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Abstract
Motivated by the recent investigations of several authors, in this paper, we derive
several new expansion formulas involving a generalized Hurwitz-Lerch zeta function
introduced and studied recently by Srivastava et al. (Integral Transforms Spec. Funct.
22:487-506, 2011). These expansions are obtained by using some fractional calculus
theorems such as the generalized Leibniz rules for the fractional derivatives and the
Taylor-like expansions in terms of different functions. Several (known or new) special
cases are also considered.
MSC: Primary 11M25; 11M35; 26A33; secondary 33C05; 33C60
Keywords: fractional derivatives; generalized Taylor expansion; generalized
Hurwitz-Lerch zeta functions; Riemann zeta function; Leibniz rules

1 Introduction
TheHurwitz-Lerch zeta function�(z, s,a) is defined by (see, for example, [, p. et seq.];
see also [] and [, p. et seq.])

�(z, s,a) :=
∞∑
n=

zn

(n + a)s

(
a ∈C \Z–

; s ∈C when |z| < ;�(s) >  when |z| = 
)
. (.)

The Hurwitz-Lerch zeta function contains, as its special cases, the Riemann zeta function
ζ (s), the Hurwitz zeta function ζ (s,a), and the Lerch zeta function �s(ξ ) defined by

ζ (s) :=
∞∑
n=


ns

= �(, s, ) = ζ (s, )
(�(s) > 

)
, (.)

ζ (s,a) :=
∞∑
n=


(n + a)s

= �(, s,a)
(�(s) > ;a ∈ C \Z–


)

(.)

and

�s(ξ ) :=
∞∑
n=

enπ iξ

(n + )s
= �

(
eπ iξ , s, 

) (�(s) > ; ξ ∈R
)
, (.)

respectively.

© 2014 Srivastava et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/169
mailto:s1gabour@uqac.ca
http://creativecommons.org/licenses/by/2.0


Srivastava et al. Advances in Difference Equations 2014, 2014:169 Page 2 of 17
http://www.advancesindifferenceequations.com/content/2014/1/169

The Hurwitz-Lerch zeta function �(z, s,a) defined in (.) can be continued meromor-
phically to the whole complex s-plane, except for a simple pole at s =  with its residue .
It is well known that

�(z, s,a) =


�(s)

∫ ∞



ts–e–at

 – ze–t
dt

(�(a) > ;�(s) >  when |z| �  (z �= );�(s) >  when z = 
)
. (.)

It is worth noting that the Hurwitz-Lerch zeta function �(z, s,a) defined in (.) is also
related to several families of special polynomials such as the Bernoulli, the Euler, and the
Genocchi polynomials [–].
Recently, a more general family of Hurwitz-Lerch zeta functions was investigated by Lin

and Srivastava [, p., Eq. ()]. Srivastava and Lin studied the following function:

�(ρ,σ )
μ,ν (z, s,a) :=

∞∑
n=

(μ)ρn
(ν)σn

zn

(a + n)s

(
μ ∈C;a,ν ∈C \Z–

;ρ,σ ∈R
+;ρ < σ when s, z ∈C;

ρ = σ and s ∈C when |z| < ;ρ = σ and �(s –μ + ν) >  when |z| = 
)
. (.)

Here, and for the remainder of this paper, (λ)κ denotes the Pochhammer symbol defined,
in terms of the gamma function, by

(λ)κ :=
�(λ + κ)

�(λ)
=

⎧⎨
⎩ (κ = ;λ ∈C \ {}),

λ(λ + ) · · · (λ + n – ) (κ = n ∈N;λ ∈C),
(.)

it being understood conventionally that () :=  and assumed tacitly that the �-quotient
exists (see, for details, [, p. et seq.]).
Clearly, we find from the definition (.) that

�(σ ,σ )
ν,ν (z, s,a) = �(,)

μ,ν (z, s,a) = �(z, s,a) (.)

and

�
(,)
μ, (z, s,a) = �∗

μ(z, s,a) :=
∞∑
n=

(μ)n
n!

zn

(n + a)s

(
μ ∈C;a,ν ∈C \Z–

; s ∈C when |z| < ;�(s –μ) >  when |z| = 
)
, (.)

where the function �∗
μ(z, s,a) involved in (.) is a generalization of the Hurwith-Lerch

zeta function considered by Goyal and Laddha [, p., Eq. (.)].
A generalization of the above-defined Hurwitz-Lerch zeta functions �(z, s,a) and

�∗
μ(z, s,a) was studied by Garg et al. [, p., Eq. (.)] in the following form:

�λ,μ;ν(z, s,a) :=
∞∑
n=

(λ)n(μ)n
(ν)nn!

zn

(n + a)s

(
λ,μ ∈C;ν,a ∈C \Z–

; s ∈C when |z| < ;�(s + ν – λ –μ) >  when |z| = 
)
. (.)
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Srivastava et al. [, p., Eq. (.)] (see also [–]), in the year , considered a
further generalization of the Hurwitz-Lerch zeta function, defined in the form

�
(ρ,σ ,κ)
λ,μ;ν (z, s,a) :=

∞∑
n=

(λ)ρn(μ)σn
(ν)κnn!

zn

(n + a)s

(
λ,μ ∈C;a,ν ∈C \Z–

;ρ,σ ,κ ∈R
+;κ – ρ – σ > – when s, z ∈C;

κ – ρ – σ = – and s ∈C when |z| < δ∗ := ρ–ρσ –σ κκ ;

κ – ρ – σ = – and �(s + ν – λ –μ) >  when |z| = δ∗). (.)

Several integral representations, relationships with the H-function, fractional deriva-
tives, and analytic continuation formulas were established for the function defined
in (.).
It is worth noting the following special or limit cases of the function �

(ρ,σ ,κ)
λ,μ;ν (z, s,a).

(i) For λ = ρ = , we find that

�
(,σ ,κ)
,μ;ν (z, s,a) = �(σ ,κ)

μ;ν (z, s,a) (.)

in terms of the generalized Hurwitz-Lerch zeta function �(σ ,κ)
μ;ν (z, s,a) defined

in (.).
(ii) If we set ρ = σ = κ = , then (.) yields the generalized Hurwitz-Lerch zeta

function �λ,μ;ν(z, s,a) studied by Garg et al. [] and Jankov et al. []:

�
(,,)
λ,μ;ν (z, s,a) = �λ,μ;ν(z, s,a). (.)

(iii) Setting ρ = σ = κ =  and λ = ν , (.) reduces to the function �∗
μ(z, s,a)

investigated by Goyal and Laddha [] as below:

�(,,)
ν,μ;ν (z, s,a) = �∗

μ(z, s,a). (.)

(iv) In (.), we put μ = ρ = σ =  and z �→ z
λ
. Then, by the familiar principle of

confluence, the limit case when λ → ∞, would yield the Mittag-Leffler type
function E(a)

κ ,ν(s, z) studied by Barnes [], namely

lim
λ→∞

{


�(ν)
�

(,,κ)
λ,;ν

(
z
λ
, s,a

)}
=

∞∑
n=

zn

�(ν + κn)(n + a)s
:= E(a)

κ ,ν(s; z)

(
a,ν ∈C \Z–

;�(κ) > ; s, z ∈C
)
. (.)

(v) A limit case of the generalized Hurwitz-Lerch function �
(ρ,σ ,κ)
λ,μ;ν (z, s,a), which is of

interest in our present investigation, is given by

�∗(σ ,κ)
μ;ν (z, s,a) := lim|λ|→∞

{
�

(ρ,σ ,κ)
λ,μ;ν

(
z
λρ

, s,a
)}

=
∞∑
n=

(μ)σn
(ν)κnn!

zn

(n + a)s

(
μ ∈C;a,ν ∈ C \Z–

;σ ,κ ∈R
+; s ∈C when |z| < σ –σ κκ ;

�(s + ν –μ) >  when |z| = σ –σ κκ
)
. (.)
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(vi) Another limit case of the generalized Hurwitz-Lerch function �
(ρ,σ ,κ)
λ,μ;ν (z, s,a) is

given by

�∗(σ )
μ (z, s,a) := lim

min{|λ|,|ν|}→∞

{
�

(ρ,σ ,κ)
λ,μ;ν

(
zνκ

λρ
, s,a

)}
=

∞∑
n=

(μ)σn
n!

zn

(n + a)s

(
μ ∈C;a ∈C \Z–

;  < σ <  and s, z ∈ C;σ =  and s ∈ C

when |z| < σ –σ ;σ =  and �(s –μ) >  when |z| = σ –σ
)
, (.)

which, for σ = , reduces at once to the function �∗
μ(z, s,a) defined by (.).

Finally, a multiparameter extension of the function �
(ρ,σ ,κ)
λ,μ;ν (z, s,a) was given, more re-

cently, by Srivastava et al. [] (see also []). They considered the following function:

�
(ρ,...,ρp ,σ,...,σq)
λ,...,λp ;μ,...,μq (z, s,a) :=

∞∑
n=

∏p
j=(λj)nρj

n!
∏q

j=(μj)nσj

zn

(n + a)s(
p,q ∈N;λj ∈C (j = , . . . ,p);a,μj ∈C \Z–

 (j = , . . . ,q);

ρj,σk ∈R
+ (j = , . . . ,p;k = , . . . ,q);

� > – when s, z ∈C;� = – and s ∈C when

|z| < ∇∗;� = – and �(�) >


when |z| = ∇∗

)
(.)

with

∇∗ :=

( p∏
j=

ρ
–ρj
j

)
·
( q∏

j=

σ
σj
j

)
, (.)

� :=
q∑
j=

σj –
p∑
j=

ρj and � := s +
q∑
j=

μj –
p∑
j=

λj +
p – q


. (.)

It is fairly straightforward to see that if we let p –  = q =  in (.), then we obtain the
generalized Hurwitz-Lerch zeta function �

(ρ,σ ,κ)
λ,μ;ν (z, s,a).

The aim of this paper is to extend several interesting results obtained recently by
Gaboury andBayad [] and byGaboury [] to theHurwitz-Lerch zeta function�

(ρ,σ ,κ)
λ,μ;ν (z,

s,a) introduced and studied by Srivastava et al. []. This paper is organized as fol-
lows. Section  is devoted to the representation of the fractional derivatives based on
Pochhammer’s contour of integration. In Section , we recall some major fractional cal-
culus theorems, that is, two generalized Leibniz rules and three Taylor-like expansions.
Section  is dedicated to the proofs of the main results and, finally, Section  aims to pro-
vide some (new or known) special cases.

2 Pochhammer contour integral representation for fractional derivative
The fractional derivative of arbitrary order α, α ∈ C, is an extension of the familiar nth
derivative Dn

g(z)F(z) = dnF(z)/(dg(z))n of the function F(z) with respect to g(z) to non-
integral values of n and denoted by Dα

g(z)F(z). The aim of this concept is to generalize

http://www.advancesindifferenceequations.com/content/2014/1/169
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classical results of the nth order derivative to fractional order. Most of the properties of
the classical calculus have been expanded to fractional calculus. For instance, the compo-
sition rule, the Leibniz rule, the chain rule and the Taylor and Laurent series. Fractional
calculus provides tools that make easier to deal with special functions of mathematical
physics. Many examples of the use of fractional derivatives appear in the literature: ordi-
nary and partial differential equations, integral equations, integro-differential equations of
non-integer order. Many other applications have been investigated through various field
of science and engineering. For more details on fractional calculus, the reader could read
[–].
The most familiar representation for the fractional derivative of order α of zpf (z) is the

Riemann-Liouville integral [] (see also [–]), that is,

Dα
z
{
zpf (z)

}
=


�(–α)

∫ z


f (ξ )ξp(ξ – z)–α– dξ

(�(α) < ;�(p) > 
)
, (.)

where the integration is carried out along a straight line from to z in the complex ξ -plane.
By integrating by partm times, we obtain

Dα
z
{
zpf (z)

}
=

dm

dzm
{
Dα–m

z
{
zpf (z)

}}
. (.)

This allows us to modify the restriction �(α) <  to �(α) <m (see []).
Another representation for the fractional derivative is based on the Cauchy integral for-

mula. This representation, too, has been widely used in many interesting papers (see, for
example, the work of Osler [–]).
The relatively less restrictive representation of the fractional derivative according to pa-

rameters appears to be the one based on Pochhammer’s contour integral introduced by
Tremblay [, ].

Definition  Let f (z) be analytic in a simply connected regionR of the complex z-plane.
Let g(z) be regular and univalent onR and let g–() be an interior point ofR. Then, if α

is not a negative integer, p is not an integer, and z is inR\ {g–()}, we define the fractional
derivative of order α of g(z)pf (z) with respect to g(z) by

Dα
g(z)

{[
g(z)

]pf (z)}
=
e–iπp�( + α)
π sin(πp)

∫
C(z+,g–()+,z–,g–()–;F(a),F(a))

f (ξ )[g(ξ )]pg ′(ξ )
[g(ξ ) – g(z)]α+

dξ . (.)

For non-integers α and p, the functions g(ξ )p and [g(ξ ) – g(z)]–α– in the integrand have
two branch lines which begin, respectively, at ξ = z and ξ = g–(), and both branches pass
through the point ξ = a without crossing the Pochhammer contour P(a) = {C ∪C ∪C ∪
C} at any other point as shown in Figure . Here F(a) denotes the principal value of the
integrand in (.) at the beginning and the ending point of the Pochhammer contour P(a)
which is closed on the Riemann surface of the multiple-valued function F(ξ ).

Remark  In Definition , the function f (z) must be analytic at ξ = g–(). However, it is
interesting to note here that, if we could also allow f (z) to have an essential singularity at
ξ = g–(), then (.) would still be valid.

http://www.advancesindifferenceequations.com/content/2014/1/169
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Figure 1 Pochhammer’s contour.

Remark  In case the Pochhammer contour never crosses the singularities at ξ = g–()
and ξ = z in (.), then we know that the integral is analytic for all p and for all α and for
z in R \ {g–()}. Indeed, in this case, the only possible singularities of Dα

g(z){[g(z)]pf (z)}
are α = –,–,–, . . . and p = ,±,±, . . . , which can directly be identified from the coef-
ficient of the integral (.). However, by integrating by parts N times the integral in (.)
by two different ways, we can show that α = –,–, . . . and p = , , , . . . are removable
singularities (see, for details, []).

It is well known that [, p., Eq. (.)]

Dα
z
{
zp

}
=

�( + p)
�( + p – α)

zp–α
(�(p) > –

)
. (.)

Adopting the Pochhammer-based representation for the fractional derivative modifies
the restriction to the case when p not a negative integer.
In their work, Srivastava et al. [] (see also the works of Garg et al. [] and Lin et al.

[]) gave the following fractional derivative formula for the function �
(ρ,σ ,κ)
λ,μ;ν (z, s,a):

Dν–τ
z

{
zν–�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
=

�(ν)
�(τ )

zτ–�
(ρ,σ ,κ)
λ,μ;τ

(
zκ , s,a

)
(�(ν) > ;κ > 

)
. (.)

These last restrictions become κ + ν –  not a negative integer and κ >  by making use of
the Pochhammer-based representation for the fractional derivative.
The fractional derivative formula (.) can be specialized to deduce other results. As

example, upon setting ρ = σ = κ =  in (.), we obtain

Dν–τ
z

{
zν–�λ,μ;ν(z, s,a)

}
=

�(ν)
�(τ )

zτ–�λ,μ;τ (z, s,a)

(ν not a negative integer;κ > ). (.)

http://www.advancesindifferenceequations.com/content/2014/1/169
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Another fractional derivative formula that will be very useful in the present investigation
is given by the next formula:

Dα
z
{
zβ�

(ρ,σ ,κ)
λ,μ;ν (z, s,a)

}
=

�( + β)
�( + β – α)

zβ–α�
(ρ,σ ,,κ ,)
λ,μ,+β ;ν,+β–α(z, s,a)

(β not a negative integer), (.)

where theHurwitz-Lerch zeta function�
(ρ,σ ,,κ ,)
λ,μ,+β ;ν,+β–α(z, s,a) occurring in (.) is a special-

ized case of themultiparameters extension of the generalizedHurwitz-Lerch zeta function
defined in (.).

3 Important results involving fractional calculus
In this section, we recall five very important theorems related to fractional calculus that
will play central roles in our work. Each of these theorems is the generalized Leibniz rules
for fractional derivatives and the Taylor-like expansions in terms of different types of func-
tions.
First of all, we give two generalized Leibniz rules for fractional derivatives. Theorem 

is a slightly modified theorem obtained in  by Osler []. Theorem  was given, some
years ago, by Tremblay et al. [] with the help of the properties of Pochhammer’s contour
representation for fractional derivatives.

Theorem  (i) Let R be a simply connected region containing the origin. (ii) Let u(z) and
v(z) satisfy the conditions of Definition  for the existence of the fractional derivative. Then,
for �(p + q) > – and γ ∈C, the following Leibniz rule holds true:

Dα
z
{
zp+qu(z)v(z)

}
=

∞∑
n=–∞

(
α

γ + n

)
Dα–γ–n

z
{
zpu(z)

}
Dγ+n

z
{
zqv(z)

}
. (.)

Theorem  (i) Let R be a simply connected region containing the origin. (ii) Let u(z) and
v(z) satisfy the conditions of Definition  for the existence of the fractional derivative. (iii) Let
U ⊂R be the region of analyticity of the function u(z) andV ⊂R be the region of analyticity
of the function v(z). Then, for

z �= , z ∈ U ∩ V and �( – β) > ,

the following product rule holds true:

Dα
z
{
zα+β–u(z)v(z)

}
=

z�( + α) sin(βπ ) sin(μπ ) sin[(α + β –μ)π ]
sin[(α + β)π ] sin[(β –μ – ν)π ] sin[(μ + ν)π ]

·
∞∑

n=–∞

Dα+ν+–n
z {zα+β–μ––nu(z)}D––ν+n

z {zμ–+nv(z)}
�( + α + ν – n)�(–ν + n)

. (.)

Next, in the year , Osler [] obtained the following generalized Taylor-like series
expansion involving fractional derivatives.

Theorem  Let f (z) be an analytic function in a simply connected region R. Let α and γ

be arbitrary complex numbers and

θ (z) = (z – z)q(z)

http://www.advancesindifferenceequations.com/content/2014/1/169
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with q(z) a regular and univalent function without any zero in R. Let a be a positive real
number and

K =
{
, , . . . , [c]

(
[c] the largest integer not greater than c

)}
.

Let b and z be two points inR such that b �= z and let

ω = exp

(
π i
a

)
.

Then the following relationship holds true:

∑
k∈K

c–ω–γ kf
(
θ–(θ (z)ωk))

=
∞∑

n=–∞

[θ (z)]cn+γ

�(cn + γ + )
·Dcn+γ

z–b

{
f (z)θ ′(z)

(
z – z
θ (z)

)cn+γ+}∣∣∣∣
z=z

(|z – z| = |z|
)
. (.)

In particular, if  < c�  and θ (z) = (z– z), then k =  and (.) reduces to the following
form:

f (z) = c
∞∑

n=–∞

(z – z)cn+γ

�(cn + γ + )
Dcn+γ

z–b
{
f (z)

}∣∣∣∣
z=z

. (.)

Equation (.) is usually referred to as the Taylor-Riemann formula and has been studied
in several papers [, –].
We next recall that Tremblay et al. [] discovered the power series of an analytic func-

tion f (z) in terms of the rational expression ( z–zz–z
), where z and z are two arbitrary points

inside the regionR of analyticity of f (z). In particular, they obtained the following result.

Theorem  (i) Let c be real and positive and let

ω = exp

(
π i
a

)
.

(ii) Let f (z) be analytic in the simply connected regionRwith z and z being interior points
ofR. (iii) Let the set of curves

{
C(t) : C(t) ⊂R and  < t � r

}

be defined by

C(t) = C(t)∪C(t) =
{
z :

∣∣λt(z, z; z)
∣∣ = ∣∣∣∣λt

(
z, z;

z + z


)∣∣∣∣
}
, (.)

where

λt(z, z; z) =
[
z –

z + z


+ t
(
z – z



)]
·
[
z –

(
z + z



)
– t

(
z – z



)]
, (.)

http://www.advancesindifferenceequations.com/content/2014/1/169
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Figure 2 Multi-loops contour.

which are the Bernoulli type lemniscates (see Figure )with center located at z+z
 and with

double-loops in which one loop C(t) leads around the focus point

z + z


+
(
z – z



)
t

and the other loop C(t) encircles the focus point

z + z


–
(
z – z



)
t

for each t such that  < t � r. (iv) Let

[
(z – z)(z – z)

]λ = exp
(
λ ln

(
θ
(
(z – z)(z – z)

)))
(.)

denote the principal branch of that function which is continuous and inside C(r), cut by the
respective two branch lines L± defined by

L± =

⎧⎨
⎩{z : z = z+z

 ± t( z–z )} (� t � ),

{z : z = z+z
 ± it( z–z )} (t < ),

(.)

such that ln((z– z)(z– z)) is real when (z– z)(z– z) > . (v) Let f (z) satisfy the conditions
of Definition  for the existence of the fractional derivative of (z – z)pf (z) of order α for z ∈
R \ {L+ ∪ L–}, denoted by Dα

z–z{(z– z)pf (z)}, where α and p are real or complex numbers.
(vi) Let

K =
{
k : k ∈N and arg

(
λt

(
z, z,

z + z


))

< arg

(
λt

(
z, z,

z + z


))
+
πk
a

< arg

(
λt

(
z, z,

z + z


))
+ π

}
.

http://www.advancesindifferenceequations.com/content/2014/1/169
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Then, for arbitrary complex numbers μ, ν , γ , and for z on C() defined by

ξ =
z + z


+
z – z


√
 + eiθ (–π < θ < π ),

∑
k∈K

c–ω–γ k

z – z
f
(
φ–(ωkφ(z)

))[
φ–(ωkφ(z)

)
– z

]ν[
φ–(ωkφ(z)

)
– z

]μ

=
∞∑

n=–∞

eiπc(n+) sin[(μ + cn + γ )π ]
sin[(μ – c + γ )π ]�( – ν + cn + γ )

·D–ν+cn+γ
z–z

{
(z – z)μ+cn+γ–f (z)

}∣∣∣∣
z=z

[
φ(z)

]cn+γ , (.)

where

φ(z) =
z – z
z – z

.

The case  < c�  of Theorem  reduces to the following form:

c–f (z)(z – z)ν(z – z)μ

(z – z)
=

∞∑
n=–∞

eiπc(n+) sin[(μ + cn + γ )π ]
sin[(μ – c + γ )π ]�( – ν + cn + γ )

·D–ν+cn+γ
z–z

{
(z – z)μ+cn+γ–f (z)

}∣∣∣∣
z=z

(
z – z
z – z

)cn+γ

. (.)

Tremblay and Fugère [] developed the power series of an analytic function f (z) in
terms of the function (z – z)(z – z), where z and z are two arbitrary points inside the
analyticity regionR of f (z). Explicitly, they gave the following theorem.

Theorem  Under the assumptions of Theorem , the following expansion formula holds
true:

∑
k∈K

c–ω–γ k
[(

z – z +
√

�k



)α(
z – z +

√
�k



)β

· f
(
z + z +

√
�k



)
– eiπ (α–β) sin[(α + c – γ )π ]

sin[(β + c – γ )π ]

·
(
z – z –

√
�k



)α(
z – z –

√
�k



)β

f
(
z + z –

√
�k



)]

=
∞∑

n=–∞

sin[(β – cn – γ )π ]
sin[(β – c – γ )π ]

e–iπc(n+)[θ (z)]cn+γ

�( – α + cn + γ )

·D–α+cn+γ
z–z

{
(z – z)β–cn–γ–

(
θ (z)

(z – z)(z – z)

)–cn–γ–

θ ′(z)f (z)
}∣∣∣∣

z=z
, (.)

where

�k = (z – z) + V
(
ωkθ (z)

)
, (.)

V (z) =
∞∑
r=

Dr–
z

{[
q(z)

]–r}|z= zrr! (.)
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and

θ (z) = (z – z)(z – z)q
(
(z – z)(z – z)

)
. (.)

As a special case, if we set  < c� , q(z) =  (θ (z) = (z – z)(z – z)), and z =  in (.),
we obtain

f (z) = cz–β (z – z)–α

∞∑
n=–∞

sin[(β – cn – γ )π ]
sin[(β + c – γ )π ]

eiπc(n+)[z(z – z)]cn+γ

�( – α + cn + γ )

·D–α+cn+γ
z

{
zβ–cn–γ–(z +w – z)f (z)

}∣∣∣∣ z=z
(w=z)

. (.)

4 A set of main results for the generalized Hurwitz-Lerch zeta function
�

(ρ,σ ,κ )
λ,μ;ν (z, s,a)

In this section, we present the new expansion formulas involving the generalizedHurwitz-
Lerch zeta functions �

(ρ,σ ,κ)
λ,μ;ν (z, s,a).

Theorem  Under the assumptions of Theorem , the following expansion holds true:

�
(ρ,σ ,κ)
λ,μ;τ

(
zκ , s,a

)
=

�(τ )�( + ν – τ ) sin(γπ )
π

·
∞∑

n=–∞

(–)n�(ρ,σ ,κ ,κ ,κ)
λ,μ,;ν,–γ–n(zκ , s,a)

(γ + n)�( + ν – τ – γ – n)�(τ + γ + n)
, (.)

provided that both members of (.) exist.

Proof Setting u(z) = zν– and v(z) = �
(ρ,σ ,κ)
λ,μ;ν (zκ , s,a) in Theorem  with p = q =  and α =

ν – τ , we obtain

Dν–τ
z

{
zν–�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
=

∞∑
n=–∞

(
ν – τ

γ + n

)
Dν–τ–γ–n

z
{
zν–}Dγ+n

z
{
�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
, (.)

which, with the help of (.) and (.), yields

Dν–τ
z

{
zν–�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
=

�(ν)
�(τ )

zτ–�
(ρ,σ ,κ)
λ,μ;τ

(
zκ , s,a

)
, (.)

Dν–τ–γ–n
z

{
zν–} = �(ν)

�(τ + γ + n)
zτ+γ+n– (.)

and

Dγ+n
z

{
�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
=

∞∑
j=

(λ)ρj(μ)σ j
(ν)κ jj!

Dγ+n
z {zκ j}
(j + a)s

=
z–γ–n

�( – γ – n)
�

(ρ,σ ,κ ,κ ,κ)
λ,μ,;ν,–γ–n

(
zκ , s,a

)
. (.)
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Combining (.), (.), (.) with (.) and making some elementary simplifications, the
asserted result (.) follows. �

Theorem  Under the hypotheses of Theorem , the following expansion formula holds
true:

�
(ρ,σ ,κ)
λ,μ;τ

(
zκ , s,a

)
=

�(τ )�( + ν – τ ) sin(βπ ) sin[(ν – τ + β – θ )π ]
�(ν)�(τ – γ – θ – )�( + γ + θ ) sin[(ν – τ + β)π ] sin[(β – θ – γ )π ]

· sin(θπ )
sin[(θ + γ )π ]

∞∑
n=–∞

�(ν – θ – n)�(θ + n)
�( + ν – τ + γ – n)�(–γ + n)

· �(ρ,σ ,κ ,κ ,κ)
λ,μ,θ+n;ν,+θ+γ

(
zκ , s,a

)
, (.)

provided that both members of (.) exist.

Proof Upon first substituting μ �→ θ and ν �→ γ in Theorem  and then setting

α = ν – τ , u(z) = zτ–β and v(z) = �
(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)
,

in which both u(z) and v(z) satisfy the conditions of Theorem , we have

Dν–τ
z

{
zν–�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
=
z�( + ν – τ ) sin(βπ ) sin(θπ ) sin[(ν – τ + β – θ )π ]
sin[(ν – τ + β)π ] sin[(β – θ – γ )π ] sin[(θ + γ )π ]

·
∞∑

n=–∞

Dν–τ+γ+–n
z {zν–θ––n}D––γ+n

z {zθ–+n�
(ρ,σ ,κ)
λ,μ;ν (zκ , s,a)}

�( + ν – τ + γ – n)�(–γ + n)
. (.)

Now, by using (.) and (.), we find that

Dν–τ
z

{
zν–�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
=

�(ν)
�(τ )

zτ–�
(ρ,σ ,κ)
λ,μ;τ

(
zκ , s,a

)
, (.)

Dν–τ+γ+–n
z

{
zν–θ––n} = �(ν – θ – n)

�(τ – γ – θ – )
zτ–γ–θ– (.)

and

D––γ+n
z

{
zθ–+n�

(ρ,σ ,κ)
λ,μ;ν

(
zκ , s,a

)}
=

�(θ + n)
�( + θ + γ )

zθ+γ �
(ρ,σ ,κ ,κ ,κ)
λ,μ,θ+n;ν,+θ+γ

(
zκ , s,a

)
. (.)

Thus, finally, the result (.) follows by combining (.), (.), (.), and (.). �

Wenow shift our focus on the different Taylor-like expansions in terms of different types
of functions involving the generalized Hurwitz-Lerch zeta functions �

(ρ,σ ,κ)
λ,μ;ν (z, s,a).
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Theorem  Under the assumptions of Theorem , the following expansion formula holds
true:

�
(ρ,σ ,κ)
λ,μ;ν (z, s,a) = c

∞∑
n=–∞

z–cn (z – z)cn

�(cn + )�( – cn)
�

(ρ,σ ,,κ ,)
λ,μ,;ν,–cn(z, s,a)

(|z – z| = |z|;λ > 
)
, (.)

provided that both members of (.) exist.

Proof Setting f (z) = �
(ρ,σ ,κ)
λ,μ;ν (z, s,a) in Theorem with b = γ = ,  < c� , and θ (z) = z–z,

we have

�
(ρ,σ ,κ)
λ,μ;ν (z, s,a) = c

∞∑
n=–∞

(z – z)cn

�( + cn)
Dcn

z
{
�

(ρ,σ ,κ)
λ,μ;ν (z, s,a)

}∣∣∣∣
z=z

(.)

for z �=  and for z such that |z – z| = |z|.
Now, by making use of (.) with β =  and α = cn, we find that

Dcn
z

{
�

(ρ,σ ,κ)
λ,μ;ν (z, s,a)

}|z=z = z–cn
�( – cn)

�
(ρ,σ ,,κ ,)
λ,μ,;ν,–cn(z, s,a). (.)

By combining (.) and (.), we get the result (.) asserted by Theorem . �

Theorem  Under the hypotheses of Theorem , the following expansion formula holds
true:

�
(ρ,σ ,κ)
λ,μ;ν (z, s,a) = cz–α(z – z)–βzα+β



·
∞∑

n=–∞

eiπc(n+) sin[(α + cn + γ )π ]�(α + cn + γ )
sin[(α – c + γ )π ]�( – β + cn + γ )�(α + β)

· �(ρ,σ ,,κ ,)
λ,μ,α+cn+γ ;ν,α+β(z, s,a)

(
z – z
z

)cn+γ

(.)

for λ >  and for z on C() defined by

z =
z

+
z


√
 + eiθ (–π < θ < π ),

provided that both sides of (.) exist.

Proof By taking f (z) = �
(ρ,σ ,κ)
λ,μ;ν (z, s,a) in Theorem  with z = , μ = α, ν = β , and  < c� ,

we find that

�
(ρ,σ ,κ)
λ,μ;ν (z, s,a) = c(z – z)–βz–αz

·
∞∑

n=–∞

eiπc(n+) sin[(α + cn + γ )π ]
sin[(α – c + γ )π ]�( – β + cn + γ )

·D–β+cn+γ
z

{
zα+cn+γ–�

(ρ,σ ,κ)
λ,μ;ν (z, s,a)

}∣∣∣∣
z=z

(
z – z
z

)cn+γ

. (.)
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Now, with the help of the relation (.) with α �→ –β + cn + γ and β �→ α + cn + γ – , we
have

D–β+cn+γ
z

{
zα+cn+γ–�

(ρ,σ ,κ)
λ,μ;ν (z, s,a)

}|z=z
= zα+β–


�(α + cn + γ )

�(α + β)
�

(ρ,σ ,,κ ,)
λ,μ,α+cn+γ ;ν,α+β(z, s,a). (.)

Thus, by combining (.) and (.), we are led to the assertion (.) of Theorem . �

Theorem  Under the hypotheses of Theorem , the following expansion formula holds
true:

�
(ρ,σ ,κ)
λ,μ;ν (z, s,a) = cz–β+γ (z – z)–α+γ zβ+α–γ–



·
∞∑

n=–∞

sin[(β – cn – γ )π ]eiπc(n+)

sin[(β + c – γ )π ]�( – α + cn + γ )

(
z(z – z)

z

)cn

· �(β – cn – γ )
�(β + α – cn – γ )

[
(z – z)�(ρ,σ ,,κ ,)

λ,μ,β–cn–γ ;ν,β+α–cn–γ (z, s,a)

+
(

β – cn – γ

α + β – cn – γ

)
z�(ρ,σ ,,κ ,)

λ,μ,+β–cn–γ ;ν,+β+α–cn–γ (z, s,a)
]

(.)

for λ >  and for z on C() defined by

z =
z

+
z


√
 + eiθ (–π < θ < π ),

provided that both sides of (.) exist.

Proof Putting f (z) = �
(ρ,σ ,κ)
λ,μ;ν (z, s,a) in Theorem  with z = ,  < c� , q(z) = , and θ (z) =

(z – z)(z – z), we find that

�
(ρ,σ ,κ)
λ,μ;ν (z, s,a) = cz–β (z – z)–α

∞∑
n=–∞

sin[(β – cn – γ )π ]
sin[(β + c – γ )π ]

eiπc(n+)[z(z – z)]cn+γ

�( – α + cn + γ )

·D–α+cn+γ
z

{
zβ–cn–γ–(z +w – z)�(ρ,σ ,κ)

λ,μ;ν (z, s,a)
}∣∣∣∣ z=z

(w=z)

. (.)

With the help of relation (.), we have

D–α+cn+γ
z

{
zβ–cn–γ–(z +w – z)�(ρ,σ ,κ)

λ,μ;ν (z, s,a)
}| z=z

(w=z)

=D–α+cn+γ
z

{
zβ–cn–γ �

(ρ,σ ,κ)
λ,μ;ν (z, s,a)

}|z=z
+ (z – z)D–α+cn+γ

z
{
zβ–cn–γ–�

(ρ,σ ,κ)
λ,μ;ν (z, s,a)

}|z=z
= zβ+α–cn–γ



(
�( + β – cn – γ )

�( + β + α – cn – γ )
�

(ρ,σ ,,κ ,)
λ,μ,+β–cn–γ ;ν,+β+α–cn–γ (z, s,a)

+
(
z – z
z

)
�(β – cn – γ )

�(β + α – cn – γ )
�

(ρ,σ ,,κ ,)
λ,μ,β–cn–γ ;ν,β+α–cn–γ (z, s,a)

)
. (.)

Thus, by combining (.) and (.), we obtain the desired result (.). �
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5 Corollaries and consequences
This section is devoted to the presentation of some special cases of themain results. These
special cases and consequences are given in the form of the following corollaries.
Settingμ = ρ = σ =  in Theorem with z �→ ( z

λ
)/κ , dividing by�(ν) and taking the limit

when λ → ∞, we deduce the following expansion formula.

Corollary  Under the hypotheses of Theorem , the following expansion holds true:

E(a)
κ ,τ (s; z) =

�(τ )�( + ν – τ ) sin(γπ )
π�(ν)

·
∞∑

n=–∞

(–)n�(,κ ,κ ,κ)
,;ν,–γ–n(z, s,a)

(γ + n)�( + ν – τ – γ – n)�(τ + γ + n)
(.)

provided that both members of (.) exist.

Letting ρ = σ = κ =  in Theorem  leads to the following expansion formula.

Corollary  Under the assumptions of Theorem , the following expansion formula holds
true:

�λ,μ;τ (z, s,a)

=
�(τ )�( + ν – τ ) sinβπ sin(ν – τ + β – θ )π

�(ν)�(τ – γ – θ – )�( + γ + θ ) sin(ν – τ + β)π sin(β – θ – γ )π

· sin θπ

sin(θ + γ )π

∞∑
n=–∞

�(ν – θ – n)�(θ + n)
�( + ν – τ + γ – n)�(–γ + n)

· �(,,,,)
λ,μ,θ+n;ν,+θ+γ (z, s,a) (.)

provided that both members of (.) exist.

Putting ρ = σ = κ =  and replacing λ by ν in Theorem , we deduce the following ex-
pansion formula given recently by Gaboury [, Eq. (.)].

Corollary  Under the hypotheses of Theorem , the following expansion formula holds
true:

�∗
μ(z, s,a) = cz–α(z – z)–βzα+β



∞∑
n=–∞

eiπc(n+) sin[(α + cn + γ )π ]�(α + cn + γ )
sin[(α – c + γ )π ]�( – β + cn + γ )�(α + β)

· �(,,)
μ,α+cn+γ ;α+β(z, s,a)

(
z – z
z

)cn+γ

(.)

for z on C() defined by

z =
z

+
z


√
 + eiθ (–π < θ < π ), (.)

provided that both sides of (.) exist.
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Setting λ = ρ =  in Theorem , we obtain the following corollary.

Corollary  Under the hypotheses of Theorem , the following expansion holds true:

�(σ ,κ)
μ,ν (z, s,a) = cz–β+γ (z – z)–α+γ zβ+α–γ–



·
∞∑

n=–∞

sin[(β – cn – γ )π ]eiπc(n+)

sin[(β + c – γ )π ]�( – α + cn + γ )

(
z(z – z)

z

)cn

· �(β – cn – γ )
�(β + α – cn – γ )

[
(z – z)�(,σ ,,κ ,)

,μ,β–cn–γ ;ν,β+α–cn–γ (z, s,a)

+
(

β – cn – γ

α + β – cn – γ

)
z�(,σ ,,κ ,)

,μ,+β–cn–γ ;ν,+β+α–cn–γ (z, s,a)
]

(.)

for λ >  and for z on C() defined by

z =
z

+
z


√
 + eiθ (–π < θ < π ),

provided that both sides of (.) exist.

In our series of forthcoming papers, we propose to consider and investigate analogous
expansion formulas and other results involving the more general multi-parameter family
of the Hurwitz-Lerch zeta function (.) and also their λ-extensions considered recently
by Srivastava et al. [] and Srivastava [].
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