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Abstract
The stability of a system of neural networks connected to a ring has been studied
extensively throughout recent years. Our main contribution within this work states
that the stability region in the parameter space of a discrete-time model can be
extended by breaking such a ring provided that there is a sufficiently large number of
networks. Also, it has been shown that for a small ring, paradoxical values may appear
within its parameter space for which such a ring is stable; meanwhile, corresponding
linear configuration is unstable.
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1 Introduction
Many neural networks of artificial or natural origin, including the brain net, have a ring
structure []. The stability of a ring neural network with delayed interactions has been
studied in recent works such as [–]. In particular, [] examined the breaking of a ring
neural network into a linear neural network which gives an extended stability region in
the parameter space provided that there is a sufficiently large number of neurons at the
ring neural network. In this paper, we take such an approach to address the related ques-
tion dealing with a discrete-model of ring consisting of identical (maybe complicated) net-
works. We characterize closely what happens with the stability of such rings after they are
broken.
This paper is structured as follows. In Section , formal definitions of the Cartesian

product of neural networks, ring and linear configuration of a network are stated. In Sec-
tion , it is proven that by breaking a sufficiently large ring of neural networks, it does not
lose its stability. Also an example of a small torus neural network, i.e. a ring consisting of
small neural rings, is given. Hence, after two consecutive cut transformations, it yields a
grid configuration.We show that there is a small region within the parameter space result-
ing in loss of stability in the breaking of the ring neural network. Such parameter values
will be called paradoxical.

2 The Cartesian product of neural networks
Neural networks have been described either by nonlinear equations [, ] or by linear
nonhomogeneous equations as it is done in []. Nonetheless, local stability analysis of
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steady states offers an interesting approach as we have chosen within this work. When
linearized discrete-time neural networksmodels are considered, the state vector xs : Z+ →
R

n of a network at time s is governed by the following linear homogeneous equation (see
[, , ]):

xs = γ xs–m +Axs–k , s = , , . . . , ()

where n is the number of neurons in the network, γ ∈R is a damping factor of neuron self-
oscillations, m ∈ Z+ is a delay in the damping process of neuron self-oscillations, k ∈ Z+

is a delay in the neuron interactions (k ≥m). Entries of the matrix A ∈R
n×n represent in-

teraction forces among n different neurons, thus that every entry at the principal diagonal
of A will be zero. For every j ( ≤ j ≤ n), the jth component of xs is the state of the jth
neuron at the moment s. The entry ajv of the matrix A is the force of action from the vth
neuron to the jth neuron. We proceed to give formal definitions to neural networks and
the Cartesian product of networks as follows.

Definition  A neural network is an ordered -tuple A = (γ ,k,m,n,A), where γ ∈ R,
k,m ∈ Z+ (k ≥ m), A ∈ R

n×n. We call () the defining equation of the network A. We
say that two neural networks are compatible if and only if they have the same γ , k, m.
Given two compatibles networks A = (γ ,k,m, r,A) and A = (γ ,k,m,n,A), we define
their Cartesian product as the neural network A�A = (γ ,k,m, rn,A ⊕ A), where the
Kronecker sum operation ⊕ is defined as follows: A ⊕ A = In ⊗ A + A ⊗ Ir , having ⊗
as the Kronecker product operation, and In, Ir stand for the unit matrices of orders n, r,
respectively.

These definitions do not contradict those given in [, ].We also notice that the square
block matrix A ⊕A of order rn has the form

A ⊕A =

⎛
⎜⎜⎜⎜⎝

A aIr · · · anIr
aIr A · · · anIr
...

...
. . .

...
anIr anIr · · · A

⎞
⎟⎟⎟⎟⎠ ,

where ajv (≤ j, v ≤ n) are entries of A.
It is not hard to see that for any given neural networkA = (γ ,k,m,n,A), its matrix A can

be seen as a weighted directed graph (V ;E) with a set of vertices V = {, , . . . ,n} and a set
of directed edges E defined as follows: if an entry ajv of A is nonzero, then (j, v) ∈ E and
weighted by ajv. Such a graph does not depend on γ , k,m.
For any given pair A, B of compatible networks, their Cartesian products A�B and

B�A are isomorphic in the sense that one defining equation can be obtained from an-
other by a straightforward permutation of xs components.
Now, let us consider the following example of ring and linear configurations of networks,

both playing a crucial role in our main results.
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Figure 1 Links in the networks C3(a,b),L2(c,d) and C3(a,b)�L2(c,d).

Example  Let Cn(a,b) be an n × n circulant matrix for n > , and let Ln(a,b) be a tridi-
agonal matrix for n > :

Cn(a,b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 b  · · ·  a
a  b · · ·  
 a  · · ·  
...

...
...

. . .
...

...
   · · ·  b
b   · · · a 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ln(a,b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 b  · · ·  
a  b · · ·  
 a  · · ·  
...

...
...

. . .
...

...
   · · ·  b
   · · · a 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ()

Wedefine Cn(a,b) = (γ ,k,m,n,Cn(a,b)) andLn(a,b) = (γ ,k,m,n,Ln(a,b)) as the ring and
linear neural networks, respectively, where b is the strength of the connection between a
neuron to its counterclockwise neighbor neuron, a is the strength of their opposite direc-
tion connection (Figure ). We point out that Cn(a,b) has a connection between its first
and last neuron, meanwhile Ln(a,b) has no connection between them.
It follows that C(a,b)�L(c,d) has the defining equation () with

A = C(a,b)⊕ L(c,d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

 b a d  
a  b  d 
b a    d
c    b a
 c  a  b
  c b a 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We state the following key property of the Kronecker sum.

Theorem  (see [–]) If λj ( ≤ j ≤ r) is a full list of eigenvalues of an r × r matrix A

and μv (≤ v ≤ n) is the corresponding list for an n× n matrix A, then the eigenvalues of
A ⊕A are given by λj +μv (≤ j ≤ r, ≤ v≤ n).

3 The stability of a ring of neural networks
Our main purpose is to study the stability of a ring and linear configuration of a neural
network. Hence, we proceed to state straightforwardly stability definitions for the defin-
ing equation (). We say that this equation is stable (asymptotically stable) if and only if
every solution xs has a bounded norm (the sequence |xs| tends to zero as s → ∞). Quite
often stability requirements of a system are adjusted [, ], we will state the following
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Figure 2 The ring of neural networks and a result
of its break: the networksA�C3(a,b) and
A�L3(a,b).

definitions along these lines. Given ρ is a positive real number, we say that equation () is ρ-
stable (ρ-asymptotically stable) if and only if the sequence |xs|/ρs is bounded (the sequence
|xs|/ρs tends to zero as s → ∞). Equations that are not ρ-stable (asymptotically ρ-stable)
will be called ρ-unstable (asymptotically ρ-unstable). We should notice that when ρ = ,
(asymptotic) ρ-stability is equivalent to the usual Lyapunov notion of (asymptotic) stabil-
ity. Furthermore, stability cones [, ] for stability analysis of () will be extensively used
in our analysis. Stability cones for stability analysis of differential delayedmatrix equations
were introduced in [].
It is a plausible step to take the compatible network Ln(a,b) as the breaking of the net-

work Cn(a,b). Now, let us considerA to be an arbitrary neural network, then it follows that
the network A�Ln(a,b) is the compatible breaking of the ring A�Cn(a,b) (Figure ) in
the sense that it is the resulting neural network after the breaking of all links between the
first and the last copy of A at the latter network. The stability of those neural networks
involved along this process will be addressed in the following theorem.

Theorem  Let A = (γ ,k,m, r,A), Cn(a,b) and Ln(a,b) be compatible neural networks,
obeying the condition a + b 	= , then for every ρ > , there exists n such that for all
n > n, ifA�Cn(a,b) is ρ-stable, then A�Ln(a,b) is asymptotically ρ-stable.

Proof Let A = (γ ,k,m, r,A) be a neural network and λ, . . . ,λr be the list of eigenvalues
of A. We assume the condition a + b 	=  and that k,m,γ ,ρ >  are fixed. It was shown in
[–] that the set of values (a+b) cos πv

n + i(a–b) sin πv
n are the eigenvalues of Cn(a,b);

in a similar fashion, the set of values 
√
ab cos πv

n+ ,  ≤ v ≤ n, are the eigenvalues of Ln.
By applying Theorem  and related stability analysis results from [] over the neural net-
worksA�Cn(a,b) andA�Ln(a,b), we construct two sets of points as follows. Firstly, the
setMjv = (ujv,ujv,ujv) (≤ j ≤ r, ≤ v ≤ n) obeying

ujv + iujv = λj +
(
(a + b) cos

πv
n

+ i(a – b) sin
πv
n

)
exp

(
–i

k
m

argγ

)
,

ujv = |γ |.
()

Secondly, the set of points Pjv = (u′
jv,u′

jv,u′
jv) (≤ j ≤ r, ≤ v ≤ n) obeying

u′
jv + iu′

jv = λj + 
√
ab cos

πv
n + 

exp

(
–i

k
m

argγ

)
, u′

jv = |γ |. ()

We proceed with such a construction by an exhaustive case analysis over a and b.
CASE : a ≥ , b ≥ . Let us construct for every j ( ≤ j ≤ r) points M

j = (uj,uj,uj)
andM

j = (uj,uj,uj) so that

uj + iuj = λj + (a + b) exp
(
–i

k
m

argγ

)
, uj = |γ |, ()
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uj + iuj = λj – (a + b) exp
(
–i

k
m

argγ

)
, uj = |γ |. ()

CASE .: There exists j ( ≤ j ≤ r) such that M
j lies outside the ρ-stability cone for

the given values of k, m. Then the point Mjn (see ()) lies outside the ρ-stability cone,
therefore the network A�Cn(a,b) is ρ-unstable for every n ≥ . So we can put n =  in
the conclusion of the theorem.
CASE .: There exists j (≤ j ≤ r) such thatM

j lies outside the ρ-stability cone. Let us
use the fact that [n/]/n approaches / when n → ∞, [z] being the integral part of z. We
conclude from () that there exists an n such that for every n > n, the point Mj[n/] lies
outside the ρ-stability cone. Therefore the network A�Cn(a,b) is ρ-unstable for every
n > n.
CASE .: For all j ( ≤ j ≤ r), both M

j and M
j lie inside the ρ-stability cone or on its

boundary. Since 
√
ab < a + b (recall that a + b 	= ), all the points Pjv (see ()) lie inside

the line segment with the endpointsM
j ,M

j (see (), ()). But the section of the ρ-stability
cone at the level u = |γ | has the property of being convex, hence all the points Pjv (≤ j ≤
r,  ≤ v ≤ n) lie inside the ρ-stability cone. Therefore the neural network A�Ln(a,b) is
asymptotically ρ-stable. This enables one to put n =  in the conclusion of the theorem.
CASE : a ≤ , b≤ . This case is similar to CASE .
CASE : a > , b < . For every j (≤ j ≤ r), let us construct pointsM

j = (uj,uj,uj) and
M

j = (uj,uj,uj) such that

uj + iuj = λj + i(a – b) exp
(
–i

k
m

argγ

)
, ujv = |γ |, ()

uj + iuj = λj – i(a – b) exp
(
–i

k
m

argγ

)
, ujv = |γ |. ()

CASE .: There exists j (≤ j ≤ r) such thatM
j lies outside the ρ-stability cone. If n →

∞, then [n/]/n → /. Hence by () there exists n such that for every n > n, the point
Mj[n/] lies outside the ρ-stability cone. Therefore the network A�Cn(a,b) is ρ-unstable
for every n > n.
CASE .: There exists j ( ≤ j ≤ r) such that M

j lies outside the ρ-stability cone. This
case is similar to CASE ., the only difference being in using [n/]/n → / instead of
[n/]/n→ /.
CASE .: For all j ( ≤ j ≤ r), both M

j and M
j lie inside the ρ-stability cone or on its

boundary. This case is similar toCASE ., the only difference being in using 
√|ab| < a–b

instead of 
√
ab < a + b.

CASE : a < , b > . This case is similar to CASE . Hence, our proof is completed. �

Considering the semigroup structure of all neural networks for γ , k, m fixed, it is not
hard to see that the neural network E = (γ ,k,m, , ) its identity element, the fact which
entails that such a structure is really a commutative monoid. By replacingA by E in The-
orem , we obtain an interesting consequence.

Theorem Let Cn(a,b) andLn(a,b) be compatible neural networks, obeying that a +b 	=
, then for every ρ > , there exists n such that for all n > n if Cn(a,b) is ρ-stable, then
Ln(a,b) is asymptotically ρ-stable.
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Figure 3 The boundaries of stability domains in ab-plane of the networks C3(a,b)�C5(a,b) (black),
L3(a,b)�C5(a,b) (blue), C3(a,b)�L5(a,b) (green),L3(a,b)�L5(a,b) (violet). The parameters
(γ , k,m,ρ) = (0.4, 2, 1, 1). The origin is inside all the stability domains. The areas of paradoxical points for
transformations 1, 2, 3, 4 (see ()) are painted red.

A similar result to this corollary for a continuous-time neural networkmodel was shown
in [].We do remark that ourmain Theorem  states that in the case a +b 	= , the break-
ing of large ring neural networks extends the asymptotic stability domain in the parameter
space providing a sufficiently large size. The latter is crucial to it, in fact it is no longer true
when the number of networks in such a ring is not large enough. We will state adequate
definitions and an example to support this issue.

Definition  Let A, Cn(a,b) and Ln(a,b) be pairwise compatible neural networks. Con-
sider (a,b) to be a point in the ab-plane; we call it paradoxical for both transformations
A�Cn(a,b) → A�Ln(a,b) and Cn(a,b)�A → Ln(a,b)�A, if the network A�Cn(a,b)
is asymptotically stable, and A�Ln(a,b) is unstable.

Example  By considering C(a,b)�C(a,b) be a toroidal neural network, significant
changes in the stability domains can be shown after C(a,b) and C(a,b) are broken ac-
cording to the following diagram

C(a,b)�C(a,b)
––––––→ L(a,b)�C(a,b)


⏐⏐� 

⏐⏐�
C(a,b)�L(a,b)

––––––→ L(a,b)�L(a,b).

()

Now, by using the stability cones methods from [, , ], stability domains can be
found for those networks involved in the previous diagram. It is not hard to see how in all
four operations denoted by arrows in (), the stability domains are significantly increased.
Nevertheless, Figure  shows in detail how these operations create paradoxical points, for
which the system loses stability after the ring has been broken.

4 Conclusion
In connectionwith the above investigations, some open problems arise. For example, in []
a detailed analysis of appearance and disappearance of paradoxical points in a continuous-
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time model of neural ring networks was performed. Consequently, natural directions for
future research are the analysis of these phenomena in our discrete-time model of neural
networks.Moreover, in the future, we intend to examine relevant issues in neural networks
with distributed delays.
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14. Cvetković, DM, Doob, M, Sachs, H: Spectra of Graphs - Theory and Applications, 3rd edn. Wiley, New York (1998)
15. Chestnov, VN: Synthesis H∞-controllers for multidimensional systems with given accuracy and degree of stability.

Autom. Remote Control 72(10), 2161-2175 (2011)
16. Gryazina, EN, Polyak, BT: Stability regions in the parameter space: D-decomposition revisited. Automatica 42(1), 13-26

(2006)
17. Kipnis, MM, Malygina, VV: The stability cone for a matrix delay difference equation. Int. J. Math. Math. Sci. 2011,

Article ID 860326 (2011)
18. Ivanov, SA, Kipnis, MM, Malygina, VV: The stability cone for a difference matrix equation with two delays. ISRN Appl.

Math. 2011, Article ID 910936 (2011)
19. Khokhlova, TN, Kipnis, MM, Malygina, VV: Stability cone for linear delay differential matrix equation. Appl. Math. Lett.

24, 742-745 (2011)

10.1186/1687-1847-2014-176
Cite this article as: Ivanov et al.: On the stability of the Cartesian product of a neural ring and an arbitrary neural
network. Advances in Difference Equations 2014, 2014:176

http://www.advancesindifferenceequations.com/content/2014/1/176
http://dx.doi.org/10.1039/c0lc00450b

	On the stability of the Cartesian product of a neural ring and an arbitrary neural network
	Abstract
	MSC
	Keywords

	Introduction
	The Cartesian product of neural networks
	The stability of a ring of neural networks
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


