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Abstract
This paper gives an analytical proof of the existence of chaotic dynamics for a
single-species discrete population model with stage structure and birth pulses. The
approach is based on a general existence criterion for chaotic dynamics of
n-dimensional maps and inequality techniques. An example is given to illustrate the
effectiveness of the result.

1 Introduction
Many papers have been published on chaos in discrete models (see [–] and references
cited therein). However, in most cases, chaotic behaviors they observed were obtained
only by numerical simulations and have not been proved rigorously. In , Gao and
Chen [] proposed a single-species discrete population model with stage structure and
birth pulses:

{
un+ = run + be–(r+p)un–qvn (pun + qvn),
vn+ = pun + qvn,

(.)

where  < r < , b > , p > ,  < q < . System (.) describes the numbers of immature
population andmature population at a pulse in terms of values at the previous pulse. They
proved numerically that system (.) can be chaotic.
Since numerical simulations may lead to erroneous conclusions, numerical evidence

of the existence of chaotic behaviors still needs to be confirmed analytically. Some re-
searchers proved analytically the existence of chaotic behavior of discrete systems under
different definitions of chaos (for example, see [–]). Recently, Liz and Ruiz-Herrera
[] established a general existence criterion for chaotic dynamics of n-dimensional maps
under a new definition of chaos, and they applied it to prove analytically the existence of
chaotic dynamics in some classical discrete-time age-structured population models. This
novel analytical approach is very effective in detecting chaos of discrete-time dynamical
systems.
The main purpose of this paper is to give an analytical proof of the existence of chaotic

dynamics of (.). To this end, we use the analytical approach for detecting chaos devel-
oped by Liz and Ruiz-Herrera [].
The rest of the paper is organized as follows. In Section , some basic definitions and

tools are introduced. In Section , it is rigorously proved that there exists chaotic behavior
in the discrete population model (.). Finally, our conclusions are presented in Section .
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2 Preliminaries
For the reader’s convenience, we give a brief introduction to themain tools and definitions
that we use in this paper. For more details, we refer the reader to [].
In this paper, we denote by N, Z, R the set of all positive integers, integers, and real

numbers, respectively.

Definition . [] Consider (X,d) a metric space. We say that a continuous map ψ :
X → X induces chaotic dynamics on two symbols if there exist two disjoint compact sets
K,K ⊂ X such that, for each two-sided sequence (si)i∈Z ∈ {, }Z, there exists a corre-
sponding sequence (ωi)i∈Z ∈ (K ∪K)Z such that

ωi ∈ Ksi and ωi+ =ψ(ωi) for all i ∈ Z, (.)

and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si, ∀i ∈ Z) for some k ≥ ,
there exists a k-periodic sequence (ωi)i∈Z ∈ (K ∪K)Z satisfying (.).

The following basic facts are listed in []:
. Definition . guarantees natural properties of complex dynamics, such as sensitive

dependence on the initial conditions or the presence of an invariant set � being
transitive and semi-conjugate with the Bernoulli shift, the existence of periodic
points of any period n ∈N.

. A map that is chaotic according to Definition . is also chaotic in the sense of Block
and Coppel [] and in the sense of coin-tossing [, ].

We understand chaos in the sense of Definition .. A map that is chaotic according to
Definition . is called chaotic in the sense of Liz and Ruiz-Herrera.
We employ the usual maximum norm in R

n,

∥∥(x,x, . . . ,xn)∥∥ =max
{|xi| : i = , , . . . ,n

}
,

and use the notation Jn = [–, ]n for the closed cube centered at  ∈R
n.

Definition . [] An h-set is a quadruple consisting of
• a compact subset N of Rn,
• a pair of numbers u = u(N), s = s(N) ∈ {, , , , . . .}, with u + s = n,
• a homeomorphism cN :Rn →R

n, such that cN (N) = Jn.

In this setting, we employ the notation

N–
c = ∂Ju × Js,

N+
c = Ju × ∂Js.

Definition . [] Assume that N , M are h-sets, such that u(N) = u(M) = u and s(N) =
s(M) = s. Let f : N → R

n be a continuous map, and define fc = cM ◦ f ◦ c–N : Jn → R
n. We

say that N f -coversM, and we write it as

N f	⇒ M,

if the following conditions are satisfied:
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. There exists a continuous homotopy H : [, ]× Jn →R
n, such that the following

conditions hold true:

H(, ·) = fc(·),
H

(
[, ],N–

c
) ∩ Jn = ∅,

H
(
[, ], Jn

) ∩M+
c = ∅.

. There exists a linear map A :Ru →R
u, such that H(, (p,q)) = (Ap, ) for p ∈ Ju and

q ∈ Js, and A(∂Ju) ⊂R
u\Ju.

Lemma . [] Let F : D → R
n be a continuous map and assume that there exist two

disjoint h-sets N and N such that

Ni
f	⇒ Nj

for all i, j = , . Then F induces chaotic dynamics on two symbols (with compact sets K =
N and K =N).

Definition . [] Let I be a real interval and g : I → I a continuous map. We say that g
is δ-strictly turbulent if there exist four constants α < α < β < β, and δ >  so that

g(α) < α – δ < β + δ < g(α),

g(β) < α – δ < β + δ < g(β).

3 Chaotic dynamics in themodel (1.1)
Associated to (.), we define the map in R



F(x, y) =
(
F(x, y),F(x, y)

)
=

(
rx + b(px + qy)e–(r+p)x–qy,px + qy

)
,

where  < r < , b > , p > ,  < q < .
Denote

F(x, y) = F
(
F(x, y),F(x, y)

)
=

(
F
 (x, y),F


 (x, y)

)
.

Set f (x) = bpxe–(r+p)x, then one has

f (x) = f
(
f (x)

)
= bpxe–(r+p)xe[–(r+p)bpxe

–(r+p)x].

First, we provide a technical lemma, which will play a key role in the proof of the existence
of chaotic dynamics.

Lemma . The first component F
 (x, y) and the second component F

 (x, y) of F(x, y) sat-
isfy the following inequalities: for x > , y ≥ ,
(a) F

 (x, y) > rx + f (x) · e–[(r+p)r+pq]x · e–[q+(r+p)bq+q]y;
(b) F

 (x, y) ≤ [r + rbp + bp(r + q)]x + [rqb + bq + pqb]y + f (x)[e–
bp
e ][e–qy–];

(c)  < F
 (x, y) <

pF (x,y)
r + pqx + qy.
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Proof The first component of F has the following expression:

F
 (x, y) = rF(x, y) + b

(
pF(x, y) + qF(x, y)

)
e[–(r+p)F(x,y)–qF(x,y)]

= rx + rb(px + qy)e–(r+p)x–qy

+ b
[
prx + pb(px + qy)e–(r+p)x–qy + pqx + qy

]
· e[–(r+p)[rx+b(px+qy)e–(r+p)x–qy]–q(px+qy)].

We easily deduce that, for x > , y≥ ,

F
 (x, y) > rx +

[
bpxe–(r+p)x–qy

] · e[–(r+p)[rx+b(px+qy)e–(r+p)x–qy]–q(px+qy)]

= rx +
[
bpxe–(r+p)x–qy

] · e[–(r+p)rx–q(px+qy)]

· e[–(r+p)bpxe–(r+p)x–qy] · e[–(r+p)bqye–(r+p)x–qy]

≥ rx +
[
bpxe–(r+p)x–qy

] · e[–(r+p)rx–q(px+qy)]

· e[–(r+p)bpxe–(r+p)x] · e[–(r+p)bqy]

= rx + e[–(r+p)rx–q(px+qy)] · [bpxe–(r+p)xe[–(r+p)bpxe–(r+p)x]]
· e[–(r+p)bqy–qy]

= rx + f (x) · e–[(r+p)r+pq]x · e–[q+(r+p)bq+q]y,

which implies assertion (a) holds.
On the other hand, for x >  and y ≥ ,

F
 (x, y) ≤ rx + rbpx + rbqy + be[–(r+p)bpxe

–(r+p)x–qy]

· [p(r + q)x + qy + pbxe–(r+p)x + pbqy
]

≤ [
r + rbp + bp(r + q)

]
x +

[
rqb + bq + pqb

]
y

+ bpxe–(r+p)x · e[–(r+p)bpxe–(r+p)x·e–qy]

=
[
r + rbp + bp(r + q)

]
x +

[
rqb + bq + pqb

]
y

+ f (x)
[
e–(r+p)bpxe

–(r+p)x][e–qy–].
Now using

f (x) = bpxe–(r+p)x ≤ bp
(r + p)e

,

we arrive at

F
 (x, y)≤

[
r + rbp + bp(r + q)

]
x +

[
rqb + bq + pqb

]
y + f (x)

[
e–

bp
e
][e–qy–],

which implies assertion (b) holds.
For the second component F

 (x, y), noticing that axe–cx ≤ a
ce and

F
 (x, y) > rx + rb(px + qy)e–(r+p)x–qy,

http://www.advancesindifferenceequations.com/content/2014/1/175
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we obtain, for x > , y≥ ,

 < F
 (x, y) = prx + pb(px + qy)e–(r+p)x–qy + pqx + qy <

pF
 (x, y)
r

+ pqx + qy,

which implies assertion (c) holds. The proof is complete. �

Next, we prove the following result by following the idea of the proof of Theorem . in
[] with appropriate modifications.

Theorem . Assume that f (x) = bpxe–(r+p)x satisfies the requirement that f  is δ-strictly
turbulent with parameters  < α < α < β < β and δ > . Suppose that r > q, and the
following inequalities are fulfilled:

–
bp
e

[
e–

pqβ
r–q – 

]
< ln

(
α – [r + rbq+pqb

r–q ]β

α – δ

)
, (.)

[
(r + p)r +

pqr + (r + p)bpq + pq
r – q

]
β < ln

(
β + δ

β – rα

)
. (.)

Then F induces chaotic dynamics on two symbols relative to

N =
{
(x, y) : α ≤ x≤ α, ≤ y≤ p

r – q
x
}
,

N =
{
(x, y) : β ≤ x≤ β, ≤ y≤ p

r – q
x
}
.

Proof Set

g(x, y) =
(
x,

αy
x

)
, g(x, y) =

(
x,

βy
x

)
.

Then we have

g(N) =
{
(x, y) : α ≤ x≤ α, ≤ y ≤ pα

r – q

}
,

g(N) =
{
(x, y) : β ≤ x ≤ β, ≤ y ≤ pβ

r – q

}
.

From this, it is easy to check that N and N are h-sets, with

u(N) = u(N) =  (x-direction), s(N) = s(N) =  (y-direction)

and

cN = h ◦ tv ◦ g, cN = h ◦ tw ◦ g,

where tv and tw are the translations according to the vectors

v =
(
–

α + α


, –

αp
(r – q)

)
, w =

(
–

β + β


, –

βp
(r – q)

)
,
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respectively, and

h(x, y) =
(

x
α – α

,
(r – q)y

αp

)
, h(x, y) =

(
x

β – β
,
(r – q)y

βp

)
.

In order to apply Lemma ., it suffices to demonstrate that

Ni
F	⇒ Nj

for i, j = , .
We give the proof only for the case i = . Indeed, consider the homotopy

Hj
(
t, (x, y)

)
= ( – t)

(
cNj ◦ F ◦ c–N

)
(x, y) + tA(x, y) (j = , ),

where A(x, y) = (x, ).
Define f (x) = bpxe–(r+p)x. Then it follows from (a) and (c) of Lemma . that, for all (x, y) ∈

Ni (i = , ),

 < F
 (x, y) <

pF
 (x, y)
r

+ pqx + qy

≤ pF
 (x, y)
r

+ pqx +
pq

r – q
x

=
pF

 (x, y)
r

+
rpq
r – q

x

≤ pF
 (x, y)
r

+
pqF

 (x, y)
r(r – q)

=
p

r – q
F
 (x, y). (.)

As f (α) < α – δ, from (b) of Lemma ., we obtain, for all y ∈ [, pβr–q ],

F
 (α, y) ≤ [

r + rbp + bp(r + q)
]
α +

[rqb + bq + pqb]pβ

r – q
+ (α – δ)

[
e–

bp
e
]e–[ pqβr–q ]–

<
[
r + rbp + bp(r + q)

]
β +

[rqb + bq + pqb]pβ

r – q
+ (α – δ)

[
e–

bp
e
]e–[ pqβr–q ]–

=
[
r +

rbq + pqb

r – q

]
β + (α – δ)

[
e–

bp
e
]e–[ pqβr–q ]–. (.)

By using (.) together with the inequality α < β, we get from (.), for all y ∈ [, pβr–q ],

F
 (α, y) < α < β. (.)

Analogously, as f (α) > β + δ, from (a) of Lemma ., we obtain, for all y ∈ [, pβr–q ],

F
 (α, y) > rα + f (α) · e–[(r+p)r+pq]α · e–[q+(r+p)bq+q] pβr–q

> rα + (β + δ)e–[(r+p)r+
pqr+(r+p)bpq+pq

r–q ]β . (.)
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By using (.) together with the inequality β > α, we get from (.), for all y ∈ [, pβr–q ],

F
 (α, y) > β > α. (.)

From inequalities (.), (.), and (.), it follows that, for j = , ,

cNj ◦ F ◦ c–N

({–} × [–, ]
) ⊂ {

(x, y) : x < –
}
,

cNj ◦ F ◦ c–N

({} × [–, ]
) ⊂ {

(x, y) : x > 
}
,

cNj ◦ F ◦ c–N

(
[–, ]

) ⊂ {
(x, y) : – < y < 

}
.

These properties, together with the expression of A, lead to the conclusion

Hj
(
[, ], {–, } × [–, ]

) ∩ [–, ] = ∅ (j = , ),

Hj
(
[, ], [–, ]

) ∩ (
[–, ]× {–, }) = ∅ (j = , ).

This leads to the covering relations

N
F	⇒ Nj (j = , ).

It can be similarly verified for the covering relations

N
F	⇒ Nj (j = , ),

taking the linear map A(x, y) = (–x, ). The proof is complete. �

Now we apply Theorem . in a particular example.

Example . Take f (x) = bpxe–(r+p)x with bp = exp(.) and r + p = ., then f  is .-
strictly turbulent with parameters . < . < . < .. Straightforward computations
show that conditions (.), (.) in Theorem . hold for

r = ., p = ., q = .× –, b = exp(.)/p.

4 Conclusions
This paper rigorously proves the existence of chaotic dynamics for a single-species discrete
population model with stage structure and birth pulses. The result shows that the second
composition map of a two-dimensional map associated to this model is chaotic in the
sense of Liz and Ruiz-Herrera.
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