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Abstract
In this paper, the authors study some growth properties of analytic functions of
[p,q]-order in the disc and apply them to investigating the growth and zeros of
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1 Notations and results
We assume that readers are familiar with the fundamental results and the standard no-
tations of the Nevanlinna value distribution theory of meromorphic functions in the
unit disc (see [–]). Firstly, we introduce some notations. Let us define inductively, for
r ∈ (, +∞), exp r = er and expi+ r = exp(expi r), i ∈N. For all r sufficiently large in (,+∞),
we define log r = log r and logi+ r = log(logi r), i ∈ N.We also denote exp r = r = log r and
exp– r = log r. Moreover, we denote the linear measure of a set E ⊂ [, ) by mE =

∫
E dt,

and the upper and lower density of E ⊂ [, ) are defined, respectively, by

dens�E = lim
r→–

m(E ∩ [r, ))
 – r

, dens�E = lim
r→–

m(E ∩ [r, ))
 – r

.

The complex oscillation theory of linear differential equations

f (k) +Ak–(z)f (k–) + · · · +A(z)f =  (.)

and

f (k) +Ak–(z)f (k–) + · · · +A(z)f = F(z) (.)

in the unit disc has been developed since the s (see []). After that, many important
results have been obtained (see [–]). After the work of Liu et al. in [], there has been

© 2014 Tu and Xuan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/167
mailto:xuanzuxing@ss.buaa.edu.cn
http://creativecommons.org/licenses/by/2.0


Tu and Xuan Advances in Difference Equations 2014, 2014:167 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2014/1/167

an increasing interest in studying the interaction between the analytic coefficients of [p,q]-
order and the solutions of (.) and (.) (see [–]). In this paper, the authors continue to
focus on studying the growth and zeros of solutions of (.), (.) with analytic coefficients
of [p,q]-order which satisfy certain growth conditions in the unit disc.
We use p, q to denote positive integers, and we use � = {z : |z| < } to denote the unit

disc. In the following, we recall some notations of meromorphic functions and analytic
functions in �.

Definition . (see [, ]) Let f (z) be a meromorphic function in �, and set

D(f ) = lim
r→–

T(r, f )
– log( – r)

.

If f (z) is an analytic function in �,

DM(f ) = lim
r→–

logM(r, f )
– log( – r)

.

If D(f ) = ∞, we say that f is admissible, if D(f ) < ∞, we say that f is non-admissible. If
DM(f ) = ∞, we say that f is of infinite degree, ifDM(f ) < ∞, we say that f is of finite degree.

Definition . (see [, ]) The iterated p-order of a meromorphic function f (z) in � is
defined by

σp(f ) = lim
r→–

logp T(r, f )
– log( – r)

.

For an analytic function f (z) in �, we also define

σM,p(f ) = lim
r→–

logp+M(r, f )
– log( – r)

.

Remark . If p = , we denote σ(f ) = σ (f ) and σM,(f ) = σM(f ), and we have σ (f ) ≤
σM(f ) ≤ σ (f ) +  (see []) and σM,p(f ) = σp(f ) for p >  (see [, ]).

Definition . (see [–]) Let  ≤ q ≤ p or  ≤ q = p + , and f (z) be a meromorphic
function in �, then the [p,q]-order of f (z) is defined by

σ[p,q](f ) = lim
r→–

logp T(r, f )
logq( 

–r )
.

For an analytic function f (z) in �, we also define

σM,[p,q](f ) = lim
r→–

logp+M(r, f )
logq( 

–r )
.

Definition . (see []) Let  ≤ q ≤ p or  ≤ q = p + , we use N(r, f ) (N(r, f )) to denote
the integrated counting function for the (distinct) zero-sequence of a meromorphic func-
tion f (z) in�. Then the [p,q]-exponents of convergence of (distinct) zero-sequence of f (z)
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about N(r, f ) (N(r, f )) are defined, respectively, by

λN
[p,q](f ) = lim

r→–

logp N(r, f )

logq( 
–r )

, λ
N
[p,q](f ) = lim

r→–

logp N(r, f )

logq( 
–r )

.

By the above definitions, the following propositions about the analytic function of [p,q]-
order in the unit disc can easily be deduced.

Proposition . Let f (z) be an analytic function of [p,q]-order in �. Then the following
five statements hold:

(i) If p = q = , then σ (f ) ≤ σM(f ) ≤  + σ (f ).
(ii) If p = q ≥  and σ[p,q](f ) < , then σ[p,q](f ) ≤ σM,[p,q](f ) ≤ .
(iii) If p = q ≥  and σ[p,q](f ) ≥ , or p > q ≥ , then σ[p,q](f ) = σM,[p,q](f ).
(iv) If p≥  and σ[p,p+](f ) > , then D(f ) = ∞; if σ[p,p+](f ) < , then D(f ) = .
(v) If p≥  and σM,[p,p+](f ) > , then DM(f ) = ∞; if σM,[p,p+](f ) < , then DM(f ) = .

Proof (i), (iv), (v) hold obviously, we prove (ii) and (iii).
(ii) By the standard inequality T(r, f ) ≤ log+M(r, f ) ≤ +r

–r T(
+r
 , f ) ( < r < ) (see [, ,

]), we get

logp T(r, f ) ≤ log+p+M(r, f ) ≤ max

{
logp

(


 – r

)
, logp T

(
 + r


, f
)}

. (.)

If p = q ≥  and σ[p,q](f ) < , from (.) we have σ[p,q](f )≤ σM,[p,q](f ) ≤ .
(iii) If p = q ≥  and σ[p,q](f ) ≥ , or p > q ≥ , from (.), we have σ[p,q](f ) = σM,[p,q](f ).

�

Proposition . Let f (z) be ameromorphic function of [p,q]-order in�.Then the following
statements hold:

(i) If p > q ≥ , then λ
N
[p,q](f ) = λ

n
[p,q](f ).

(ii) If p = q = , then λ
N (f ) ≤ λ

n(f ) ≤ λ
N (f ) + .

(iii) If p = q ≥ , then λ
N
[p,p](f ) ≤ λ

n
[p,p](f )≤ max{λN

[p,p](f ), }. Furthermore, we have

λ
N
[p,p](f ) = λ

n
[p,p](f ) if λ

N
[p,p](f ) ≥ , and if λN

[p,p](f ) <  then λ
N
[p,p](f ) ≤ λ

n
[p,p](f ) ≤ .

Proof Without loss of generality, assuming that f () 	= , by N(r, f ) =
∫ r


n(t, f )
t dt, we have

n
(
r,

f

)
≤ 

log( + –r
r )

∫ r+ –r


r

n(t, f )
t

dt ≤ 
log( + –r

r )
N

(
 + r


,

f

)
( < r < ),

since log( + –r
r ) ∼ –r

r (r → –), we obtain

lim
r→–

logp n(r, f )

logq( 
–r )

≤ max

{
lim
r→–

logp N( +r , f )

logq( 
–r )

, lim
r→–

logp( r
–r )

logq( 
–r )

}
.

By the above inequality, we obtain:
(i) if p > q ≥ , then λ

n
[p,q](f ) ≤ λ

N
[p,q](f );
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(ii) if p = q = , then λ
n(f ) ≤ λ

N (f ) + ;
(iii) if p = q ≥ , then λ

n
[p,p](f ) ≤ max{λN

[p,p](f ), }.
On the other hand, by

N
(
r,

f

)
=

∫ r

r

n(t, f )
t

dt +N
(
r,


f

)

≤ n
(
r,

f

)
log

(
r
r

)
+N

(
r,


f

)
( < r < r < ),

we can easily get λ
N
[p,q](f ) ≤ λ

n
[p,q](f ) (p ≥ q ≥ ). Therefore, the conclusions of Proposi-

tion . hold. �

In recent years, Belaïdi has investigated the growth of solutions of (.), (.) with ana-
lytic coefficients of [p,q]-order in the unit disc and obtained the following results.

TheoremA (see []) Let p ≥ q ≥  be integers andH be a set of complex numbers satisfy-
ing dens�{|z| : z ∈H ⊆ �} > , and let A,A, . . . ,Ak– be analytic functions in � satisfying
max{σM,[p,q](Aj) : j = , . . . ,k –} ≤ σM,[p,q](A) = σ. Suppose that there exists a real number
α satisfying  ≤ α < σ such that, for any given ε ( < ε < σ – α), we have

∣∣A(z)
∣∣ ≥ expp+

{
(σ – ε) logq

(


 – |z|
)}

and

∣∣Aj(z)
∣∣ ≤ expp+

{
α logq

(


 – |z|
)}

(j = , , . . . ,k – ),

as |z| → – for z ∈ H. Then every solution f 	≡  of (.) satisfies σ[p,q](f ) = σM,[p,q](f ) = ∞
and σ[p+,q](f ) = σM,[p+,q](f ) = σM,[p,q](A) = σ.

TheoremB (see []) Let p≥ q ≥  be integers andH be a set of complex numbers satisfy-
ing dens�{|z| : z ∈H ⊆ �} > , and let A,A, . . . ,Ak– be analytic functions in� satisfying
max{σ[p,q](Aj) : j = , . . . ,k – } ≤ σ[p,q](A) = σ. Suppose that there exists a real number β

satisfying  ≤ β < σ such that, for any given ε ( < ε < σ – β), we have

T(r,A) ≥ expp

{
(σ – ε) logq

(


 – |z|
)}

and

T(r,Aj) ≤ expp

{
β logq

(


 – |z|
)}

(j = , , . . . ,k – ),

as |z| → – for z ∈ H. Then every solution f 	≡  of (.) satisfies σ[p,q](f ) = σM,[p,q](f ) = ∞
and σ[p,q](A) ≤ σ[p+,q](f ) = σM,[p+,q](f ) ≤ max{σM,[p,q](Aj) : j = , , . . . ,k –}. Furthermore,
if p > q, then σ[p+,q](f ) = σM,[p+,q](f ) = σ[p,q](A).

Theorem C (see []) Suppose that the assumptions of Theorem A are satisfied, and let
F 	≡  be an analytic function in � of [p,q]-order. Then the following two statements hold:

http://www.advancesindifferenceequations.com/content/2014/1/167
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(i) If σ[p+,q](F) < σM,[p,q](A), then every solution f of (.) satisfies
λ[p+,q](f ) = λ[p+,q](f ) = σ[p+,q](f ) = σM,[p,q](A) with at most one exceptional solution
f satisfying σ[p+,q](f) < σM,[p,q](A).

(ii) If σ[p+,q](F) > σM,[p,q](A), then every solution f of (.) satisfies σ[p+,q](f ) = σ[p+,q](F).

From Theorems A-C, we obtain the following results.

Theorem . Let H be a complex set satisfying dens�{|z| : z ∈ H ⊆ �} > . If Aj(z) (j =
, , . . . ,k – ) are analytic functions in � satisfying max{σM,[p,q](Aj)|j = , , . . . ,k – } ≤ σ

( < σ < ∞), and if there exist two positive constants α, β ( < β < α) such that, for all
z ∈H and |z| → –, we have

∣∣A(z)
∣∣ ≥ expp

{
α

[
logq–

(


 – r

)]σ}

and

∣∣Aj(z)
∣∣ ≤ expp

{
β

[
logq–

(


 – r

)]σ}
(j = , . . . ,k – ).

Then the following statements hold:
(i) If p≥ q ≥ , then every solution f (z) 	≡  of (.) satisfies σ[p+,q](f ) = σM,[p+,q](f ) = σ.
(ii) If  ≤ q = p +  and σ > , then every solution f (z) 	≡  of (.) satisfies

σ[p+,p+](f ) = σM,[p+,p+](f ) = σ.

Theorem . Let H be a complex set satisfying dens�{|z| : z ∈ H ⊆ �} > . If Aj(z) (j =
, , . . . ,k – ) are analytic functions in � satisfying max{σM,[p,q](Aj)|j = , , . . . ,k – } ≤ σ

( < σ < ∞), and there exist two positive constants α, β such that, for all z ∈ H and
|z| → –, we have

T
(
r,A(z)

) ≥ expp–

{
α

[
logq–

(


 – r

)]σ}

and

T
(
r,Aj(z)

) ≤ expp–

{
β

[
logq–

(


 – r

)]σ}
(j = , . . . ,k – ).

Then the following statements hold:
(i) If p≥ q ≥  and  < β < α, then every solution f (z) 	≡  of (.) satisfies

σ[p+,q](f ) = σM,[p+,q](f ) = σ.
(ii) If ≤ q = p + ,  < β < α and σ > , then every solution f (z) 	≡  of (.) satisfies

σ[p+,p+](f ) = σM,[p+,p+](f ) = σ.
(iii) If p = , q = ,  < kβ < α and σ > , then every solution f (z) 	≡  of (.) satisfies

σ[,](f ) = σM,[,](f ) = σ.

Theorem . Let F(z) 	≡ ,Aj(z) (j = , , . . . ,k–) be analytic functions in�. Suppose that
H,Aj(z) (j = , , . . . ,k–) satisfy the hypotheses in Theorem ., then we have the following
statements:

http://www.advancesindifferenceequations.com/content/2014/1/167
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(i) Let  ≤ q ≤ p, if σ[p+,q](F) > σ, then all solutions of (.) satisfy
σ[p+,q](f ) = σ[p+,q](F); if σ[p+,q](F)≤ σ, then all solutions of (.) satisfy
λ
N
[p+,q](f ) = λN

[p+,q](f ) = σ[p+,q](f ) = σ with at most one exceptional solution f
satisfying σ[p+,q](f) < σ.

(ii) Let  ≤ q = p + , σ > , if σ[p+,p+](F) > σ, then all solutions of (.) satisfy
σ[p+,p+](f ) = σ[p+,p+](F); if σ[p+,p+](F) ≤ σ, then all solutions of (.) satisfy
λ
N
[p+,p+](f ) = λN

[p+,p+](f ) = σ[p+,p+](f ) = σ, with at most one exceptional solution f
satisfying σ[p+,p+](f) < σ.

Corollary . Let F(z) 	≡ , Aj(z) (j = , , . . . ,k – ) be analytic functions in �. Suppose
that H, Aj(z) (j = , , . . . ,k – ) satisfy the hypotheses in Theorem ., then we have the
following statements:

(i) Let  ≤ q ≤ p,  < β < α, if σ[p+,q](F) > σ, then all solutions of (.) satisfy
σ[p+,q](f ) = σ[p+,q](F); if σ[p+,q](F)≤ σ, then all solutions of (.) satisfy
λ
N
[p+,q](f ) = λN

[p+,q](f ) = σ[p+,q](f ) = σ with at most one exceptional solution f
satisfying σ[p+,q](f) < σ.

(ii) Let ≤ q = p + ,  < β < α, σ > , if σ[p+,p+](F) > σ, then all solutions of (.)
satisfy σ[p+,p+](f ) = σ[p+,p+](F); if σ[p+,p+](F) ≤ σ, then all solutions of (.) satisfy
λ
N
[p+,p+](f ) = λN

[p+,p+](f ) = σ[p+,p+](f ) = σ with at most one exceptional solution f
satisfying σ[p+,p+](f) < σ.

(iii) Let p = , q = ,  < kβ < α, σ > , if σ[,](F) > σ, then all solutions of (.) satisfy
σ[,](f ) = σ[,](F); if σ[,](F)≤ σ, then all solutions of (.) satisfy
λ
N
[,](f ) = λN

[,](f ) = σ[,](f ) = σ with at most one exceptional solution f satisfying
σ[,](f) < σ.

Remark . If a set E ⊂ [, ) satisfies densE > , then
∫
E

dt
–t = +∞.

2 Preliminary lemmas
Lemma . (see []) Let f (z) be a meromorphic function in �, and let k ≥  be an integer.
Then

m
(
r,
f (k)

f

)
= S(r, f ),

where S(r, f ) =O{log+T(r, f ) + log( 
–r )}, possibly outside a set E ⊂ [, ) with

∫
E

dt
–t < ∞.

Remark . Throughout this paper, we use E ⊂ [, ) to denote a set satisfying
∫
E

dt
–t <

∞, not always the same at each occurrence.

Lemma . (see []) Let k and j be integers satisfying k > j ≥ , and let ε >  and d ∈ (, ).
If f is a meromorphic function in � such that f (j) does not vanish identically, then

∣∣∣∣ f
(k)(z)
f (j)(z)

∣∣∣∣ ≤
((


 – |z|

)+ε

·max

{
log

(


 – |z|
)
,T

(
s
(|z|), f )

})k–j (|z| /∈ E
)
,

where s(|z|) =  – d( – |z|).

http://www.advancesindifferenceequations.com/content/2014/1/167
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Lemma. (see []) Let  ≤ q ≤ p be integers. If A(z), . . . ,Ak–(z) are analytic functions of
[p,q]-order in the unit disc. Then every solution f of (.) satisfies σ[p+,q](f ) = σM,[p+,q](f ) ≤
max{σM,[p,q](Aj)|j = , , . . . ,k – }.

By a similar proof to Lemma ., we have the following lemma.

Lemma . If A(z), . . . ,Ak–(z) are analytic functions of [p,p + ]-order in the unit
disc with max{σM,[p,p+](Aj)|j = , , . . . ,k – } < ∞. Then every solution f of (.) satisfies
σ[p+,p+](f ) ≤ σM,[p+,p+](f ) ≤ max{σM,[p,p+](Aj)|j = , , . . . ,k – }.

Lemma . Let  ≤ q ≤ p or  ≤ q = p +  and f (z) be an analytic function in � satisfy-
ing  ≤ σ[p,q](f ) = σ ≤ ∞ (or  ≤ σM,[p,q](f ) = σ ≤ ∞), then there exists a set E ⊂ [, )
satisfying

∫
E

dt
–t = +∞ such that, for all r ∈ E, we have

lim
r→–

logp T(r, f )
logq( 

–r )
= σ

(
lim
r→–

logp+M(r, f )
logq( 

–r )
= σ

)
.

Proof If  ≤ q ≤ p, by Definition ., there exists a sequence {rn}∞n= → – satisfying  –
d( – rn) < rn+ ( < d < ) and

lim
n→∞

logp T(rn, f )
logq( 

–rn )
= σ[p,q](f ) = σ.

Therefore there exists an n (∈ N) such that, for n ≥ n and for any r ∈ E =
⋃∞

n=n [rn,  –
d( – rn)], we have

logp T(r, f )
logq( 

–r )
≥ logp T(rn, f )

logq[ 
–[–d(–rn)] ]

=
logp T(rn, f )
logq[ 

d(–rn) ]
.

Hence

lim
r→–

logp T(r, f )
logq( 

–r )
≥ σ (r ∈ E).

Since σ[p,q](f ) = σ, for any r ∈ E, we have

lim
r→–

logp T(r, f )
logq( 

–r )
= σ,

where

mlE =
∞∑

n=n

∫ –d(–rn)

rn

dt
 – t

=
∞∑

n=n

log

d
= +∞.

We also can prove limr→–
logp+M(r,f )
logq( 

–r )
= σ (r ∈ E) by the above proof.

By the above proof, this lemma also holds for the case  ≤ q = p + . �

Lemma . Let Aj(z) (j = , , . . . ,k – ), F(z) 	≡  be analytic functions in �. Then the
following statements hold:

http://www.advancesindifferenceequations.com/content/2014/1/167
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(i) If p≥ q ≥  and f (z) is a solution of (.) satisfying
max{σ[p,q](Aj),σ[p,q](F)|j = , , . . . ,k – } < σ[p,q](f ), then λ

N
[p,q](f ) = λN

[p,q](f ) = σ[p,q](f ).
(ii) If f (z) is a solution of (.) satisfying

max{σ[p,p+](Aj),σ[p,p+](F), |j = , , . . . ,k – } < σ[p,p+](f ), then
λ
N
[p,p+](f ) = λN

[p,p+](f ) = σ[p,p+](f ).

Proof (i) Suppose that f (z) 	≡  is a solution of (.). By (.), we get


f
=


F

(
f (k)

f
+Ak–

f (k–)

f
+ · · · +A

)
, (.)

and it is easy to see that if f has a zero at z of order α (α > k), and A, . . . ,Ak– are analytic
at z, then F must have a zero at z of order α – k, hence

n
(
r,

f

)
≤ kn

(
r,

f

)
+ n

(
r,

F

)

and

N
(
r,

f

)
≤ kN

(
r,

f

)
+N

(
r,

F

)
. (.)

By Lemma . and (.), we have

m
(
r,

f

)
≤ m

(
r,

F

)
+

k–∑
j=

m(r,Aj) +O
{
log+T(r, f ) + log

(


 – r

)}
(r /∈ E). (.)

By (.)-(.), we get

T(r, f ) = T
(
r,

f

)
+O()

≤ kN
(
r,

f

)
+ T(r,F) +

k–∑
j=

T(r,Aj)

+O
{
log+T(r, f ) + log

(


 – r

)}
(r /∈ E). (.)

Since max{σ[p,q](F),σ[p,q](Aj)|j = , , . . . ,k – } < σ[p,q](f ), by Lemma . and Definition .,
there exists a set E with

∫
E

dt
–t = +∞ such that

max

{
T(r,F)
T(r, f )

,
T(r,Aj)
T(r, f )

}
→ 

(
r → –, r ∈ E, j = , . . . ,k – 

)
. (.)

By (.)-(.), for all |z| = r ∈ E \ E, we have

(
 – o()

)
T(r, f ) ≤ kN

(
r,

f

)
+O

{
log+T(r, f ) + log

(


 – r

)}
,

then we get σ[p,q](f ) ≤ λ
N
[p,q](f ). Therefore λ

N
[p,q](f ) = λN

[p,q](f ) = σ[p,q](f ).
(ii) By a similar proof to case (i), we can easily obtain the conclusion of case (ii). �

http://www.advancesindifferenceequations.com/content/2014/1/167
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Lemma . (see []) Let g : (, ) → R and h : (, ) → R be monotone increasing func-
tions such that g(r) ≤ h(r) holds outside of an exceptional set E ⊂ [, ) with

∫
E

dt
–t < ∞.

Then there exists a constant d ∈ (, ) such that if s(r) =  – d( – r), then g(r) ≤ h(s(r)) for
all r ∈ [, ).

Lemma . (see []) Suppose that f (z) is meromorphic in � with f () = . Then

m(r, f ) ≤
[
 + ϕ

(
r
R

)]
T

(
R, f ′) +N

(
R, f ′), (.)

where  < r < R < , ϕ(t) = 
π
log +t

–t .

Lemma . Let f (z) be an analytic function of [p,q]-order in �. Then the following state-
ments hold:

(i) If p≥ q ≥ , then σ[p,q](f ) = σ[p,q](f ′).
(ii) If ≤ q = p + , then σ[p,p+](f ′) ≤ max{σ[p,p+](f ), } and

σ[p,p+](f ) ≤ max{σ[p,p+](f ′), }.
(iii) If p = , q = , then σ[,](f ′) ≤ max{σ[,](f ), } and σ[,](f )≤  + σ[,](f ′).

Proof By Lemma ., we have

T
(
r, f ′) ≤ T(r, f ) +m

(
r,
f ′

f

)
≤ T(r, f ) +O

{
log


 – r

}
( < r < , r /∈ E). (.)

By (.) and Lemma ., it is easy to see σ[p,q](f ′) ≤ σ[p,q](f ) (p ≥ q ≥ ) and σ[p,p+](f ′) ≤
max{σ[p,p+](f ), }. On the other hand, set R = +r

 ,  < r < , by Lemma ., we have

T(r, f ) <
(
 + log


( – r)

)
T

(
 + r


, f ′
)
. (.)

By (.), we have, if p≥ q ≥ , then σ[p,q](f ) ≤ σ[p,q](f ′) and if ≤ q = p+, then σ[p,p+](f ) ≤
max{σ[p,p+](f ′), }; andwe can easily obtain the conclusion (iii) by (.) and (.). Therefore
Lemma . holds. �

3 Proofs of Theorems 1.1-1.3
Proof of Theorem . (i) LetH = {|z| : z ∈H ⊆ �}, since dens�{|z| : z ∈H ⊆ �} > , then
by Remark ., H is a set of r with

∫
H

dt
–t = +∞. For any |z| = r ∈H and r → –, we have

∣∣A(z)
∣∣ ≥ expp

{
α

[
logq–

(


 – r

)]σ}
,

∣∣Aj(z)
∣∣ ≤ expp

{
β

[
logq–

(


 – r

)]σ}
(j = , . . . ,k – ).

(.)

If f 	≡ , from (.), we get

|A| ≤
∣∣∣∣ f

(k)

f

∣∣∣∣ + |Ak–|
∣∣∣∣ f

(k–)

f

∣∣∣∣ + · · · + |A|
∣∣∣∣ f

′

f

∣∣∣∣. (.)
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By Lemma ., for |z| = r /∈ E, we get

∣∣∣∣ f
(j)(z)
f (z)

∣∣∣∣ ≤
(


 – r

)M

· T(
s(r), f

)j (j = , . . . ,k), (.)

where M denotes a positive constant, not always the same at each occurrence. By (.)-
(.), for all z satisfying |z| = r ∈H \ E and r → –, we have

expp

{
α

[
logq–

(


 – r

)]σ}

≤ k · expp
{
β

[
logq–

(


 – r

)]σ}
·
(


 – r

)M

· T(
s(r), f

)k . (.)

If p ≥ q ≥ , by (.), then σ ≤ σ[p+,q](f ). On the other hand, by Lemma ., we have
σ[p+,q](f ) ≤ max{σM,[p,q](Aj)|j = , , . . . ,k – } ≤ σ. Therefore every solution f (z) 	≡  of
(.) satisfies σ[p+,q](f ) = σM,[p+,q](f ) = σ.
(ii) If  ≤ q = p +  and σ > , by a similar proof to case (i), we obtain the conclusion.

�

Proof of Theorem . (i) LetH = {|z| : z ∈H ⊆ �}, since dens�{|z| : z ∈H ⊆ �} > , then
by Remark ., H is a set of r with

∫
H

dt
–t = +∞. For any |z| = r ∈H and r → –, we have

T(r,A) ≥ expp–

{
α

[
logq–

(


 – r

)]σ}
,

T(r,Aj) ≤ expp–

{
β

[
logq–

(


 – r

)]σ}
(j = , . . . ,k – ).

(.)

If f 	≡ , from (.), we get

–A(z) =
f (k)(z)
f (z)

+ · · · +Aj(z)
f (j)(z)
f (z)

+ · · · +A(z)
f ′(z)
f (z)

,

then

T(r,A) ≤
k–∑
i=

T(r,Aj) +
k∑
j=

m
(
r,
f (k)

f

)
+O(). (.)

By Lemma . and (.), there exists a set E ⊂ [, ) with
∫
E

dt
–t < ∞ such that, for all z

satisfying |z| = r /∈ E, we have

T(r,A) ≤
k–∑
i=

T(r,Aj) +O
{
log+T(r, f ) + log

(


 – r

)}
. (.)

By (.), (.), for |z| = r ∈H \ E and r → –, we have

expp–

{
α

[
logq–

(


 – r

)]σ}

≤ (k – ) · expp–
{
β

[
logq–

(


 – r

)]σ}
+O

{
log+T(r, f ) + log

(


 – r

)}
.
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If p ≥ q ≥  and  < β < α, then every solution f (z) 	≡  of (.) satisfies σ ≤ σ[p+,q](f ) =
σM,[p+,q](f ). On the other hand, by Lemma ., all solutions of (.) satisfy σ[p+,q](f ) =
σM,[p+,q](f ) ≤ max{σM,[p,q](Aj)|j = , , . . . ,k – } ≤ σ. Therefore every solution f (z) 	≡ 
of (.) satisfies σ[p+,q](f ) = σ.
(ii)-(iii) By a similar proof to case (i), we obtain the conclusions of (ii)-(iii). �

Proof of Theorem . (i) For ≤ q ≤ p, assume that f is a solution of (.), by the elementary
theory of differential equations, thus all the solutions of (.) have the form

f = f ∗ +Cf +Cf + · · · +Ckfk ,

where C, . . . ,Ck are complex constants, f, . . . , fk is a solution base of (.), f ∗ is a solution
of (.) and has the form

f ∗ =Df +Df + · · · +Dkfk , (.)

where D, . . . ,Dk are certain analytic functions in � satisfying

D′
j = F ·Gj(f, . . . , fk) ·W (f, . . . , fk)– (j = , . . . ,k), (.)

where Gj(f, . . . , fk) are differential polynomials in f, . . . , fk and their derivative with con-
stant coefficients, andW (f, . . . , fk) is the Wronskian of f, . . . , fk .
If σ[p+,q](F) > σ, by Lemma ., Lemma ., and (.)-(.), we find that all solutions of

(.) satisfy

σ[p+,q](f )≤ max
{
σ[p+,q](fj),σ[p+,q](F)|j = , . . . ,k

}
=max

{
σ,σ[p+,q](F)

} ≤ σ[p+,q](F).

On the other hand, by a simple order comparison from (.), we see that all solutions of
(.) satisfy σ[p+,q](f ) ≥ σ[p+,q](F). Therefore all solutions of (.) satisfy

σ[p+,q](f ) = σ[p+,q](F).

If σ[p+,q](F) ≤ σ, by the above proof in (.)-(.), we can find that all solutions of (.)
satisfy σ[p+,q](f ) ≤ σ. We affirm that (.) can only possess at most one exceptional solu-
tion f satisfying σ[p+,q](f) < σ. In fact, if f∗ is another solution satisfying σ[p+,q](f∗) < σ,
then σ[p+,q](f – f∗) < σ. But f – f∗ is a solution of (.) and satisfies σ[p+,q](f – f∗) = σ by
Theorem .(i), this is a contradiction. Then σ[p+,q](f ) = σ holds for all solutions of (.)
with at most one exceptional solution f satisfying σ[p+,q](f) < σ. By Lemma .(i), we get

λ
N
[p+,q](f ) = λN

[p+,q](f ) = σ[p+,q](f )

holds for all solutions satisfying σ[p+,q](f ) = σ with at most one exceptional solution f
satisfying σ[p+,q](f) < σ.
(ii) For  ≤ q = p + , σ > , by a similar proof to case (i), we draw the conclusions of

case (ii). �
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