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Abstract
In this paper, we discuss that if a diffeomorphisms has the C1-stably ergodic
shadowing property in a closed set, then it is a hyperbolic elementary set. Moreover,
C1-generically: if a diffeomorphism has the ergodic shadowing property in a locally
maximal closed set, then it is a hyperbolic basic set.
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1 Introduction
Let M be a closed C∞ manifold, and let Diff(M) be the space of diffeomorphisms of M
endowed with the C-topology. Denote by d the distance on M induced from a Rieman-
nian metric ‖ · ‖ on the tangent bundle TM. Let f ∈ Diff(M). For δ > , a sequence of
points {xi}bi=a (–∞ ≤ a < b ≤ ∞) in M is called a δ-pseudo orbit of f if d(f (xi),xi+) < δ

for all a ≤ i ≤ b – . For given x, y ∈ M, we write x � y if for any δ > , there is a
δ-pseudo orbit {xi}bi=a (a < b) of f such that xa = x and xb = y. Let � be a closed f -invariant
set. We say that f has the shadowing property in � if for every ε >  there is δ > 
such that, for any δ-pseudo orbit {xi}bi=a ⊂ � of f (–∞ ≤ a < b ≤ ∞), there is a point
y ∈ � such that d(f i(y),xi) < ε for all a ≤ i ≤ b – . If � = M, then f has the shadow-
ing property. The shadowing property usually plays an important role in the investiga-
tion of stability theory and ergodic theory. For instance, Sakai [] proved that if f has the
C-robustly shadowing property, then f is structurally stable. Now we introduce the no-
tion of the ergodic shadowing property which was introduced and studied by []. Lee
has shown in [] that if f belongs to the C-interior of the set of all diffeomorphisms
having the ergodic shadowing property, then it is structurally stable diffeomorphisms. In
[], Lee showed that if f is local star condition and has the ergodic shadowing property
on the homoclinic class, then it is hyperbolic. For any δ > , a sequence ξ = {xi}i∈Z is a
δ-ergodic pseudo orbit of f if for Np+n(ξ , f , δ) = {i : d(f (xi),xi+) ≥ δ} ∩ {, , . . . ,n – }, and
Np–n(ξ , f , δ) = {–i : d(f –(x–i),x–i–) ≥ δ} ∩ {–n + , . . . , –, }

lim
n→∞

#Np+n(ξ , f , δ)
n

=  and lim
n→–∞

#Np–n(ξ , f , δ)
n

= .

Here #A is the number of elements of the set A. We say that f has the ergodic shadowing
property in � (or f |� has ergodic shadowing) if for any ε > , there is a δ >  such that
every δ-ergodic pseudo orbit ξ = {xi}i∈Z ⊂ � of f there is a point z ∈ � such that, for
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Ns+n(ξ , f , z, ε) = {i : d(f i(z),xi) ≥ ε} ∩ {, , . . . ,n– }, and Ns–n(ξ , f , z, ε) = {–i : d(f –i(z),x–i) ≥
ε} ∩ {–n + , . . . , –, },

lim
n→∞

#Ns+n(ξ , f , z, ε)
n

=  and lim
n→–∞

#Ns–n(ξ , f , z, ε)
n

= .

Note that f has the ergodic shadowing property on � and f has the ergodic shadowing
property in � are different notions. That is, the shadowing point is inM or �. In the first
notion, the shadowing point is inM. In the second notion, the shadowing point is in �. In
this paper we consider the latter case.
We say that � is locally maximal if there is a compact neighborhood U of � such that

⋂
n∈Z

f n(U) = �f (U) = �.

Now, we introduce the notion of the C-stably ergodic shadowing property in a closed set.

Definition . Let � be a closed f -invariant set. We say that f has the C-stably ergodic
shadowing property in � if

(i) there is a neighborhood U of � and a C-neighborhood U (f ) of f such that
�f (U) = � =

⋂
n∈Z f n(U) (that is, � is locally maximal);

(ii) for any g ∈ U (f ), g has the ergodic shadowing property on �g(U) =
⋂

n∈Z gn(U),
where �g(U) is the continuation of �.

We say that � is hyperbolic if the tangent bundle T�M has a Df -invariant splitting Es ⊕
Eu and there exist constants C >  and  < λ <  such that

∥∥Dxf n|Esx
∥∥ ≤ Cλn and

∥∥Dxf –n|Eux
∥∥ ≤ Cλn

for all x ∈ � and n ≥ . If � = M, then f is Anosov. We say that � is a basic set (resp.
elementary set) if f |� is transitive (resp. mixing) and locally maximal. Note that if � is
hyperbolic, then we can easily show that there is a periodic point such that the orbit of the
periodic point is dense in the set. Then we get the following.

Theorem . [, Theorem .] Let � be a closed f -invariant set. If f has the C-stably
ergodic shadowing property in �, then it is a hyperbolic elementary set.

Corollary . If f belongs to the C-interior of the set of all diffeomorphisms having the
ergodic shadowing property, then it is transitive Anosov.

We say that a subset G ⊂Diff(M) is residual if G contains the intersection of a countable
family of open and dense subsets ofDiff(M); in this caseG is dense inDiff(M). A property P
is said to be C-generic if P holds for all diffeomorphisms which belong to some residual
subset of Diff(M). We use the terminology ‘for C-generic f ’ to express ‘there is a residual
subset G ⊂ Diff(M) such that, for any f ∈ G . . . .’ In [], Abdenur and Díaz proved that if
tame diffeomorphisms has the shadowing property, then it is hyperbolic. Still open is the
question if C-generically: f is shadowable, then is it hyperbolic?
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Recently, Ahn et al. [] have given a partial answer which is C-generically: if a locally
maximal homoclinic class is shadowing, then it is hyperbolic. Lee has shown in [] that
C-generically: if f has the limit shadowing property on the homoclinic class, then it is
hyperbolic. Inspired by this, we consider that C-generically: f has the ergodic shadowing
property in a locally maximal closed set. Then we have the following.

Theorem . For C-generic f , if f has the ergodic shadowing property in a locally maxi-
mal closed set �, then it is a hyperbolic elementary set. Moreover, C-generically: if f has
the ergodic shadowing property, then it is transitive Anosov.

2 Proof of Theorem 1.4
Let P(f ) be the set of periodic points of f . If f |� is transitive, then every p ∈ � ∩ P(f ) is
saddle, that is, there is no eigenvalues of Dpf π (p) with modulus equal to , at least one of
them is greater than , at least one of them is smaller than , where π (p) is the minimum
period of p.

Lemma . [, Corollary .] If f has the ergodic shadowing property in �, then f |� is
mixing.

By Lemma ., f has the ergodic shadowing property in �, then f |� is mixing, and so
f |� is transitive. Thus p ∈ � ∩ P(f ) is neither a sink nor a source.

Lemma . [, Lemma .] If f has the ergodic shadowing property in �, then f has a
finite shadowing property in �.

We say that f has the finite shadowing property on � if for any ε >  there is δ >  such
that, for any finite δ-pseudo orbit {x,x, . . . ,xn} ⊂ �, there is y ∈ M such that d(f i(y),xi) < ε

for all  ≤ i < n. In [, Lemma ..], Pilyugin showed that f has a finite shadowing shad-
owing property on �, then f has the shadowing property on �.

Lemma . Let f have the ergodic shadowing in � and � be locally maximal in U . Then
the shadowing point taken from �.

Proof Let f have the ergodic shadowing property in �, and let U be a locally maximal
of �. For any ε > , let δ >  be the number of the ergodic shadowing property of f . Take
a sequence γ = {xi}ni= (n ≥ ) such that γ is a δ-pseudo orbit of f and γ ⊂ �. As in the
proof of [, Lemma .], there is a δ-pseudo orbit η = {xi}i=n such that η ⊂ �. Then we set
ξ = {. . . ,γ ,η,γ ,η, . . .} is a δ-ergodic pseudo orbit of f . Clear that ξ ⊂ �. Since f has the
ergodic shadowing property in �, ξ can be ergodic shadowed by some point y ∈ �. By
Lemma ., there is γ ∈ ξ such that d(f i(y),xi) < ε for ≤ i ≤ n – . By [, Lemma ..], f
has the shadowing property on �. Since � is locally maximal in U , the shadowing point
y ∈ �. �

Let p ∈ P(f ) be a hyperbolic saddle with period π (p) > . Then there are the local stable
manifold Ws

ε (p) and the local unstable manifold Wu
ε (p) of p for some ε = ε(p) > . It is

easily seen that if d(f n(x), f n(p)) ≤ ε for all n≥ , then x ∈Ws
ε (p), and if d(f n(x), f n(p)) ≤ ε

for all n≤ , then x ∈ Wu
ε (p). The stable manifoldWs(p) and the unstable manifoldWu(p)
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defined as following. It is well known that if p is a hyperbolic periodic point of f with
period k, then the sets

Ws(p) =
{
x ∈M : f kn(x)→ p as n→ ∞}

and

Wu(p) =
{
x ∈M : f –kn(x)→ p as n→ ∞}

are C-injectively immersed submanifolds ofM.

Lemma . Let p,q ∈ P(f ) be hyperbolic saddles. If f has the ergodic shadowing property
in a closed set �, then Ws(p)∩Wu(q) �= ∅, and Wu(p)∩Ws(q) �= ∅.

Proof Let p,q ∈ P(f ) be hyperbolic saddles, and let U be a locally maximal neighbor-
hood of �. Suppose that f has the ergodic shadowing property in a locally maximal �.
Since p and q are hyperbolic, there are ε(p) >  and ε(q) >  as in the above. Take
ε = min{ε(p), ε(q)}/ and let  < δ ≤ ε be the number of the ergodic shadowing property
of f . For simplicity, wemay assume that f (p) = p and f (q) = q. Since f has the ergodic shad-
owing property in �, f |� is chain transitive. Then we can construct a finite δ-pseudo orbit
form p to q as follows: x = p, xn = q (n ≥ ), and d(f (xi),xi+) < δ for all  < i < n – . Put
(i) x–i = f –i(p), for all i ≤ , and (ii) xn+i = f i(q) for all i ≥ . Then we have the sequence
ξ = {xi}i∈Z = {. . . ,p,x,x, . . . ,xn,xn+, . . .}. It is clearly a δ-ergodic pseudo orbit of f . Since
f has the ergodic shadowing property in � and locally maximal, by Lemma ., f has the
finite shadowing property on � and so, by [, Lemma ..], f has the shadowing property
in �. By the shadowing property in �, we can show that Orb(y) ⊂Wu(p)∩Ws(q), and so
Wu(p)∩Ws(q) �= ∅. The other case is similar. �

A diffeomorphism f is Kupka-Smale if their periodic points of f are hyperbolic and if
p,q ∈ P(f ), then Ws(p) is transversal to Wu(q). Then it is C-residual in Diff(M). Denote
byKS(M) the set of all Kupka-Smale diffeomorphisms. The following was proved by [].

Lemma . [, Lemma .] Let � be locally maximal in U , and let U (f ) be given. If for
any g ∈ U (f ), p ∈ �g(U) ∩ P(g) is not hyperbolic, then there is g ∈ U (f ) such that g has
two hyperbolic periodic points p,q ∈ �g (U) with different indices.

Denote by F (M) the set of f ∈ Diff(M) such that there is a C neighborhood U (f ) of
f such that, for any g ∈ U (f ), every p ∈ P(g) is hyperbolic. In [], Hayashi proved that
f ∈ F (M) if and only if f satisfies both Axiom A and the no-cycle condition. We say that
f is the local star condition diffeomorphism if there exist a C-neighborhood U (f ) and a
neighborhood U of � such that, for any g ∈ U (f ), every p ∈ �g(U) ∩ P(g) is hyperbolic
(see []). Denote by F (�) the set of all local star diffeomorphisms. Note that there are
a C-neighborhood U (f ) and a neighborhood U of p such that, for all g ∈ U (f ), there is a
unique hyperbolic periodic point pg ∈ U of g with the same period as p and index(pg) =
index(p). Here index(p) = dimEs

p, and the point pg is called the continuation of p.

Lemma . [, Lemma .] There is a residual set G ⊂Diff(M) such that, for any f ∈ G,
if for any C-neighborhood U (f ) of f , there exists g ∈ U (f ) such that two hyperbolic periodic
points pg ,qg ∈ P(g) with index(pg) �= index(qg), then f has two hyperbolic periodic points
p,q ∈ P(f ) with index(p) �= index(q).
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Lemma . There is a residual set G ⊂ Diff(M) such that, for any f ∈ G, if f has the
ergodic shadowing property in a locally maximal �, then for any p,q ∈ � ∩ P(f )

index(p) = index(q).

Proof Let f ∈ G = G ∩ KS(M), and let p,q ∈ � ∩ P(f ) be hyperbolic saddles. Suppose
that f has the ergodic shadowing property in a locally maximal �. Then by Lemma .
Ws(p)∩Wu(q) �= ∅ andWu(p)∩Ws(q) �= ∅. Since f ∈ G,Ws(p) �Wu(q) �= ∅ andWu(p) �
Ws(q) �= ∅. This means that p∼ q and so index(p) = index(q). �

Let p be a periodic point of f . For  < δ < , we say that p has a δ-weak eigenvalue if
Df π (p)(p) has an eigenvalue λ such that ( – δ)π (p) < |λ| < ( + δ)π (p). We say that a periodic
point has a real spectrum if all of its eigenvalues are real and simple spectrum if all its
eigenvalues havemultiplicity one. Denote by Ph(f ) the set of all hyperbolic periodic points
of f .

Lemma . [, Lemma .] There is a residual set G ⊂Diff(M) such that, for any f ∈ G:
• For any δ > , if for any C-neighborhood U (f ) of f there exist g ∈ U (f ) and pg ∈ Ph(g)
with a δ-weak eigenvalue, then there is p ∈ Ph(f ) with a δ-weak eigenvalue.

• For any δ > , if q ∈ Ph(f ) with a δ-weak eigenvalue and a real spectrum, then there is
p ∈ Ph(f ) with a δ-weak eigenvalue with a simple real spectrum.

Lemma . There is a residual set G ⊂ Diff(M) such that, for any f ∈ G, if f has the
ergodic shadowing property in a locally maximal �, then there exists η >  such that, for
any q ∈ � ∩ Ph(f ), q has no η-weak eigenvalues.

Proof Let f ∈ G = G ∩ G have the ergodic shadowing property in a locally maximal �.
We will derive a contradiction. Suppose that, for any η > , there is q ∈ �∩Ph(f ) such that
q has an η-weak eigenvalue. By Franks’ lemma, there is g C-close to f such that p is not
hyperbolic. By Franks’ lemma and Lemma ., there is h C-nearby g and C-close to f
such that h has tow hyperbolic periodic points qh, γh with different indices. Since f ∈ G,
and it is locally maximal, by Lemma . f has two hyperbolic periodic points q, γ in �.
Since f has the ergodic shadowing property in �, this is a contradiction by Lemma ..

�

Proposition . There is a residual set G ⊂ Diff(M) such that, for any f ∈ G, if f has
the ergodic shadowing property in �, then f ∈F (�).

Proof Let f ∈ G have the ergodic shadowing property in a locally maximal �. Suppose by
contradiction that f /∈F (�). Then there are g C-close to f and q ∈ P(g) such that q has a
η-weak eigenvalue. Then by Lemma ., we get a contradiction. Thus f ∈F (�). �

Proposition . [, Proposition A] Let f ∈ G, and let � be locally maximal. If f has
the ergodic shadowing property in �, then there are m > , C ≥  and λ ∈ (, ) such that,
for any p ∈ � ∩ P(f ) with π (q) >m, we have

π (p)–∏
i=

∥∥Df m|Es(f mi(x))
∥∥ ≤ Cλπ (p),
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π (p)–∏
i=

∥∥Df m|Es(f mi(x))
∥∥ ≤ Cλπ (p) and

∥∥Df m|Es(x)
∥∥ · ∥∥Df –m|Eu(f m(x))

∥∥ ≤ λ,

where π (p) is the period of p.

Remark . By Pugh’s closing lemma, there is a residual set G ⊂Diff(M) such that, for
any f ∈ G, if f |� is transitive, then there is a periodic orbit pn such that Orb(pn) → � in
Hausdorff metric.

Lemma. [, Theorem.] There is residual setG ⊂Diff(M) such that, for any f ∈ G,
for any ergodicmeasureμ of f , there is a sequence of the periodic point pn such thatμpn → μ

in weak∗ topology and Orb(pn) → Supp(μ) in Hausdorff metric.

The following was proved by Mañé []. Denote by M(f |�) the set of invariant proba-
bilities on the Borel σ -algebra of � endowed with the weak∗ topology.

Lemma . Let � ⊂ M be a closed f -invariant set of f and E ⊂ T�M be a continuous
invariant subbundle. If there is m >  such that

∫
log

∥∥Df m|E
∥∥dμ < 

for every ergodic μ ∈M(f m|�), then E is contracting.

Proof of Theorem . Let f ∈ G ∩ G ∩ G have the ergodic shadowing property in a lo-
cally maximal �. Then by Proposition ., we know that � admits a dominated split-
ting T�M = E ⊕ F . Since f has the ergodic shadowing property in �, by Lemma ., Re-
mark ., and Lemma ., there is a sequence of periodic points such that Orb(pn) →
Supp(μ) = � in the Hausdorff metric. By Proposition ., we have

∫ ∥∥Df m|E
∥∥dμ = lim

n→∞

∫ ∥∥Df m|E
∥∥dμpn < .

By Lemma ., E is contracting. Similarly, we can show that F is expanding. �

Corollary . For C-generic f , if f has the ergodic shadowing property, then f is transitive
Anosov.
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