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Abstract
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1 Introduction
In this paper, we shall consider the existence of mild solutions for impulsive neutral
stochastic functional integro-differential inclusions with infinite delay of the following
form:

d
[
x(t) – g

(
t,xt ,

∫ t


a(t, s,xs)ds

)]
dt

∈ [
Ax(t) + f (t,xt)

]
dt + F(t,xt)dw(t), t ∈ J = [,b], t �= tk , (.)

�x(tk) = x
(
t+k

)
– x

(
t–k

)
= Ik

(
x
(
t–k

))
, k = , , . . . ,m, (.)

x(t) = φ(t) ∈ L(�,Bh) for a.e. t ∈ J = (–∞, ], (.)

where the state x(·) takes values in a separable real Hilbert spaceH with inner product (·, ·)
and norm | · |,A is the infinitesimal generator of a compact analytic resolvent operator S(t),
t ≥ , in theHilbert spaceH . Suppose that {w(t) : t ≥ } is a givenK-valued Brownianmo-
tion or Wiener process with a finite trace nuclear covariance operator Q ≥  and L(K ,H)
denotes the space of all bounded linear operators from K intoH . Further a :D×Bh →H ,
g : J × Bh × H → H , f : J × Bh → H and F : J × Bh → P(LQ(K ,H)) are given functions,
where D = {(t, s) ∈ J × J : s ≤ t}, P(LQ(K ,H)) is the family of all nonempty subsets of
LQ(K ,H) and LQ(K ,H) denotes the space of all Q-Hilbert-Schmidt operators from K into
H , which will be defined in Section . Here, Ik ∈ C(H ,H) (k = , , . . . ,m) are bounded
functions. Furthermore, the fixed times tk satisfies  = t < t < t < · · · < tm < b, x(t+k ) and
x(t–k ) denote the right and left limits of x(t) at t = tk . �x(tk) = x(t+k ) – x(t–k ) = Ik(x(t–k )) rep-
resents the jump in the state x at time tk , where Ik determines the size of jump. The his-
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tories xt : � → Bh, t ≥ , which are defined by setting xt = {x(t + s) : s ∈ (–∞, ]}, be-
long to the abstract phase space Bh, which will be defined in Section . The initial data
φ = {φ(t) : –∞ < t ≤ } is an F-measurable, Bh-valued random variables independent of
{w(t) : t ≥ } with finite second moment.
The theory of impulsive integro-differential inclusions has become an active area of in-

vestigation due to their applications in the fields such asmechanics, electrical engineering,
medicine biology, ecology, and so on (see [, ] and references therein).
The existence of impulsive neutral stochastic functional integro-differential equations

or inclusions with infinite delays have attracted great interest of researchers. For example,
Lin and Hu [] consider the existence results for impulsive neutral stochastic functional
integro-differential inclusions with nonlocal initial conditions. Hu and Ren [] studied the
existence results for impulsive neutral stochastic functional integro-differential equations
with infinite delays.
Motivated by the previous mentioned papers, we prove the existence of solutions for

impulsive neutral stochastic functional integro-differential inclusions with infinite delays.

2 Preliminaries
Throughout this paper, (H , | · |) and (K , | · |K ) denote two real separable Hilbert spaces.
Let (�,F ,P;F) (F = {Ft}t≥) be a complete filtered probability space satisfying the re-
quirement that F contains all P-null sets of F . An H-valued random variable is an
F -measurable function x(t) : � → H and the collection of random variables S = {x(t,w) :
� → H|t ∈ J} is called a stochastic process. Suppose that {w(t) : t ≥ } is a cylindrical
K-valued Wiener process with a finite trace nuclear covariance operator Q ≥ , denote
TrQ =

∑∞
i= λi = λ < ∞, which satisfies Qei = λiei. So, actually, w(t) =

∑∞
i=

√
λiwi(t)ei,

where {wi(t)}∞i= are mutually independent one-dimensional standardWiener process. We
assume that Ft = σ {w(s) :  ≤ s ≤ t} is the σ -algebra generated by w and FT = F . Let
ψ ∈ L(K ,H) and define

|ψ |Q = Tr
(
ψQψ∗) = ∞∑

n=

∣∣√λnψen
∣∣.

If |ψ |Q <∞, thenψ is called aQ-Hilbert-Schmidt operator. Let LQ(K ,H) denote the space
of all Q-Hilbert-Schmidt operator ψ : K → H . The completion LQ(K ,H) of L(K ,H) with
respect to the topology induced by the norm | · |Q, where |ψ |Q = 〈ψ ,ψ〉 is a Hilbert space
with the above norm topology.
Let A : D(A) → H be the infinitesimal generator of a compact, analytic resolvent oper-

ator S(t), t ≥ . Let  ∈ ρ(A). Then it is possible to define the fractional power (–A)α for
 < α ≤  as a closed linear operator with its domain D((–A)α) being dense in H . We de-
note by Hα the Banach space D(–Aα) endowed with the norm ‖x‖α = ‖(–A)αx‖, which is
equivalent to the graph norm of (–A)α .

Lemma . ([]) The following properties hold:
(i) If  < β < α ≤ , the Hα ⊂Hβ and the embedding is continuous and compact

whenever the resolvent operator of A is compact.
(ii) For every  < α < , there exists a positive constant cα such that

∥∥(–A)αS(t)∥∥ ≤ Cα

tα
, t > .
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Now, we define the abstract phase space Bh. Assume that h : (–∞, ] → (,∞) is a contin-
uous function with l =

∫ 
–∞ h(t)dt <∞. For any a >  we define

Bh =
{
ψ : (–∞, ]→H :

(
E
∣∣ψ(θ )

∣∣) 
 is a bounded and measurable

function on [–a, ] and
∫ 

–∞
h(s) sup

s≤θ≤

(
E
∣∣ψ(θ )

∣∣) 
 ds <∞

}
.

If Bh is endowed with the norm

‖ψ‖Bh =
∫ 

–∞
h(s) sup

s≤θ≤

(
E
∣∣ψ(θ )

∣∣) 
 ds for all ψ ∈ Bh,

then (Bh,‖ · ‖Bh ) is a Banach space []. Now, we consider the space

Bb =
{
x : (–∞,b] →H such that xk ∈ C(Jk ,H) and there exist

x
(
t+k

)
and x

(
t–k

)
with x(tk) = x

(
t–k

)
,x = φ ∈ L(�,Bh) on

(–∞, ],k = , , . . . ,m
}
,

where xk is the restriction of x to Jk = (tk , tk+], k = , , . . . ,m. Let ‖ · ‖b be a seminorm in Bb

defined by

‖x‖b = ‖x‖Bh + sup
≤s≤b

(
E
∣∣x(s)∣∣) 

 , x ∈ Bb.

Lemma . ([]) Assume that x ∈ Bb, then for t ∈ J , xt ∈ Bh.Moreover

l
(
E
∣∣x(t)∣∣) 

 ≤ ‖xt‖Bh ≤ ‖x‖Bh + l sup
≤s≤t

(
E
∣∣x(t)∣∣) 

 ,

where l =
∫ 
–∞ h(s)ds < ∞.

We use the notation P(H) for the family of all subsets H and denote

Pcl(H) =
{
Y ∈P(H) : Y is closed

}
,

Pbd(H) =
{
Y ∈P(H) : Y is bounded

}
,

Pcv(H) =
{
Y ∈P(H) : Y is convex

}
,

Pcp(H) =
{
Y ∈P(H) : Y is compact

}
.

A multi-valued mapping � : H → P(H) is called upper semicontinuous (u.s.c) if for any
x ∈ H , the set �(x) is a nonempty closed subset of H and if for each open set G of H
containing �(x), there exists an open neighborhood N of x such that �(N) ⊆ G. � is said
to be completely continuous if �(B) is relatively compact for every bounded subset of
B ⊆ H . If the multi-valued mapping � is completely continuous with nonempty compact
values, then � is u.s.c. if and only if � has a closed graph, i.e., xn → x, yn → y, yn ∈ �(xn)
imply y ∈ �(x).

http://www.advancesindifferenceequations.com/content/2014/1/17
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Definition. Themulti-valuedmappingF : J×Bh →P(H) is said tobeL-Carathéodory
if

(i) t �→ F(t, v) is measurable for each v ∈ Bh,
(ii) v �→ F(t, v) is u.s.c. for almost all t ∈ J and v ∈ Bh,
(iii) for each q > , there exists hq ∈ L(J ,R+) such that

∥∥F(t, v)∥∥ = sup
f∈F(t,v)

E
(|f |) ≤ hq(t),

for all ‖v‖Bh
≤ q and for a.e. t ∈ J .

The following lemma is crucial in the proof of our main result.

Lemma . ([]) Let I be a compact interval and H be a Hilbert space. Let F be an L-
Carathéodory multi-valued mapping with NF ,x �= φ and let � be a linear continuous map-
ping from L(I,H) to C(I,H). Then the operator

� ◦NF : C(I,H) →Pcp,cv(H), x �→ (� ◦NF )(x) = �(NF ,x)

is a closed graph operator in C(I,H)×C(I,H),where NF ,x is known as the selectors set from
F ; it is given by

σ ∈NF ,x =
{
σ ∈ L

(
L(K ,H)

)
: σ (t) ∈ F(t,x) for a.e. t ∈ J

}
.

Theorem . ([]) Let X be a Banach space,  : X →Pcl,cv,bd(X) and  : X → Pcp,cv(X)
be two multi-valued operators satisfying:
(a)  is a contraction,
(b)  is u.s.c. and completely continuous.
Then either
(i) the operator inclusion λx ∈ x +x has a solution for λ = , or
(ii) the set G = {x ∈ X : λx ∈ x +x,λ > } is unbounded.

Lemma . ([]) Let v,w : [,b] → [,∞) be continuous functions. If w is nondecreasing
and there are constants θ > ,  < α <  such that

v(t)≤ w(t) + θ

∫ t



v(s)
(t – s)–α

ds, t ∈ J ,

then

v(t)≤ e
θn�(α)ntnα

�(nα)

n–∑
j=

(
θbα

α

)j

w(t)

for every t ∈ J and every n ∈N such that nα >  and �(·) is the Gamma function.

3 Main result
Let J = (–∞,b]. First, we present the definition of the mild solution of problem (.)-(.).

Definition . A stochastic process x : J × � → H is called a mild solution of problem
(.)-(.) if
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Park and Jeong Advances in Difference Equations 2014, 2014:17 Page 5 of 17
http://www.advancesindifferenceequations.com/content/2014/1/17

(i) x(t) is measurable and Ft-adapted for each t ≥ ,
(ii) �x(tk) = x(t+k ) – x(t–k ), k = , , . . . ,m,
(iii) x(t) ∈ H has càdlàg paths on t ∈ J a.e. and there exists a function σ ∈NF ,x such that

x(t) = S(t)
[
φ() – g(,φ, )

]
+ g

(
t,xt ,

∫ t


a(t, s,xs)ds

)

+
∫ t


AS(t – s)g

(
s,xs,

∫ s


a(s, τ ,xτ )dτ

)
ds +

∫ t


AS(t – s)f (s,xs)ds

+
∫ t


S(t – s)σ (s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
x
(
t–k

))
, t ∈ J ,

(iv) x(·) = φ ∈ L(�,Bh) on J = (–∞, ] satisfies ‖φ‖Bh
< ∞.

Now, we assume the following hypotheses:
(H) A is the infinitesimal generator of a compact analytic resolvent operator S(t), t ≥ ,

in the Hilbert space H and there exist positive constantsM andM such that

∥∥S(t)∥∥ ≤M,
∥∥A–β

∥∥ ≤M, t ∈ J .

(H) a :D×Bh →H , D = {(t, s) ∈ J × J : t ≥ s} is a continuous function and there exists
a constantMa such that

E
∣∣∣∣
∫ t



[
a(t, s,x) – a(t, s, y)

]
ds

∣∣∣∣


≤Ma‖x – y‖Bh
for all t ∈ J ,x, y ∈ Bh.

(H) There exist constants  < β <  andMg such that g is Hβ -valued, (–A)βg is
continuous and

E
∣∣(–A)βg(t,x, y) – (–A)βg(t,x, y)

∣∣ ≤Mg
[‖x – x‖Bh

+ E|y – y|
]
.

(H) The function f : J ×Bh →H satisfies the following conditions:
(i) t �→ f (t, s) is measurable for each x ∈ Bh;
(ii) x �→ f (t,x) is continuous for almost all t ∈ J ;
(iii) There exists a constantMf such that

E
∣∣(–A)β f (t,x) – (–A)β f (t, y)

∣∣ ≤Mf ‖x – y‖Bh

for all x, y ∈ Bh, t ∈ J and

E
∣∣f (t,x)∣∣ ≤ p(t)ψ

(‖x‖Bh

)
for almost all t ∈ J , where p ∈ L(J ,R), ψ :R+ → (,∞) is continuous and
increasing with

∫ b


μ(s)ds≤

∫ ∞

Bk


ψ(s)

ds,

μ(t) = Bkp(t),
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Park and Jeong Advances in Difference Equations 2014, 2014:17 Page 6 of 17
http://www.advancesindifferenceequations.com/content/2014/1/17

k =
‖φ‖Bh

+ lF
 – l‖(–A)–β‖Mg( + Ma)

,

k =
blMg( + Ma)c–β

 – l‖(–A)–β‖Mg( + Ma)
,

k =
Mbl

 – l‖(–A)–β‖Mg( + Ma)
,

L = l
[
Mg( +Ma)

(∥∥(–A)–β
∥∥ +

(C–βbβ )

β – 

)
+Mf

(C–βbβ )

β – 

]
< ,

B = ek
n
�(β)nbnβ /�(nβ)

n–∑
j=

(
kbβ

β

)j

,

c = b sup
(t,s)∈D

a(t, s, ), c =
∥∥(–A)β∥∥

sup
t∈J

∥∥g(t, , )∥∥

and

F = M
∣∣φ()∣∣ + 

(
M +

∥∥(–A)–β
∥∥)c + 

∥∥(–A)–β
∥∥Mgc

+
bβC

–β

β – 
(c + Mgc) + M‖μ‖Lloc(J ,R+)b

 Tr(Q)

+ Mm
m∑
k=

dk + M
∥∥(–A)–β

∥∥Mg‖φ‖Bh
.

(H) The multi-valued mapping F : J ×Bh →Pbd,cl,cv(L(K ,H)) is an L-Carathéodory
function that satisfies the following conditions:
(i) For each t ∈ J , the function F(t, ·) : Bh →Pbd,cl,cv(L(K ,H)) is u.s.c. and for each

fixed x ∈ Bh, the function F(·,x) is measurable. For each x ∈ Bh, the set

NF ,x =
{
σ ∈ L(K ,H) : σ (t) ∈ F(t,x) for a.e. t ∈ J

}
is nonempty.

(ii) There exists a positive function μ ∈ Lloc(J ,R
+) such that

∥∥F(t,x)∥∥ = sup
σ∈F(t,x)

E|σ | ≤ μ(t).

(H) Ik ∈ C(Hα ,Hα) and there exist positive constants dk such that for each x ∈Hα ,

∣∣Ik(x)∣∣ ≤ dk , k = , , . . . ,m.

We consider the mapping  : Bh →P(Bh) defined by

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (–∞, ],

S(t)[φ() – g(,φ, )] + g(t,xt ,
∫ t
 a(t, s,xs)ds)

+
∫ t
 AS(t – s)g(s,xs,

∫ s
 a(s, τ ,xτ )dτ )ds

+
∫ t
 AS(t – s)f (s,xs)ds +

∫ t
 S(t – s)σ (s)dw(s)

+
∑

<tk<t S(t – tk)Ik(x(t–k )), t ∈ J ,

http://www.advancesindifferenceequations.com/content/2014/1/17
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where σ ∈NF ,x. For each φ ∈ Bh, we define

φ̃(t) =

⎧⎨
⎩φ(t), t ∈ (–∞, ],

S(t)φ(), t ∈ J ,

and then φ̃ ∈ Bh. Let x(t) = y(t) + φ̃(t), t ∈ (–∞,b]. Then it is easy to see that x satisfies
(.)-(.) if and only if y satisfies y =  and

y(t) = –S(t)g(,φ, ) + g
(
t, yt + φ̃t ,

∫ t


a(t, s, ys + φ̃s)ds

)

+
∫ t


AS(t – s)g

(
s, ys + φ̃s,

∫ s


a(s, τ , yτ + φ̃τ )dτ

)
ds

+
∫ t


AS(t – s)f (s, ys + φs)ds +

∫ t


S(t – s)σ (s)dw(s)

+
∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
, t ∈ J ,

where σ ∈NF ,y. Let B′
h = {y ∈ Bh : y =  ∈ Bh}. For any y ∈ B′

h,

‖y‖b = ‖y‖Bh + sup
≤s≤b

(
E
∣∣y(s)∣∣) 



= sup
≤s≤b

(
E
∣∣y(s)∣∣) 



and thus (B′
h,‖ · ‖b) is a Banach space. Set Bq = {y ∈ B′

h : ‖y‖b ≤ q} for some q ≥ . Then
Bq ⊆ B′

h is uniformly bounded and for any y ∈ Bq, from Lemma ., we see that

‖yt + φ̃t‖Bh
≤ ‖yt‖Bh

+ ‖φ̃t‖Bh

≤ l sup
≤s≤t

E
∣∣y(s)∣∣ + ‖y‖Bh

+ l sup
≤s≤t

∥∥φ̃(s)
∥∥ + ‖φ̃‖Bh

≤ l
(
q +M

∣∣φ()∣∣) + ‖φ̃‖Bh

:= q′.

Define the operator ̃ : B′
h →P(B′

h) by

̃y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ (–∞, ],

–S(t)g(,φ, ) + g(t, yt + φ̃t ,
∫ t
 a(t, s, ys + φ̃s)ds)

+
∫ t
 AS(t – s)g(s, ys + φ̃,

∫ s
 a(s, τ , yτ + φ̃τ )dτ )ds

+
∫ t
 AS(t – s)f (s, ys + φ̃s)ds +

∫ t
 S(t – s)σ (s)dw(s)

+
∑

<tk<t S(t – tk)Ik(y(t–k ) + φ̃(t–k )), t ∈ J ,

http://www.advancesindifferenceequations.com/content/2014/1/17
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where σ ∈ NF ,y. Obviously, the operator  has a fixed point is equivalent to proving that
̃ has a fixed point. Now, we decompose ̃ as ̃ + ̃, where

̃y(t) = –S(t)g(,φ, ) + g
(
t, yt + φ̃t ,

∫ t


a(t, s, ys + φ̃s)ds

)

+
∫ t


AS(t – s)g

(
s, ys + φ̃s,

∫ s


a(s, τ , yτ + φ̃τ )dτ

)
ds

+
∫ t


AS(t – s)f (s, ys + φ̃s)ds

and

̃y(t) =
∫ s


S(t – s)σ (s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
, t ∈ J ,

where σ ∈ NF ,y. In what follows, we show that the operators ̃ and ̃ satisfy all the
conditions of Theorem ..

Lemma . Assume that the assumptions (H)-(H) hold. Then ̃ is a contraction and
̃ is u.s.c. and completely continuous.

Proof We give the proof in several steps:
Step . ̃ is a contraction.
Let u, v ∈ B′

h. Then we have

E
∣∣φ̃u(t) – φ̃v(t)

∣∣
≤ E

∣∣∣∣g
(
t,ut + φ̃t ,

∫ t


a(t, s,us + φ̃s)ds

)
– g

(
t, vt + φ̃t ,

∫ t


a(t, s, vs + φ̃s)ds

)∣∣∣∣


+ bE
(∫ t



∣∣∣∣AS(t – s)
[
g
(
s,us + φ̃s,

∫ s


a(s, τ ,uτ + φ̃τ )dτ

)

– g
(
s, vs + φ̃s,

∫ s


a(s, τ ,uτ + φ̃τ )dτ

)]∣∣∣∣


ds
)

+ bE
(∫ t



∣∣AS(t – s)
[
f (s,us + φ̃s) – f (s, vs + φ̃s)

]∣∣ ds)

≤ 
∥∥(–A)–β

∥∥Mg
(‖ut – vt‖Bh

+Ma‖ut – vt‖Bh

)
+ b

∫ t



C
–β

(t – s)(–β)Mg
(‖us – vs‖Bh

+Ma‖us – vs‖Bh

)
ds

+ b
∫ t



C
–β

(t – s)(–β)Mf ‖us – vs‖Bh
ds

≤ 
∥∥(–A)–β

∥∥Mg( +Ma)‖ut – vt‖Bh

+ Mg( +Ma)
(C–βbβ )

β – 
‖ut – vt‖Bh

+ Mf
(C–βbβ )

β – 
‖ut – vt‖Bh

http://www.advancesindifferenceequations.com/content/2014/1/17
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≤ 
[
Mg( +Ma)

(∥∥(–A)–β
∥∥ +

(C–βbβ )

β – 

)
+Mf

(C–βbβ )

β – 

]

×
[
l sup

s∈[,b]
E
∣∣u(s) – v(s)

∣∣ + ‖u‖Bh
+ ‖v‖Bh

]

= l
[
Mg( +Ma)

(∥∥(–A)–β
∥∥ +

(C–βbβ )

β – 

)
+Mf

(C–βbβ )

β – 

]
sup
s∈[,b]

E
∣∣u(s) – v(s)

∣∣
= L sup

s∈[,b]
E
∣∣u(s) – v(s)

∣∣,

where L = l[Mg( +Ma)(‖(–A)–β‖ + (C–βbβ )

β– ) +Mf
(C–βbβ )

β– ] <  and we have used the
fact that ‖u‖Bh

=  and ‖v‖Bh
= . Taking the supremum over t, we obtain

‖φ̃u – φ̃v‖b ≤ L‖u – v‖b

and so φ̃ is a contraction.
Now, we show that the operator ̃ is completely continuous.
Step . ̃y is convex for each y ∈ B′

h.
In fact, if u,u ∈ ̃(y), then there exist σ,σ ∈NF ,y such that

ui(t) =
∫ t


S(t – s)σi(s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))

for i = ,  and t ∈ J . Let λ ∈ [, ]. Then for each t ∈ J , we have

λu(t) + ( – λ)u(t) =
∫ t


S(t – s)

[
λσ(s) + ( – λ)σ(s)

]
dw(s)

+
∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
.

Since NF ,y is convex (because F has convex values), we obtain

λu(t) + ( – λ)u(t) ∈ ̃(y).

Step . ̃ maps bounded sets into bounded sets in B′
h.

It is enough to show that there exists a positive constant � such that for each u ∈ ̃y,
y ∈ Bq = {y ∈ B′

h : ‖y‖b ≤ q} one has ‖u‖b ≤ �. If u ∈ ̃(y), there exists σ ∈NF ,y such that
for each t ∈ J

u(t) =
∫ t


S(s – t)σ (s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))

and so

E
∣∣u(t)∣∣ = E

∣∣∣∣
∫ t


S(t – s)σ (s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))∣∣∣∣


≤ E
∣∣∣∣
∫ t


S(t – s)σ (s)dw(s)

∣∣∣∣


+ E
∣∣∣∣ ∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))∣∣∣∣
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≤ Tr(Q)Mb
∫ b


μ(s)ds + Mm

m∑
k=

dk

≤ Tr(Q)Mb‖μ‖Lloc(J ,R+) + Mm
m∑
k=

dk

:=�.

Thus, for each y ∈ B′
h, we get ‖u‖b ≤ �.

Step . ̃ maps bounded sets into equicontinuous sets of B′
h.

Let  < τ < τ ≤ b. For each y ∈ Bq = {y ∈ B′
h : ‖y‖b ≤ q} and u ∈ ̃(y). Let τ, τ ∈

J\{t, t, . . . , tm}. Then there exists σ ∈ NF ,y such that for each t ∈ J ,

u(t) =
∫ t


S(t – s)σ (s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
.

Thus we have

E
∣∣u(τ) – u(τ)

∣∣
= E

∣∣∣∣
∫ τ


S(τ – s)σ (s)dw(s) +

∑
<tk<τ

S(τ – s)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))

–
∫ τ


S(τ – s)σ (s)dw(s) –

∑
<tk<τ

S(τ – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))∣∣∣∣


≤ E
∣∣∣∣
∫ τ–ε



(
S(τ – s)σ (s) – S(τ – s)σ (s)

)
dw(s)

+
∫ τ

τ–ε

(
S(τ – s)σ (s) – S(τ – s)σ (s)

)
dw(s) +

∫ τ

τ

S(τ – s)σ (s)dw(s)
∣∣∣∣


+ E
∣∣∣∣ ∑
<tk<τ

[
S(τ – tk) – S(τ – tk)

]
Ik

(
y
(
t–k

)
+ φ̃

(
t–k

))

+
∑

τ<tk<τ

S(τ – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))∣∣∣∣


≤ εTr(Q)
∫ τ–ε


μ(s)

∥∥S(τ – s) – S(τ – s)
∥∥ ds

+ εTr(Q)
∫ τ

τ–ε

μ(s)
∥∥S(τ – s) – S(τ – s)

∥∥ ds

+ (τ – τ)Tr(Q)
∫ τ

τ

μ(s)
∥∥S(τ – s)

∥∥ ds

+ m
∑

<tk<τ

∥∥S(τ – s) – S(τ – s)
∥∥dk

+ mM
∑

τ<tk<τ

dk .

The right-hand side of the above inequality tends to zero as τ → τ with ε sufficiently
small, since S(t) is strongly continuous and the compactness of S(t) for t >  implies the
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continuity in the uniform operator topology. Thus, the set {̃y : y ∈ Bq} is equicontinu-
ous. Here we consider the case  < τ < τ ≤ b, since the case τ < τ ≤  or τ ≤  ≤ τ ≤ b
is simple.
Step . ̃ maps Bq into a precompact set in H .
Let  < t ≤ b and  < ε < t. For y ∈ Bq and u ∈ ̃(y), there exists σ ∈ NF ,y such that

u(t) =
∫ t–ε


S(t – s)σ (s)dw(s) +

∫ t

t–ε

S(t – s)σ (s)dw(s)

+
∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
.

Define

uε(t) = S(ε)
∫ t–ε


S(t – ε – s)σ (s)dw(s) +

∑
<tk<t–ε

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
.

Since S(t) is a compact operator, the set Vε(t) = {uε(t) : uε ∈ ̃(Bq)} is relatively compact
in H for each ε,  < ε < t. Moreover,

E
∣∣u(t) – uε(t)

∣∣
= E

∣∣∣∣
∫ t–ε


S(t – s)σ (s)dw(s) +

∫ t

t–ε

S(t – s)σ (s)dw(s)

+
∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
– S(ε)

∫ t–ε


S(t – ε – s)σ (s)dw(s)

–
∑

<tk<t–ε

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))∣∣∣∣


≤ MbTr(Q)ε‖μ‖Lloc(J ,R+) + mM
∑

t–ε<tk<t
dk .

Therefore letting ε → , we can see that there are relative compact sets arbitrarily close
to the set {u(t) : u ∈ ̃(Bq)}. Thus, the set {u(t) : u ∈ ̃(Bq)} is relatively compact in H .
Hence, the Arzelá-Ascoli theorem shows that ̃ is a compact multi-valued mapping.
Step . ̃ has a closed graph.
Let yn → y∗, un ∈ ̃(yn) and un → u∗. We prove that u∗ ∈ ̃(y∗).
Indeed, un ∈ ̃(yn) means that there exists σn ∈NF ,yn such that

un(t) =
∫ t


S(t – s)σn(s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
yn

(
t–k

)
+ φ̃

(
t–k

))
, t ∈ J .

Thus we must prove that there exists σ∗ ∈ NF ,y∗ such that

u∗(t) =
∫ t


S(t – s)σ∗(s)dw(s) +

∑
<tk<t

S(t – tk)Ik
(
y∗

(
t–k

)
+ φ̃

(
t–k

))
, t ∈ J .

http://www.advancesindifferenceequations.com/content/2014/1/17
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Since Ik , k = , , . . . ,m, are continuous, we see that

∥∥∥∥ ∑
<tk<t

S(t – tk)Ik
(
yn

(
t–k

)
+ φ̃

(
t–k

))
–

∑
<tk<t

S(t – tk)Ik
(
y∗

(
t–k

)
+ φ̃

(
t–k

))∥∥∥∥


b
→ 

as n → ∞. Consider the linear continuous operator � : L(J ,H) → C(J ,H) with �(σ )(t) =∫ t
 S(t – s)σ (s)dw(s), where σ ∈ NF ,y. From Lemma ., it follows that � ◦ NF is a closed
graph operator. Moreover, we have

un(t) –
∑
<tk<t

S(t – tk)Ik
(
yn

(
t–k

)
+ φ̃

(
t–k

)) ∈ �(NF ,yn ).

Since yn → y∗, from Lemma ., we obtain

u∗(t) –
∑
<tk<t

S(t – tk)Ik
(
y∗

(
t–k

)
+ φ̃

(
t–k

)) ∈ �(NF ,y∗ ).

That is, there exists a σ∗ ∈NF ,y∗ such that

u∗(t) –
∑
<tk<t

S(t – tk)Ik
(
y∗

(
t–k

)
+ φ̃

(
t–k

))
= �

(
σ∗(t)

)

=
∫ t


S(t – s)σ∗(s)dw(s).

Therefore ̃ has a closed graph and ̃ is u.s.c. This completes the proof. �

Lemma . Assume that the assumptions (H)-(H) hold. Then there exists a constant
K >  such that ‖yt + φ̃t‖Bh

≤ K for all t ∈ J ,where K is depends only on b and the functions
ψ and μ.

Proof Let y be a possible solution of y ∈ λ̃(y) for some  < λ < . Then there exists σ ∈
NF ,y such that for t ∈ J we have

y(t) = –λS(t)g(,φ, ) + λg
(
t, yt + φ̃t ,

∫ t


a(t, s, ys + φ̃s)ds

)

+ λ

∫ t


AS(t – s)g

(
s, ys + φ̃s,

∫ s


a(s, τ , yτ + φ̃τ )dτ

)
ds

+ λ

∫ t


S(t – s)f (s, ys + φ̃s)ds +

∫ t


S(t – s)σ (s)dw(s)

+ λ
∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))
.

Then, by the assumptions, we deduce that

E
∣∣y(t)∣∣ ≤ E

∣∣∣∣–S(t)g(,φ, ) + g
(
t, yt + φ̃t ,

∫ t


a(t, s, ys + φ̃s)ds

)

+
∫ t


AS(t – s)g

(
s, ys + φ̃s,

∫ s


a(s, τ , yτ + φ̃τ )dτ

)
ds

http://www.advancesindifferenceequations.com/content/2014/1/17
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+
∫ t


S(t – s)f (s, ys + φ̃s)ds +

∫ t


S(t – s)σ (s)dw(s)

+
∑
<tk<t

S(t – tk)Ik
(
y
(
t–k

)
+ φ̃

(
t–k

))∣∣∣∣


≤ 

{
M

(∥∥(–A)–β
∥∥Mg‖φ‖Bh + c

)

+ 
∥∥(–A)–β

∥∥[Mg
(‖ys + φ̃s‖Bh

+ Ma‖ys + φ̃s‖Bh
+ c

)
+ c

]
+ b

∫ t



c–β

(t – s)(–β)

[
Mg

(‖ys + φ̃s‖Bh
+ Ma‖ys + φ̃s‖Bh

+ c
)
+ c

]
ds

+Mb
∫ t


p(s)ψ

(‖ys + φ̃s‖Bh

)
ds +M‖μ‖Lloc(J ,R+)b

 Tr(Q) +Mm
m∑
k=

dk

}

= 
(
M +

∥∥(–A)–β
∥∥)c + 

∥∥(–A)–β
∥∥Mgc +

bβc–β

β – 
(c + Mgc)

+ M‖μ‖Lloc(J ,R+)b
 Tr(Q) + Mm

m∑
k=

dk + M
∥∥(–A)–β

∥∥Mg‖φ‖Bh

+ 
∥∥(–A)–β

∥∥Mg( + Ma)‖ys + φ̃s‖Bh

+ bMg( + Ma)c–β

∫ t



‖ys + φ̃s‖Bh

(t – s)(–β) ds

+ Mb
∫ t


p(s)ψ

(‖ys + φ̃s‖Bh

)
ds.

From Lemma . we see that

‖yt + φ̃t‖Bh
≤ l sup

≤s≤t
E
∣∣y(s)∣∣ + lM

∣∣φ̃()∣∣ + ‖φ̃‖Bh
.

Thus, for any t ∈ J , we have

‖yt + φ̃t‖Bh

≤ lM
∣∣φ̃()∣∣ + ‖φ̃‖Bh

+ l
(
M +

∥∥(–A)–β
∥∥)c

+ l
∥∥(–A)–β

∥∥Mgc +
lbβC

–β

β – 
(c + Mgc)

+ M‖μ‖Lloc(J ,R+)b
l Tr(Q) + Mlm

m∑
k=

dk

+ Ml
∥∥(–A)–β

∥∥Mg‖φ‖Bh

+ l
∥∥(–A)–β

∥∥Mg( + Ma)‖ys + φ̃s‖Bh

+ blMg( + Ma)C
–β

∫ t



‖ys + φ̃s‖Bh

(t – s)(–β) ds

+ Mbl
∫ t


p(s)ψ

(‖ys + φ̃s‖Bh

)
ds

http://www.advancesindifferenceequations.com/content/2014/1/17
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= ‖φ‖Bh
+ lF + l

∥∥(–A)–β
∥∥Mg( + Ma) sup

≤s≤t
‖ys + φ̃s‖Bh

+ blMg( + Ma)C
–β

∫ t



‖ys + φ̃s‖Bh

(t – s)(–β) ds

+ Mbl
∫ t


p(s)ψ

(‖ys + φ̃s‖Bh

)
ds.

Let v(t) = sup≤s≤t ‖ys + φ̃s‖Bh
. Then the function v(t) is nondecreasing in J . Thus, we ob-

tain

v(t)≤ ‖φ‖Bh
+ lF + l

∥∥(–A)–β
∥∥Mg( + Ma)v(t)

+ blMg( + Ma)C
–β

∫ t



v(s)
(t – s)(–β) ds

+ Mbl
∫ t


p(s)ψ

(
v(s)

)
ds.

From this we derive that

v(t)≤ ‖φ‖Bh
+ lF

 – l‖(–A)–β‖Mg( + Ma)

+
blMg( + Ma)C

–β

 – l‖(–A)–β‖Mg( + Ma)

∫ t



v(s)
(t – s)–β

ds

+
Mbl

 – l‖(–A)–β‖Mg( + Ma)

∫ t


p(s)ψ

(
v(s)

)
ds

≤ k + k
∫ t



v(s)
(t – s)–β

ds + k
∫ t


p(s)ψ

(
v(s)

)
ds.

By Lemma ., we get

v(t)≤ B

(
k + k

∫ t


p(s)ψ

(
v(s)

)
ds

)
,

where

B = ek
n
�(β)nbnβ /�(nβ)

n–∑
j=

(
kbβ

β

)j

.

Let us take the right-hand side of the above inequality as μ(t). Then μ() = Bk, v(t) ≤
μ(t), t ∈ J and

μ′(t) ≤ Bkp(t)ψ
(
v(t)

)
.

Since ψ is nondecreasing, we have

μ′(t) ≤ Bkp(t)ψ
(
μ(t)

)
= μ(t)ψ

(
μ(t)

)
.
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It follows that
∫ μ(t)

μ()


ψ(s)

ds≤
∫ b


μ(s)ds

≤
∫ ∞

BK


ψ(s)

ds,

which indicates that μ(t) < ∞. Thus, there exists a constant K such that μ(t) ≤ K , t ∈ J .
Furthermore, we see that ‖yt + φ̃t‖Bh

≤ v(t)≤ μ(t) ≤ K , t ∈ J . �

Theorem . Assume that the assumptions (H)-(H) hold. The problem (.)-(.) has at
least one mild solution on J .

Proof Let us take the set

G() =
{
x ∈ Bh : x ∈ λ(x) for some λ ∈ (, )

}
.

Then for any x ∈ G(), we have

‖xt‖Bh
= ‖yt + φ̃t‖Bh

≤ K , t ∈ J ,

where K >  is a constant in Lemma .. This show that G is bounded on J . Hence from
Theorem. there exists a fixed point x(t) for onBh, which is amild solution of (.)-(.)
on J . �

4 An example
As an application of Theorem ., we consider the impulsive neutral stochastic functional
integro-differential inclusion of the following form:

∂

∂t

(
z(t,x) + g

(
t, z(t – h,x),

∫ t


a
(
t, s, z(s – h,x)

)
ds

))

∈ ∂

∂x
z(t,x) +

(
f
(
t, z(t – h,x)

)
+

[
Q

(
t, z(t – h,x)

)
,Q

(
t, z(t – h,x)

)])
dw(t), (.)

 ≤ x ≤ π , t ∈ J , t �= tk ,

�z(tk ,x) = z
(
t+k ,x

)
– z

(
t–k ,x

)
= Ik

(
z
(
t–k ,x

))
, k = , , . . . ,m, (.)

z(t, ) = z(t,π ) = , t ∈ J , (.)

z(t,x) = ρ(t,x), –∞ < t ≤ , ≤ x ≤ π , (.)

where J = [,b], k = , , . . . ,m, z(t+k ,x) = limh→+ z(tk + h,x), z(t–k ,x) = limh→– z(tk + h,x),
Q,Q : J×R→ R are two given functions andw(t) is a one-dimensional standardWiener
process. We assume that for each t ∈ J , Q(t, ·) is lower semicontinuous and Q(t, ·) is
upper semicontinuous. Let J = (–∞,b] andH = L([,π ]) with norm ‖ ·‖. DefineA :H →
H by Av = v′′ with domain D(A) = {v ∈ H : v, v′ are absolutely continuous, v′′ ∈ H , v() =
v(π ) = }. Then

Av =
∞∑
n=

n(v, vn), v ∈ D(A),
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where vn =
√


π
sin(ns), n = , , . . . , is the orthogonal set of eigenvectors in A. It is well

known that A is the infinitesimal generator of an analytic semigroup S(t), t ≥  inH given
by

S(t)v =
∞∑
n=

e–n
t(v, vn)vn, v ∈H .

For every v ∈H , (–A)– 
 v =

∑∞
n=


n (v, vn)vn and ‖(–A)– 

 ‖ = . The operator (–A)  is given
by

(–A)

 v =

∞∑
n=

n(v, vn)vn

on the space D((–A)– 
 ) = {v ∈ H :

∑∞
n= n(v, vn)vn ∈ H}. Since the analytic semigroup S(t)

is compact [], there exists a constantM >  such that ‖S(t)‖ ≤M and satisfies (H). Now,
we give a special Bh-space. Let h(s) = es, s < . Then l =

∫ 
–∞ h(s)ds = 

 and let

‖ϕ‖Bh =
∫ 

–∞
h(s) sup

s≤θ≤

(
E
∣∣ϕ(θ )∣∣) 

 ds.

It follows from [] that (Bh,‖ · ‖Bh ) is a Banach space. Hence for (t,φ) ∈ [,b]×Bh, let

φ(θ )x = φ(θ ,x), (θ ,x) ∈ (–∞, ]× [,π ],

z(t)(x) = z(t,x)

and

F(t,φ)(x) =
[
Q

(
t,φ(θ ,x)

)
,Q

(
t,φ(θ ,x)

)]
, –∞ < θ ≤ ,x ∈ [,π ].

Then (.)-(.) can be rewritten as the abstract form as the system (.)-(.). If we assume
that (H)-(H) are satisfied, then the system (.)-(.) has a mild solution on [,b].
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