let us begin with the theorem which is one of our principal objects of study.

Theorem . The sets cλ(̃B) and cλ (̃B) are linear spaces together with coordinatewise ad-
dition and scalar multiplication; in other words, cλ(̃B) and cλ (̃B) represent the sequence
spaces of generalized differences.

Proof This result should also be fairly apparent. �

Let us return to explaining ourmain subject. In the otherway around, the trianglematrix

̃ = (λ̃nk) is defined by

λ̃nk :=

⎧⎪⎨⎪⎩
rk (λk–λk–)+sk (λk+–λk )

λn
, k < n,

rn (λn–λn–)
λn

, k = n,
, k > n

(.)

for all n,k ∈N. Using a simple calculus, we can derive the following equality:

(
̃x)n =

λn

n∑
k=

(λk – λk–)(rkxk + sk–xk–) for all n ∈N. (.)

For every x = (xk) ∈ ω and with (.) we can conclude that cλ(̃B) = (c)
̃ and cλ (̃B) = c
̃
hold.
Moreover, we describe the sequence y(λ) = {yk(λ)} for each sequence x = (xk) and use it

frequently in the future, as the 
̃-transform of x, that is, y(λ) = 
̃x and also we get

yk(λ) =
k–∑
j=

rj(λj – λj–) + sj(λj+ – λj)
λk

xj + rk
λk – λk–

λk
xk for all k ∈N. (.)

From now on, the summation in the range of  to k –  will be equal to zero when k = .
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Besides, equations of (.) and (.) give us a clue as to how to rewrite the following:

yk(λ) =

λk

k∑
j=

(λj – λj–)(rjxj + sj–xj–) for all k ∈N.

It is remarkable that the sequences x = (xk) and y = (yk) are connected by relation (.)
everywhere in the paper.
Now, we will provide a complete proof for some of results obtained in this and the fol-

lowing sections so that the readermay be familiar with theways the proofs are constructed
and written. There are two fundamental theorems which help us. Let us now state the first
one.

Theorem . The difference sequence spaces cλ(̃B) and cλ (̃B) are BK-spaces having the
norm ‖x‖cλ(̃B) = ‖x‖cλ (̃B) = ‖
̃x‖∞; in other words, ‖x‖cλ(̃B) = ‖x‖cλ (̃B) = supn∈N |(
̃x)n|.

Proof It is well known from previous arguments that c and c are BK-spaces with respect
to their natural norms and the matrix 
̃ is a triangle. For this reason, the spaces cλ(̃B) and
cλ (̃B) are BK-spaces with the given norms. This, in fact, concludes the proof. �

Remark . It can easily be controlled that the absolute property is invalid on the spaces
cλ(̃B) and cλ (̃B); in other words, ‖x‖cλ(̃B) �= ‖|x|‖cλ(̃B) and ‖x‖cλ (̃B) �= ‖|x|‖cλ (̃B) for at least one
sequence found in the spaces cλ(̃B) and cλ (̃B). Thus, we can say that cλ(̃B) and cλ (̃B) are
the sequence spaces of non-absolute type, in which |x| = (|xk|).

Here, let us give the definition of isomorphism.A bijective linear transformation τ : X →
Y is called an isomorphism from X to Y . When an isomorphism from Y to X exists, we
say that X to Y are isomorphic and write X ≈ Y .
It is time to give another very useful result for new difference sequence spaces defined

above.

Theorem . The newly defined non-absolute type sequence spaces cλ(̃B) and cλ (̃B) are
norm isomorphic to the well-known spaces c and c, respectively; in other words, cλ(̃B)∼= c
and cλ (̃B) ∼= c.

Proof To start with this proof, a certain amount of linear algebra will be used. Showing the
existence of a linear bijection between the spaces cλ(̃B) and c proves the theorem. The
transformation τ from cλ(̃B) to c is defined by x �→ y(λ), using the notation of (.). Then,
τx = y(λ) = 
̃x ∈ c for every x ∈ cλ(̃B) and it is routine to show that τ is linear. Further, it
is obvious that x = θ whenever τx = θ , which shows that τ is injective.
Let y = (yk) ∈ c and define the sequence x = {xk(λ)} by

xk(λ) :=

rk

k∑
j=

k–∏
i=j

(
–
si
ri

) j∑
i=j–

(–)j–i
λi

λj – λj–
yi for all k ∈N. (.)

Clearly,

rkxk(λ) + sk–xk–(λ) =
k∑

i=k–

(–)k–i
λi

λk – λk–
yi for all k ∈ N.
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Let us make the following computation. We have by (.)

(
̃x)n =

λn

n∑
k=

(λk – λk–)(rkxk + sk–xk–)

=

λn

n∑
k=

k∑
i=k–

(–)k–iλiyi

= yn

for every n ∈ N. Thus, we have that 
̃x = y and since y ∈ c, we conclude that 
̃x ∈ c.
Thus, we deduce that x ∈ cλ(̃B) and Tx = y. Hence, T is surjective.
Moreover, one can easily see for every x ∈ cλ(̃B) that ‖Tx‖∞ = ‖y(λ)‖∞ = ‖
̃x‖∞ =

‖x‖cλ(̃B), which means that T is norm preserving. Consequently, T is a linear bijection
which shows that the spaces cλ(̃B) and c are linearly isomorphic.
It is clear that if the spaces cλ(̃B) and c are replaced by the spaces cλ (̃B) and c, respec-

tively, then we obtain the fact cλ (̃B)∼= c, which proves our assertion. �

3 Some inclusion relations
In this section, we shall talk about several inclusion relations concerning the spaces cλ(̃B)
and cλ (̃B). The following theorems give some basic algebraic properties of the difference
sequence spaces mentioned above.

Theorem . The inclusion cλ(̃B) ⊂ cλ (̃B) is strictly valid.

Proof This proof of the theorem is fairly standard, so we must find an element which
belongs to cλ (̃B) but which does not belong to cλ(̃B). Clearly, the inclusion cλ(̃B) ⊂ cλ (̃B)
is valid. Let us illustrate that this inclusion is strict. To do this, consider the sequence
x = (xk) given by xk = 

rk
[+

∑k
j=

∏k–
i=j (

–si
ri
)] for all k ∈ N. Together with (.), we now have

(
̃x)n = 
λn

∑n
k=(λk – λk–) for all n ∈ N. Briefly, this tells us that 
̃x = e, and therefore


̃x ∈ c \ c, where e = (, , , . . .). In other words, the sequence x lies in cλ (̃B); however, it
does not lie in cλ(̃B). That is, the inclusion cλ(̃B) ⊂ cλ (̃B) is strictly valid, so the claim is
proved. �

Theorem . The inclusion c ⊂ cλ(̃B) is strict when sk– + rk = .

Proof Let us assume that sk– + rk =  and x ∈ c. In that case B(r̃, s̃)x = (rkxk + sk–xk–) ∈ c
and so B(r̃, s̃)x ∈ cλ due to the inclusion c ⊂ cλ. It is clear that x ∈ cλ(̃B). Because of this,
the inclusion c ⊂ cλ(̃B) is valid. In addition to this, let us take the sequence y = (yk) given
by yk =

√
k +  for all k ∈N. So, it is not hard to see that y /∈ c. Then it can be obtained that

B(r̃, s̃)y ∈ c. That is, B(r̃, s̃)y ∈ cλ, which means that y ∈ cλ(̃B). Therefore, the sequence y is
in cλ(̃B) but not in c. Consequently, the inclusion c⊂ cλ(̃B) is strict. This marks the end of
the proof. �

We should state here that it can be remembered that if A ∈ (c : c) and B ∈ (c : c), then
AB ∈ (c : c); in other words, 
̃ = (λ̃nk) is stronger than the ordinary convergence. Therefore
we get the following.

Corollary . The inclusions c ⊂ cλ(̃B) and c ⊂ cλ (̃B) are strictly valid.

http://www.advancesindifferenceequations.com/content/2014/1/163
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It can easily be seen that the sequence y defined in the proof of Theorem . lies in cλ(̃B)
but not in �∞. This motivates the following result.

Corollary . The space �∞ does not include the space cλ(̃B) even though the spaces �∞
and cλ(̃B) overlap.

In order to prove the theorem below, the following lemma [, p.] will be used.

Lemma . A ∈ (�∞ : c) if and only if limn→∞
∑

k |ank| = .

Theorem . The inclusion �∞ ⊂ cλ(̃B) is strictly valid iff z ∈ cλ, where the sequence z =
(zk) is described by

zk =
∣∣∣∣ rk(λk – λk–) + sk(λk+ – λk)

λk – λk–

∣∣∣∣ for all k ∈N.

Proof Let the inclusion �∞ ⊂ cλ(̃B) strictly hold. In this case 
̃x ∈ c for every x ∈ �∞, and
it follows that the matrix 
̃ = (λ̃nk) is in the class (�∞ : c). Therefore, by using Lemma .
we have the following limit:

lim
n→∞

∑
k

|λ̃nk| = . (.)

Now, by joining the matrix 
̃ = (λ̃nk) given by (.), we can easily obtain that

∑
k

|λ̃nk| = 
λn

n–∑
k=

∣∣rk(λk – λk–) + sk(λk+ – λk)
∣∣ + |rn|λn – λn–

λn
, (.)

n ∈N. In addition, if we consider equality (.), it gives us the following limits:

lim
n→∞|rn|λn – λn–

λn
=  (.)

and

lim
n→∞


λn

n–∑
k=

∣∣rk(λk – λk–) + sk(λk+ – λk)
∣∣ = . (.)

Now, we can write the following formula with a simple calculation:


λn

n–∑
k=

∣∣rk(λk – λk–) + sk(λk+ – λk)
∣∣ = λn–

λn

[


λn–

n–∑
k=

(λk – λk–)zk

]
(.)

for every n≥  due to the fact that limn→∞ λn–
λn

=  by (.). By passing to limit as n→ ∞
in (.), it is easy to see that together with (.)

lim
n→∞


λn–

n–∑
k=

(λk – λk–)zk = . (.)

This clearly indicates that z = (zk) ∈ cλ.
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To prove the converse, let us assume that z = (zk) ∈ cλ. In this condition, it is obvious
that (.) holds. Moreover, we can easily obtain


λn

n–∑
k=

∣∣rk(λk – λk–) + sk(λk+ – λk)
∣∣ = 

λn

n–∑
k=

(λk – λk–)zk

≤ 
λn–

n–∑
k=

(λk – λk–)zk (.)

for every n≥ . If we consider equality (.) with inequality (.), then the results in condi-
tion (.) hold. In the other way around, if we apply the triangle inequality, then we obtain
the following revised form:∣∣∣∣∣ 

λn

n–∑
k=

rk(λk – λk–) – sk(λk – λk+)

∣∣∣∣∣ ≤ 
λn

n–∑
k=

∣∣rk(λk – λk–) – sk(λk – λk+)
∣∣

for every n≥ . Then this inequality gives limn→∞[
∑n–

k= rk(λk –λk–)+ sk(λk+ –λk)]/λn = 
with the aid of (.). Especially, if we take rk =  and sk =  for all k ∈N, then it is obviously
seen that limn→∞[λn – λn– – λ]/λn = , which means that (.) holds. Thus, one can
easily deduce by equality (.) that (.) holds. From Lemma . it can be obtained that

̃ ∈ (�∞ : c). Therefore, it is not hard to see that the inclusion �∞ ⊂ cλ(̃B) strictly holds
by using Corollary .. In fact, this is exactly what we want to prove. �

4 The bases for the spaces cλ0 (˜B) and cλ(˜B)
In this section, we give two sequences of the points of the spaces cλ(̃B) and cλ (̃B) forming
the bases for those spaces.
The concept of convergence of a series can be used to define a basis as follows. Let

(X,‖ · ‖X) be a normed space. Then the sequence (bn) in X is called a Schauder basis for X
if for every x ∈ X there exists a unique sequence of scalars (αn) such that

lim
n→∞

∥∥x – (αb + αb + · · · + αnbn)
∥∥
X = .

In this case, the series
∑

k αkbk which has the sum x is then called the expansion of x with
respect to (bn) and is written as x =

∑
k αkbk .

Because of the fact that the transformation T defined from cλ(̃B) to c in the proof of
Theorem . is an isomorphism, the inverse image of the basis {e(k)}∞k= of the space c is
the basis for the newly defined space cλ(̃B). Thus, the subsequent theorem can be easily
stated.

Theorem . Let αk(λ) = 
̃k(x) for all k ∈ N and l = limk→∞ 
̃k(x). Define the sequence
b(k)(λ) = {b(k)n (λ)}∞k= for every fixed k ∈N by

b(k)n (λ) :=

⎧⎪⎨⎪⎩
∏n–

i=k (
–si
ri+

)[ λk
rk (λk–λk–)

+ λk
sk (λk+–λk )

], k < n,

rk

λk
(λk–λk–)

, k = n,
, k > n.

(.)

Then the following statements hold:
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(a) The sequence {b(k)(λ)}∞k= is a basis for the space cλ(̃B) and any x ∈ cλ(̃B) has a
unique representation of the form x =

∑
k αk(λ)b(k)(λ).

(b) The sequence {b,b()(λ),b()(λ), . . .} is a basis for the space cλ (̃B) and any x ∈ cλ (̃B)
has a unique representation of the form x = lb +

∑
k[αk(λ) – l]b(k)(λ), where

b = (bk) = {∑k
j=(/rj)

∏j–
i=(–si/ri)}∞k=.

Finally, it easily follows from Theorem . that cλ(̃B) and cλ (̃B) are the Banach spaces
with their natural norms. Thus, by Theorem . we can obtain the following.

Corollary . The difference sequence spaces cλ(̃B) and cλ (̃B) are separable.

5 The α-, β- and γ -duals of the spaces cλ0 (˜B) and cλ(˜B)
The concept of multiplier space plays an important role in the present section. To state
the α-, β- and γ -duals of the generalized difference sequence spaces cλ(̃B) and cλ (̃B) of
non-absolute type, we give the terminology of a multiplier space.
The set S(λ,μ) described as follows is known as the multiplier space of any sequence

spaces λ and μ,

S(λ,μ) =
{
a = (ak) ∈ ω : ax = (akxk) ∈ μ for all x = (xk) ∈ λ

}
.

It can be observed for a sequence space ϕ with μ ⊂ ϕ and ϕ ⊂ λ that the inclusions
S(λ,μ)⊂ S(λ,ϕ) and S(λ,μ)⊂ S(ϕ,μ) hold, respectively.
When evaluating themultiplier space S(λ,μ), the α-, β- and γ -duals of a sequence space

λ, which are respectively denoted by λα , λβ and λγ , are defined by

Sα = S(λ,�), λβ = S(λ, cs) and λγ = S(λ,bs).

It is obvious that λα ⊂ λβ ⊂ λγ . Also it can be seen that the inclusions λα ⊂ μα , λβ ⊂ μβ

and λγ ⊂ μγ hold whenever μ ⊂ λ.
The α-dual, β-dual and γ -dual are also referred to as Köthe-Toeplitz dual, generalized

Köthe-Toeplitz dual and Garling dual, respectively [].
Let us now state the following lemmas (see []). In this way, the results will be used in

the proofs of our Theorems . to ..

Lemma . A = (ank) ∈ (c : �) = (c : �) iff supK∈F
∑

n |∑k∈K ank| < ∞.

Lemma . A = (ank) ∈ (c : c) iff

lim
n→∞ank = αk for each fixed k ∈N, (.)

sup
n∈N

∑
k

|ank| < ∞. (.)

Lemma . A = (ank) ∈ (c : c) iff (.) and (.) hold, and

lim
n→∞

∑
k

ank exists. (.)

Lemma . A = (ank) ∈ (c : �∞) = (c : �∞) iff (.) holds.
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Now, it is time to give the following theorem.

Theorem . The α-dual of the spaces cλ(̃B) and cλ (̃B) is given by the following set:

hλ
 =

{
a = (an) ∈ ω : sup

K∈F

∑
n

∣∣∣∣∑
k∈K

hλ
nk

∣∣∣∣ < ∞
}
,

here the matrix Hλ = (hλ
nk) is described with the help of the sequence a = (an) ∈ ω given by

h(λ)nk =

⎧⎪⎨⎪⎩
∏n–

i=k (
–si
ri+

)[ λk
rk (λk–λk–)

+ λk
sk (λk+–λk )

]an, k < n,
λn

rn(λn–λn–)
an, k = n,

, k > n

for all n,k ∈N.

Proof The essential idea in this proof is the usage of the definition of the γ -dual. Let us
assume that a = (an) ∈ ω. In this condition, we can easily obtain the following equality:

anxn =

rn

n∑
k=

n–∏
i=k

(
–si
ri

) k∑
i=k–

(–)k–i
λi

λk – λk–
anyi =

(
Hλy

)
n for all n ∈N (.)

from relations (.) and (.). We use the newly obtained notation result in ax = (anxn) ∈
� whenever x = (xk) ∈ cλ(̃B) or cλ (̃B) iff Hλy ∈ � whenever y = (yk) ∈ c or c with the
help of (.). This indicates that the sequence a = (an) ∈ {cλ(̃B)}α or a = (an) ∈ {cλ (̃B)}α iff
Hλ ∈ (c : �) = (c : �). Thus, we derive with the aid of Lemma . by writing Hλ in place
of A that a = (an) ∈ {cλ(̃B)}α = {cλ (̃B)}α iff supK∈F

∑
n |∑k∈K hλ

nk| < ∞. Briefly, this tells us
the consequence that {cλ(̃B)}α = {cλ (̃B)}α = hλ

 . This conclusion is what was sought for. �

Theorem . Define the sets hλ
, hλ

, hλ
 and hλ

 as follows:

hλ
 =

{
a = (ak) ∈ ω :

∞∑
j=k+

n–j∏
i=

(
–si
ri+

)
aj exists for each k ∈N

}
,

hλ
 =

{
a = (ak) ∈ ω : sup

n∈N

n–∑
k=

∣∣ãk(n)∣∣ < ∞
}
,

hλ
 =

{
a = (ak) ∈ ω : sup

n∈N

∣∣∣∣ rn λn

(λn – λn–)
an

∣∣∣∣ <∞
}
,

hλ
 =

{
a = (ak) ∈ ω :

∑
k


rk

k∑
j=

k–∏
i=j

(
–si
ri

)
ak converges

}
,

where

ãk(n) = λk

[
ak

rk(λk – λk–)
+

(


rk(λk – λk–)
+


sk(λk+ – λk)

) n∑
j=k+

n–j∏
j=k+

(
–si
ri+

)
aj

]

for k < n.
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Then
(i) {cλ(̃B)}β = hλ

 ∩ hλ
 ∩ hλ

,
(ii) {cλ (̃B)}β = hλ

 ∩ hλ
 ∩ hλ

 ∩ hλ
 .

Proof According to the definition of β-dual, it is not too difficult to show that condition
(i) holds. For this, we deal with the following equality:

n∑
k=

akxk =
n∑

k=

{

rk

k∑
j=

k–∏
i=j

(
–si
ri

)[ j∑
i=j–

(–)j–i
λi

λj – λj–
yi

]}
ak

=
n–∑
k=

λk

[
ak

rk(λk – λk–)
+

(


rk(λk – λk–)
+


sk(λk+ – λk)

)

×
n∑

j=k+

n∏
j=k+

(
–si
ri+

)
aj

]
yk +


rn

λn

(λn – λn–)
anyn

=
n–∑
k=

ãk(n)yk +

rn

λn

(λn – λn–)
anyn

= Tλ
n (y) for all n ∈N (.)

from elementary calculus where the matrix Tλ = (tλnk) is defined by

tλnk :=

⎧⎪⎨⎪⎩
ãk(n), k < n,

rn

λn
(λn–λn–)

an, k = n,
, k > n

for all k,n ∈ N. We are now ready to start the proof with the help of (.). One can easily
deduce ax = (akxk) ∈ cs whenever x = (xk) ∈ cλ(̃B) iff Tλy ∈ c whenever y = (yk) ∈ c. This
means that a = (ak) ∈ {cλ(̃B)}β iff Tλ ∈ (c : c). Therefore, by using Lemma ., we derive
from (.) and (.) that

∞∑
j=k+

n–j∏
i=

(
–si
ri+

)
aj exists for each k ∈ N, (.)

sup
n∈N

n–∑
k=

∣∣ãk(n)∣∣ < ∞, (.)

sup
n∈N

∣∣∣∣ rn λn

(λn – λn–)
an

∣∣∣∣ < ∞. (.)

Therefore, we conclude that {cλ(̃B)}β = hλ
 ∩ hλ

 ∩ hλ
.

First of all, the assertion (ii) of the theorem has exactly the same idea as in the first part
of it, the proof of the second part can be obtained similarly. It comes fairly easily from
Lemma . with the aid of (.) that a = (ak) ∈ {cλ (̃B)}β iff Tλ ∈ (c : c). Thus, conditions
(.), (.) and (.) are valid from (.) and (.).
Moreover, the following equality can be directly written:

n∑
k=


rk

k∑
j=

k–∏
i=j

(
–si
ri

)
ak =

n–∑
k=

ãk(n) +

rn

λn

(λn – λn–)
an =

∑
k

tλnk

http://www.advancesindifferenceequations.com/content/2014/1/163


Candan Advances in Difference Equations 2014, 2014:163 Page 12 of 18
http://www.advancesindifferenceequations.com/content/2014/1/163

holds for all n ∈N. Therefore, by using (.), we have that{

rk

k∑
j=

k–∏
i=j

(
–si
ri

)
ak

}
∈ cs. (.)

Consequently, it is clear that {cλ (̃B)}β = hλ
 ∩ hλ

 ∩ hλ
 ∩ hλ

 , which gives the desired result.
�

Remark . We may note by combining (.) with conditions (.) and (.) that
{∑k

j=
∏k–

i=j (
–si
ri
)ak/rk} ∈ bs for every sequence a = (ak) ∈ {cλ(̃B)}β .

Finally, we conclude this section with the following theorem which determines the
γ -dual of the spaces cλ(̃B) and cλ (̃B).

Theorem . The set hλ
 ∩ hλ

 is the γ -dual of the spaces cλ(̃B) and cλ (̃B).

Proof The proof of this theorem can also be proved in a much similar way to the proof of
Theorem . using Lemma . instead of Lemma ., thus it is left to the reader. �

6 Certain matrix mappings related to the spaces cλ0 (˜B) and cλ(˜B)
One of the most important ideas is matrix transformation in this work. Therefore, we
focus on this concept in the present section.
It is appropriate to characterize certain classes of the matrix mappings. Therefore, we

emphasize the matrix classes such as (cλ (̃B) : �p), (cλ(̃B) : �p), (cλ (̃B) : c), (cλ (̃B) : c), (cλ(̃B) :
c) and (cλ(̃B) : c), where  ≤ p≤ ∞. We also characterize some other classes including the
Riesz, difference, Euler and Cesàro sequence spaces.
For the sake of simplicity, here and in what follows, we shall write

ãnk(m) = λk

[
ank

rk(λk – λk–)
+

(


rk(λk – λk–)
+


sk(λk+ – λk)

) m∑
j=k+

n–j∏
i=

(
–si
ri+

)
anj

]

if k <m,

ãnk = λk

[
ank

rk(λk – λk–)
+

(


rk(λk – λk–)
+


sk(λk+ – λk)

) ∞∑
j=k+

n–j∏
i=

(
–si
ri+

)
anj

]
.

For an infinite matrix A = (ank), and we state here that the series on the right-hand side
in the above equality are convergent for all k,m,n ∈N.
The results of the following lemmas will be used in the proofs of our theorems.

Lemma . [] The matrix mappings between the BK-spaces are continuous.

Lemma . [] A = (ank) ∈ (c : �p) iff supK∈F
∑

n |∑k∈K ank|p < ∞ (≤ p <∞).

Lemma . [] A = (ank) ∈ (c : c) iff (.) holds and

lim
n→∞ank =  for all k ∈N, (.)

lim
n→∞

∑
k

ank = .
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Lemma . [] A = (ank) ∈ (c : c) iff (.) and (.) hold.

These motivate the following theorems related to the matrix transformations.

Theorem . Let us assume that A = (ank) is an infinite matrix defined on the complex
field. In that case, the following statements are valid.

(i) Let ≤ p < ∞. Then A ∈ (cλ (̃B) : �p) if and only if

∞∑
j=k+

n–j∏
i=

(
–si
ri+

)
anj exists for each fixed k ∈N, (.)

sup
K∈F

∑
n

∣∣∣∣∑
k∈K

ãnk
∣∣∣∣p < ∞, (.)

sup
m∈N

m–∑
k=

∣∣ãnk(m)
∣∣ < ∞ for all n ∈N, (.)

{

rk

k∑
j=

k–∏
i=j

(
–si
ri

)
ank

}∞

k=

∈ cs for each fixed n ∈N, (.)

lim
k→∞

λk

rk(λk – λk–)
ank = an for each fixed n ∈N, (.)

(an) ∈ �p. (.)

(ii) A ∈ (cλ(B) : �∞) if and only if (.) and (.) hold, and

sup
n∈N

∑
k

|ãnk| < ∞, (.)

(an) ∈ �∞. (.)

Proof For proving the sufficiency of the theorem, let us assume that conditions (.)-(.)
hold and take any x = (xk) ∈ cλ (̃B). In this condition, using Theorem . we obtain that
{ank}k∈N ∈ {cλ (̃B)}β for all n ∈ N. This requires the existence of the A-transform of x, that
is, Ax exists. Moreover, it is obviously seen that the associated sequence y = (yk) lies in the
space c. Furthermore, if we combine Lemma . together with condition (.) we see that
the matrix Ã = (ãnk) is in the class (c : �p), where  ≤ p <∞.
Now, let us consider the following equality obtained from relation (.) from the mth

partial sum of the series
∑

k ankxk :

m∑
k=

ankxk =
m–∑
k=

ãnk(m)yk +
λm

rm(λm – λm–)
anmym for all n,m ∈ N. (.)

Thus, since y ∈ c and Ã ∈ (c : �p), this clearly indicates that the series
∑

k ãnkyk converges
for every n ∈ N. Moreover, it follows by (.) that the series

∑∞
j=k+

∏n–j
i=(

–si
ri+

)anj converges
for all n,k ∈ N and hence ãnk(m) → ãnk as m → ∞. Then we can derive from (.) as
m → ∞ with the aid of (.) that∑

k

ankxk =
∑
k

ãnkyk + lan for all n ∈N, (.)
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which can be shortly written as follows:

(Ax)n = (Ãy)n + lan for all n ∈N. (.)

This newly obtained formula results in the fact that by taking p-norm,

‖Ax‖p ≤ ‖Ãy‖p + |l|∥∥(an)∥∥p <∞.

This shows that Ax ∈ �p. That is, A ∈ (cλ (̃B) : �p).
Now, in order to verify the converse claim, let us assume that A ∈ (cλ (̃B) : �p), where

 ≤ p < ∞. In this condition, Ax exists for every x ∈ cλ (̃B) and it is not difficult to see
that {ank}k∈N ∈ {cλ (̃B)}β for all n ∈ N. Using Theorem ., one can immediately see the
necessity of conditions (.) and (.).
Also, we get by using Lemma . that there is a constantM >  such that

‖Ax‖p ≤M‖x‖cλ (̃B) (.)

holds for all x ∈ cλ (̃B) because of the fact that cλ (̃B) and �p are BK-spaces. Now, K ∈F . In
this case the sequence z =

∑
k∈K b(k)(λ) lies cλ (̃B), where the sequence b(k)(λ) = {b(k)n (λ)}n∈N

is defined by (.) for every fixed k ∈ N. We have

‖z‖cλ (̃B) =
∥∥
̃(z)

∥∥∞ =
∥∥∥∥∑
k∈K


̃
(
b(k)(λ)

)∥∥∥∥∞
=

∥∥∥∥∑
k∈K

e(k)
∥∥∥∥∞

= ,

because for each fixed k ∈ N the equality 
̃(b(k)(λ)) = e(k) holds. Moreover, we can easily
derive the following equation using (.):

(Az)n =
∑
k∈K

An
(
b(k)(λ)

)
=

∑
k∈K

∑
j

anjb(k)j (λ) =
∑
k∈K

ãnk

for every n ∈N. Therefore, we obtain the following inequality for any K ∈F :

(∑
n

∣∣∣∣∑
k∈K

ãnk
∣∣∣∣p)/p

≤M

due to the fact that inequality (.) is met for the sequence z ∈ cλ (̃B). This result requires
that inequality (.) is necessary. In conclusion, the statement Ã = (ãnk) ∈ (c : �p) is ob-
tained following Lemma ..
First, let us assume that y = (yk) ∈ c\ c and take into account the sequence x = (xk) given

by (.) for each k ∈ N. Next, the sequences x and y are joined with relation (.), that is,
x ∈ cλ (̃B) such that y = 
̃x. Thus, there exist both Ax and Ãy. The newly obtained results
show the convergence both of the series

∑
k ankxk and

∑
k ãnkyk for each n ∈ N. Then we

can conclude that

lim
m→∞

m–∑
k=

ãnk(m)yk =
∑
k

ãnkyk for all n ∈N.
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In conclusion, making m→ ∞ in (.), we conclude that

lim
m→∞

λm

rm(λm – λm–)
anmym exists for each fixed n ∈N,

and, moreover, because of the fact that y = (yk) ∈ c \ c, we also have

lim
m→∞

λm

rm(λm – λm–)
anm exists for each fixed n ∈N.

This result requires that the limit given by (.) is necessary. Thus, relation (.) holds.
Finally, the necessity of (.) immediately follows from (.) owing to the fact thatAx ∈

�p and Ãy ∈ �p. This represents the desired proof of part (i) of the theorem.
One can prove part (ii) using a similar way as that in the proof of part (i) with Lemma .

in place of Lemma .; the details are left to the reader. �

Remark . The following limit exists:

lim
m→∞

m–∑
k=

∣∣ãnk(m)
∣∣ =∑

k

|ãnk|

for each n ∈ N, using (.). This newly obtained result informs us that condition (.)
requires condition (.).

Here, it may be recalled that the claim (c : �p) = (c : �p) for  ≤ p ≤ ∞ is valid (see [,
pp.-]). In conclusion, using Theorem . and Lemmas . and ., we immediately have
the following theorem.

Theorem . Let us assume that A = (ank) is an infinite matrix defined on the complex
field. In that case, the following statements are valid.

(i) Let us suppose that ≤ p <∞. In that case, A ∈ (cλ(̃B) : �p) is valid iff (.) and (.)
hold, and

∞∑
j=k

n–j∏
i=

(
–si
ri+

)
anj exists for all n,k ∈N, (.)

{
λk

rk(λk – λk–)
ank

}∞

k=
∈ �∞ for all n ∈N. (.)

(ii) A ∈ (cλ(̃B) : �∞) is valid iff all of (.) and (.) and (.) hold.

Proof Since the proof of this theorem can be obtained by using the same way as that used
in the proof of Theorem ., we leave it to the reader. �

Theorem . A = (ank) ∈ (cλ (̃B) : c) is valid iff (.), (.) and (.) hold, and

lim
n→∞an = a, (.)

lim
n→∞ ãnk = αk for each k ∈N, (.)

lim
n→∞

∑
k

ãnk = α. (.)
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Proof First of all, let us prove the sufficiency of the conditions. For this, let us assume
that A satisfies conditions (.), (.), (.), (.), (.) and (.), and take any x ∈
cλ(B). Condition (.) requires condition (.) for all n ∈ N; we have {ank}k∈N ∈ {cλ (̃B)}β
by Theorem ., i.e., Ax exists. It is also seen from (.) and (.) that

∑k
j= |αj| ≤

supm∈N
∑

j |ãnk| < ∞ is valid for every k ∈ N. This results in the fact that (αk) ∈ � and
the series

∑
k αk(yk – l) is convergent, where y = (yk) ∈ c is the sequence connected with

x = (xk) via the relation given by (.) in such a way that yk → l when k → ∞. Further-
more, when Lemma . is combined with conditions (.), (.) and (.), it is clearly
seen that the matrix Ã = (ãnk) lies in the class (c : c).
Now, if we think in a similar way as in the proof of Theorem ., we easily have that

relation (.) is valid and can be rewritten as follows:

∑
k

ankxk =
∑
k

ãnk(yk – l) + l
∑
k

ãnk + lan for all n ∈N. (.)

In this case, by letting n → ∞ in (.), we observe that the first term on the right-hand
side tends to

∑
k αk(yk– l) with the help of (.) and (.). Similarly, the second and the last

term tend to lα by (.) and la by (.), respectively. In conclusion,we get limn→∞(Ax)n =∑
k αk(yk – l) + l(α + a), and this shows that Ax ∈ c; in other words, A ∈ (cλ (̃B) : c).
Conversely, let us assume that A ∈ (cλ (̃B) : c). In that case, since the inclusion c ⊂ �∞

is valid, it is obvious that A ∈ (cλ (̃B) : �∞). Thus, the necessity of conditions (.), (.)
and (.) is clear from Theorem .. Moreover, let us consider the sequence b(k)(λ) =
{b(k)n (λ)}n∈N ∈ cλ (̃B) described by (.) for every fixed k ∈ N. Thus, it is obvious that
Ab(k)(λ) = {ãnk}n∈N. Next it is seen that {ãnk}n∈N ∈ c for each k ∈ N, and this illustrates
the necessity of (.). Now, let us assume that z =

∑
k b(k)(λ). In this case, the linear

transformation T : cλ (̃B) → c, described as in the proof of Theorem ., is continuous
by analogy; and, moreover, 
̃(b(k)(λ)) = e(k) is valid for each fixed k ∈ N. Thus, we obtain
that 
̃n(z) =

∑
k 
̃n(b(k)(λ)) =

∑
k δnk =  for each n ∈ N and this result demonstrates that


̃(z) = e ∈ c and hence z ∈ cλ (̃B). In the other way around, since cλ (̃B) and c are the BK-
spaces, Lemma . requires that the matrix mapping A : cλ (̃B) → c is continuous. There-
fore, for every n ∈ N, we have (Az)n =

∑
k An(b(k)(λ)) =

∑
k ãnk . This result represents the

necessity of (.).
Next, it follows that Ã = (ãnk) ∈ (c : c) by (.), (.) and (.) together with Lemma ..

Thus, using (.) and (.), it is seen that relation (.) is valid for all x ∈ cλ (̃B) and y ∈ c.
Moreover, x and y are connected with relation (.) where yk → l when k → ∞.
In the last step, the necessity of (.) is immediately seen (.) due to the fact that

Ax ∈ c and Ãx ∈ c. This last step concludes the proof. �

Theorem . The statement A = (ank) ∈ (cλ (̃B) : c) is valid iff (.), (.) and (.), and
the following conditions hold:

lim
n→∞an = ,

lim
n→∞ ãnk =  for each k ∈N,

lim
n→∞

∑
k

ãnk = .
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Proof The present theorem can be easily proved in a similar way used in the proof of
Theorem . with Lemma . in place of Lemma ., we leave it to the reader. �

Theorem . The statement A = (ank) ∈ (cλ(̃B) : c) is valid iff conditions (.), (.),
(.) and (.) hold.

Proof The proof can be easily obtained with Lemma ., Theorem . and part (ii) of
Theorem .. �

Theorem . The statement A = (ank) ∈ (cλ(̃B) : c) is valid iff conditions (.), (.),
(.) and (.) hold with αk =  for each k ∈N.

Proof The proof is obvious when Lemma ., Theorems . and . are evaluated. �
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4. Altay, B, Başar, F, Mursaleen, M: On the Euler sequence spaces which include the spaces �p and �∞ I. Inf. Sci. 176(10),

1450-1462 (2006)
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