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Abstract
This paper is devoted to studying the local and global existence and uniqueness
results for interval-valued functional integro-differential equations (IFIDEs). In the
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1 Introduction
Functional differential equations (or, as they are called, delay differential equations) play an
important role in an increasing number of systemmodels in biology, engineering, physics
and other sciences. There exists an extensive amount of literature dealing with functional
differential equations and their applications; the reader is referred to the monographs
[–] and the references therein.
The set-valued differential and integral equations are an important part of the theory

of set-valued analysis. They have an important value in theory and application in con-
trol theory; and they were studied in  by De Blasi and Iervolino []. Recently, set-
valued differential equations have been studied by many authors due to their application
in many areas. For many results in the theory of set-valued differential and integral equa-
tions, the readers can be referred to the following books and papers [–] and the ref-
erences therein. The interval-valued analysis and interval-valued differential equations
(IDEs) are the particular cases of the set-valued analysis and set differential equations, re-
spectively. In many cases, when modeling real-world phenomena, information about the
behavior of a dynamic system is uncertain, and we have to consider these uncertainties
to gain more models. The interval-valued differential and integro-differential equations
can be used to model dynamic systems subject to uncertainties. Recently, many works
have been done by several authors in the theory of interval-valued differential equations
(see, e.g., [–]). These equations can be studied with a framework of the Hukuhara
derivative []. However, it causes that the solutions have increasing length of their values.
Stefanini and Bede [] proposed to consider the so-called strongly generalized derivative
of interval-valued functions. The interval-valued differential equations with this deriva-
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tive can have solutions with decreasing length of their values. This approach was the start-
ing point for the topic of interval-valued differential equations (see [, ]). Besides that,
some very important extensions of the interval-valued differential equations are the set
differential equations (see [, , –, , , , , –]).
The connection between the fuzzy analysis and the interval analysis is very well known

(Moore and Lodwick []). Interval analysis and fuzzy analysis were introduced as an
attempt to handle interval uncertainty that appears in many mathematical or com-
puter models of some deterministic real-world phenomena. Based on the results in [],
there are some very important extensions, and the development related to the subject
of the present paper is in the field of fuzzy sets, i.e., fuzzy calculus and fuzzy differ-
ential equations under generalized Hukuhara derivative. Recently, several works, e.g.,
[, , , , –], have been done on fuzzy differential equations and fuzzy integro-
differential equations, the fuzzy stochastic differential equations [–], fractional fuzzy
differential equations [, –], and some methods for solving fuzzy differential equa-
tions [, ].
In the papers [–], one can find the studies on interval-valued differential equations

under generalized Hukuhara differentiability, i.e., equations of the form

Dg
HX(t) = F

(
t,X(t)

)
, X(t) = X ∈ KC(R), t ∈ [t, t + p], (.)

where Dg
H denotes two kinds of derivatives, namely the classical Hukuhara derivative and

the second-type Hukuhara derivative (generalized Hukuhara differentiability). The exis-
tence and uniqueness of a Cauchy problem is then obtained under an assumption that
the coefficients satisfy a condition with the Lipschitz constant (see []). The proof is
based on the application of the Banach fixed point theorem. In [], under the gener-
alized Lipschitz condition, Malinowski obtained the existence and uniqueness of solu-
tions to both kinds of IDEs. In this paper, we study two kinds of solutions to IFIDEs. The
different types of solutions to IFIDEs are generated by the usage of two different con-
cepts of interval-valued derivative. Furthermore, in [], Lupulescu established the local
and global existence and uniqueness results for fuzzy functional differential equations.
Malinowski [] studied the existence and uniqueness result of solution to the delay set-
valued differential equations under the condition that the right-hand side of an equation
is Lipschitzian in the functional variable. Inspired and motivated by the results of Ste-
fanini and Bede [], Malinowski [, ] and Lupulescu [], we consider the interval-
valued functional integro-differential equations under generalized Hukuhara derivative.
The paper is organized as follows. As preliminaries, we recall some basic concepts and
notations about interval analysis and interval-valued differential equations. In Section ,
we present the local and global existence and uniqueness theorem of solution of IFIDEs
under generalized Hukuhara derivatives. In the last section, we give some examples as
simple illustrations of the theory of interval-valued functional integro-differential equa-
tions.

2 Preliminaries
Let us denote by KC(R) the set of any nonempty compact intervals of the real line R. The
addition and scalar multiplication in KC(R) are defined as usual, i.e., for A,B ∈ KC(R),
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A = [A,A], B = [B,B], where A≤ A, B≤ B, and λ ≥ , then we have

A + B = [A + B,A + B], λA = [λA,λA]
(
–λA = [–λA, –λA]

)
.

Furthermore, let A ∈ KC(R), λ,λ,λ,λ,∈ R and λλ ≥ , then we have λ(λA) =
(λλ)A and (λ +λ)A = λA+λA. Let A,B ∈ KC(R) as above, the Hausdorff metric H in
KC(R) is defined as follows:

H[A,B] =max
{|A – B|, |A – B|}. (.)

It is known that (KC(R),H) is a complete, separable and locally compact metric space. We
define the magnitude and the length of A ∈ KC(R) by

H[A, ] = ‖A‖ =max
{|A|, |A|}, len(A) = A –A,

respectively, where  is the zero element of KC(R) which is regarded as one point.
The Hausdorff metric (.) satisfies the following properties:

H[A +C,B +C] =H[A,B] and H[A,B] =H[B,A],

H[A + B,C +D]≤H[A,C] +H[B,D],

H[λA,λB] = |λ|H[A,B]

for all A,B,C,D ∈ KC(R) and λ ∈R. Let A,B ∈ KC(R). If there exists an interval C ∈ KC(R)
such that A = B + C, then we call C the Hukuhara difference of A and B. We denote the
interval C by A� B. Note that A� B �= A + (–)B. It is known that A� B exists in the case
len(A) ≥ len(B). Besides that, we can see the following properties for A,B,C,D ∈ KC(R)
(see []):
- If A� B, A�C exist, then H[A� B,A�C] =H[B,C];
- If A� B, C �D exist, then H[A� B,C �D] =H[A +D,B +C];
- If A�B, A� (B+C) exist, then there exist (A�B)�C and (A�B)�C = A� (B+C);
- If A� B, A�C, C � B exist, then there exist (A� B)� (A�C) and
(A� B)� (A�C) = C � B.

Definition . We say that the interval-valued mapping X : [a,b] ⊂ R
+ → KC(R) is con-

tinuous at the point t ∈ [a,b] if for every ε >  there exists δ = δ(t, ε) >  such that

H
[
X(t),X(s)

] ≤ ε

for all s ∈ [a,b] with |t – s| < δ.

The strongly generalized differentiability was introduced in [] and studied in [, ,
, , –].

Definition . Let X : (a,b)→ KC(R) and t ∈ (a,b). We say that X is strongly generalized
differentiable at t if there exists Dg

HX(t) ∈ KC(R) such that

http://www.advancesindifferenceequations.com/content/2014/1/177
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(i) for all h >  sufficiently small, ∃X(t + h)�X(t), ∃X(t)�X(t – h) and

lim
h↘

H
[
X(t + h)�X(t)

h
,Dg

HX(t)
]
= ,

lim
h↘

H
[
X(t)�X(t – h)

h
,Dg

HX(t)
]
= ,

or
(ii) for all h >  sufficiently small, ∃X(t)�X(t + h), ∃X(t – h)�X(t) and

lim
h↘

H
[
X(t)�X(t + h)

–h
,Dg

HX(t)
]
= ,

lim
h↘

H
[
X(t – h)�X(t)

–h
,Dg

HX(t)
]
= ,

or
(iii) for all h >  sufficiently small, ∃X(t + h)�X(t), ∃X(t – h)�X(t) and

lim
h↘

H
[
X(t + h)�X(t)

h
,Dg

HX(t)
]
= ,

lim
h↘

H
[
X(t – h)�X(t)

–h
,Dg

HX(t)
]
= ,

or
(iv) for all h >  sufficiently small, ∃X(t)�X(t + h), ∃X(t)�X(t – h) and the limits

lim
h↘

H
[
X(t)�X(t + h)

–h
,Dg

HX(t)
]
= ,

lim
h↘

H
[
X(t)�X(t – h)

h
,Dg

HX(t)
]
= 

(h at denominators means 
h ).

In this definition, case (i) ((i)-differentiability for short) corresponds to the classical
H-derivative, so this differentiability concept is a generalization of the Hukuhara deriva-
tive. In this paper we consider only the two first of Definition .. In the other cases, the
derivative is trivial because it is reduced to a crisp element (more precisely, Dg

HX(t) ∈ R).
Further, we say thatX is (i)-differentiable or (ii)-differentiable on [a,b], if it is differentiable
in the sense (i) or (ii) of Definition ., respectively.

Theorem. Let X : (a,b)→ KC(R) be (i)-differentiable or (ii)-differentiable on (a,b), and
assume that the derivative Dg

HX is integrable over (a,b).We have
(a) if X is (i)-differentiable on (a,b), then

∫ b
a Dg

HX(t)dt = X(b)�X(a);
(b) if X is (ii)-differentiable on (a,b), then

∫ b
a Dg

HX(t)dt = (–)(X(a)�X(b)).
Provided that, the above Hukuhara differences exist.

Lemma . (see [–]) Assume that F : [t, t + p] × KC(R) → KC(R) is continuous.
The interval-valued differential equation (.) is equivalent to one of the following integral
equations:

X(t) = X(t) +
∫ t

t
F
(
s,X(s)

)
ds, ∀t ∈ [t, t + p],

http://www.advancesindifferenceequations.com/content/2014/1/177
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if X is (i)-differentiable, and

X(t) = X(t)� (–)
∫ t

t
F
(
s,X(s)

)
ds, ∀t ∈ [t, t + p]

if X is (ii)-differentiable, provided that the H-difference exists.

The following well-known result is useful in the next section.

Lemma. Let a(t), b(t) and c(t) be real-valued nonnegative continuous functions defined
on R+, d ≥  is a constant for which the inequality

a(t)≤ d +
∫ t



[
b(s)a(s) + b(s)

∫ s


c(r)a(r)dr

]
ds (.)

holds for all t ∈ R+. Then

a(t)≤ d
[
 +

∫ t


b(s) exp

(∫ s



(
b(r) + c(r)

)
dr

)
ds

]
.

Corollary . (see [–]) Let X : [t, t +p] → KC(R) be given.Denote X(t) = [X(t),X(t)]
for t ∈ [t, t + p], where X,X : [t, t + p] →R.

(i) If the mapping X is (i)-differentiable (i.e., classical Hukuhara differentiable) at
t ∈ [t, t + p], then the real-valued functions X , X are differentiable at t and
Dg

HX(t) = [X ′(t),X′(t)].
(ii) If the mapping X is (ii)-differentiable at t ∈ [t, t + p], then the real-valued functions

X , X are differentiable at t and Dg
HX(t) = [X ′(t),X′(t)].

3 Main results
For a positive number σ , we denote by Cσ = C([–σ , ],KC(R)) the space of continuous
mappings from [–σ , ] to KC(R). Define a metric Hσ in Cσ by

Hσ [X,Y ] = sup
t∈[–σ ,]

H
[
X(t),Y (t)

]
.

Let p > . Denote I = [t, t + p], J = [t – σ , t]∪ I = [t – σ , t + p]. For any t ∈ I , denote Xt

by the element of Cσ defined by Xt(s) = X(t + s) for s ∈ [–σ , ].
Let us consider the interval-valued functional integro-differential equations (IFIDEs)

with the generalized Hukuhara derivative under the form{
Dg

HX(t) = F(t,Xt) +
∫ t
t
G(t, s,Xs)ds, t ≥ t,

X(t) = ϕ(t – t) = ϕ, t ≥ t ≥ t – σ ,
(.)

where F : I × Cσ → KC(R), G : I × I × Cσ → KC(R), ϕ ∈ Cσ and the symbol Dg
H denotes

the generalized Hukuhara derivative from Definition .. By a solution to equation (.)
we mean an interval-valued mapping X ∈ C(J ,KC(R)) that satisfies X(t) = ϕ(t – t) for
t ∈ [t – σ , t], X is differentiable on [t, t + p] and Dg

HX(t) = F(t,Xt) +
∫ t
t
G(t, s,Xs)ds for

t ∈ I . We note that the solution in this sense is considered just one-side differentiable at
t = t (specifically, right-differentiable at t = t).

http://www.advancesindifferenceequations.com/content/2014/1/177


Hoa et al. Advances in Difference Equations 2014, 2014:177 Page 6 of 20
http://www.advancesindifferenceequations.com/content/2014/1/177

Lemma . Assume that F ∈ C(I × Cσ ,KC(R)), G ∈ C(I × I × Cσ ,KC(R)) and X ∈
C(J ,KC(R)). Then the interval-valued mapping t → F(t,Xt) +

∫ t
t
G(t, s,Xs)ds belongs to

C(I,KC(R)).

Remark . Under assumptions of the lemma above, themapping t → F(t,Xt)+
∫ t
t
G(t, s,

Xs)ds is integrable over the interval I .

Remark . If F : I × Cσ → KC(R), G : I × I × Cσ → KC(R) are continuous and X ∈
C(J ,KC(R)), then the mapping t → F(t,Xt) +

∫ t
t
G(t, s,Xs)ds is bounded on I . Also, the

function t → F(t, ) +
∫ t
t
G(t, s, )ds is bounded on I .

Lemma . Assume that F : I ×Cσ → KC(R), G : I × I ×Cσ → KC(R) are continuous. An
interval-valued mapping X : J → KC(R) is called a local solution to problem (.) on J if
and only if X is a continuous interval-valued mapping and it satisfies one of the following
interval-valued integral equations:

(S)

{
X(t) = ϕ(t – t) for t ∈ [t – σ , t],
X(t) = ϕ() +

∫ t
t
(F(s,Xs) +

∫ t
t
G(t, s,Xs)ds)ds, t ∈ I,

(.)

if X is (i)-differentiable,

(S)

{
X(t) = ϕ(t – t) for t ∈ [t – σ , t],
X(t) = ϕ()� (–)

∫ t
t
(F(s,Xs) +

∫ t
t
G(t, s,Xs)ds)ds, t ∈ I,

(.)

if X is (ii)-differentiable. We remark that in (.), the following statement is hidden: there
exists the Hukuhara difference ϕ()� (–)

∫ t
t
(F(s,Xs) +

∫ t
t
G(t, s,Xs)ds)ds.

Proof We prove the case of (ii)-differentiability, the proof of the other case being similar.
Assume that X : [t, t + p] → KC(R) is a solution to problem (.). Hence X is (ii)-differ-
entiable on [t, t + p] and Dg

HX is integrable as a continuous function. Applying Theo-
rem ., we obtain that

X(t) = X(t) + (–)
∫ t

t
Dg

HX(s)ds

for every t ∈ [t, tp]. Since X(t) = ϕ() and Dg
HX(s) = F(s,Xs) +

∫ s
t
G(s, τ ,Xτ )dτ for s ∈

[t, t + p], we easily obtain

{
X(t) = ϕ(t – t) for t ∈ [t – σ , t],
X(t) = ϕ()� (–)

∫ t
t
(F(s,Xs) +

∫ t
t
G(t, s,Xs)ds)ds, t ∈ I.

To show that the opposite implication is true, let us assume that X : [t, t + p] → KC(R) is
a continuous interval-valued mapping and it satisfies equation (.). Equation (.) allows
us to claim that ϕ() = X(t) and that there exists the Hukuhara difference

ϕ()� (–)
∫ t

t

(
F(s,Xs) +

∫ t

t
G(t, s,Xs)ds

)
ds for every t ∈ [t, t + p].

http://www.advancesindifferenceequations.com/content/2014/1/177
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Now, let t ∈ [t, t + p) and h be such that t + h ∈ [t, t + p]. We observe that

X(t)�X(t + h) = (–)
∫ t+h

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds. (.)

Indeed, we have by direct computation

X(t + h) + (–)
∫ t+h

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

= ϕ()� (–)
∫ t+h

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

+ (–)
∫ t+h

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

= ϕ()� (–)
∫ t+h

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

+ (–)
∫ t+h

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

� (–)
∫ t

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

= ϕ()� (–)
∫ t

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

= X(t).

Similarly to (.), we can obtain

X(t – h)�X(t) = (–)
∫ t

t–h

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds (.)

for t ∈ (t, t + p]. Multiplying (.)-(.) by 
–h and passing to limit with h ↘ , we have

by Definition . that X is (ii)-differentiable, and consequently

Dg
HX(t) = F(t,Xt) +

∫ t

t
G(t, s,Xs)ds for t ∈ [t, t + p].

Indeed, we have, for every t ∈ [t, t + p],

lim
h→+

X(t)�X(t + h)
–h

= lim
h→+


h

∫ t+h

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds

and

lim
h→+

X(t – h)�X(t)
–h

= lim
h→+


h

∫ t

t–h

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds.

Since F , G are continuous, for h→ +, we obtain

lim
h→+

X(t)�X(t + h)
–h

= F(t,Xt) +
∫ t

t
G(t, s,Xs)ds.

http://www.advancesindifferenceequations.com/content/2014/1/177
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Proceeding as above, we can obtain

lim
h→+

X(t – h)�X(t)
–h

= F(t,Xt) +
∫ t

t
G(t, s,Xs)ds.

The proof is complete. �

Definition . Let X : J → KC(R) be an interval-valued function which is (i)-differ-
entiable. IfX and its derivative satisfy problem (.), we say thatX is (i)-solution of problem
(.). (i)-solutionX : J → KC(R) is unique if it holdsH[X(t),Y (t)] =  for anyY : J → KC(R)
which is (i)-solution of (.).

Definition . Let X : J → KC(R) be an interval-valued function which is (ii)-differ-
entiable. If X and its derivative satisfy problem (.), we say that X is (ii)-solution of
problem (.). (ii)-solution X : J → KC(R) is unique if it holds H[X(t),Y (t)] =  for any
X : J → KC(R) which is (ii)-solution of (.).

Theorem . Let ϕ(t – t) ∈ Cσ and suppose that F ∈ C(I × Cσ ,KC(R)), G ∈ C(I × I ×
Cσ ,KC(R)) satisfy the conditions: there exists a constant L >  such that

max
{
H

[
F(t,X),F(t,Y )

]
,H

[
G(t, s,X),G(t, s,Y )

]} ≤ LHσ [X,Y ]

for every t ∈ [t, t + p], (t, s) ∈ [t, t + p] × [t, t + p] and X,Y ∈ Cσ . Moreover, there ex-
ists M >  such that max{H[F(t,X), ],H[G(t, s,X), ]} ≤ M. Then the following successive
approximations given by

X̂(t) =

{
ϕ(t – t), t ∈ [t – σ , t],
ϕ(), t ∈ I,

X̂n+(t) =

{
ϕ(t – t), t ∈ [t – σ , t],
ϕ() +

∫ t
t
(F(s, X̂n

s ) +
∫ s
t
G(s, τ , X̂n

τ )dτ )ds

(.)

for the case of (i)-differentiability, and

X̃(t) =

{
ϕ(t – t), t ∈ [t – σ , t],
ϕ(), t ∈ [t, t + d],

X̃n+(t) =

{
ϕ(t – t), t ∈ [t – σ , t],
ϕ()� (–)

∫ t
t
(F(s, X̃n

s ) +
∫ s
t
G(s, τ , X̃n

τ )dτ )ds

(.)

for the case of (ii)-differentiability (where  < d ≤ p such that equation (.) is well defined,
i.e., the foregoingHukuhara differences do exist), converge uniformly to twounique solutions
X̂(t) and X̃(t) of (.), respectively, on [a,a + r] where r =min{p,d}.

Proof We prove that for the case of (ii)-differentiability, the proof of the other case is sim-
ilar. From assumptions of the theorem, we have

H
[
X̃(t), X̃(t)

]
=H

[
ϕ()� (–)

∫ t

t

(
F
(
s, X̃

s
)
+

∫ s

t
G

(
s, τ , X̃

τ

)
dτ

)
ds,ϕ()

]

http://www.advancesindifferenceequations.com/content/2014/1/177
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≤
∫ t

t

(
H

[
F
(
s, X̃

s
)
, 

]
+

∫ s

t
H

[
G

(
s, τ , X̃

τ

)
, 

]
dτ

)
ds

≤M(t – t) +M
(t – t)

!

for t ∈ [t, t + r]. Further, for every n ≥  and t ∈ [t, t + r], we get

H
[
X̃n+(t), X̃n(t)

]
=H

[∫ t

t

(
F
(
s, X̃n

s
)
+

∫ s

t
G

(
s, τ , X̃n

τ

)
dτ

)
ds,

∫ t

t

(
F
(
s, X̃n–

s
)
+

∫ s

t
G

(
s, τ , X̃n–

τ

)
dτ

)
ds

]

≤ L
∫ t

t

(
Hσ

[
X̃n
s , X̃

n–
s

]
+

∫ s

t
Hσ

[
X̃n

τ , X̃
n–
τ

]
dτ

)
ds

≤ L
∫ t

t

(
sup

θ∈[–σ ,]
H

[
X̃n(s + θ ), X̃n–(s + θ )

]
+

∫ s

t
sup

θ∈[–σ ,]
H

[
X̃n(τ + θ ), X̃n–(τ + θ )

]
dτ

)
ds

= L
∫ t

t

(
sup

r∈[s–σ ,s]
H

[
X̃n(r), X̃n–(r)

]
+

∫ s

t
sup

υ∈[τ–σ ,τ ]
H

[
X̃n(υ), X̃n–(υ)

]
dυ

)
dr.

In particular, from (.) it follows that

H
[
X̃(t), X̃(t)

] ≤ LM
(
(t – t)

!
+ 

(t – t)

!
+
(t – t)

!

)
.

Therefore, by mathematical induction, for every n ∈N and t ∈ [t, t + r],

H
[
X̃n+(t), X̃n(t)

]
≤MLn

(
(t – t)n+

(n + )!
+n λ

(t – t)n+

(n + )!
+ · · · +n λn

(t – t)n+

(n + )!
+
(t – t)n+

(n + )!

)
. (.)

In inequality (.), λ, . . . ,λn are balancing constants. We observe that for every n ∈
{, , , . . .}, the function X̃n(·) : [t –σ , t +r] → KC(R) is continuous. Indeed, since ϕ ∈ Cσ ,
X̃(t) is continuous on t ∈ [t – σ , t]. We see that

H
[
X̃(t + h), X̃(t)

]
= H

[
ϕ()� (–)

∫ t+h

t

(
F
(
s, X̃

s
)
+

∫ s

t
G

(
s, τ , X̃

τ

)
dτ

)
ds,

ϕ()� (–)
∫ t

t

(
F
(
s, X̃

s
)
+

∫ s

t
G

(
s, τ , X̃

τ

)
dτ

)
ds

]

≤
∫ t+h

t

(
H

[
F
(
s, X̃

s
)
, 

]
+

∫ s

t
H

[
G

(
s, τ , X̃

τ

)
, 

]
dτ

)
ds

≤ Mh +
Mh

!
→  as h→ +.
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Thus, by mathematical induction, for every n≥ , we deduce that

H
[
X̃n(t + h), X̃n(t)

] → 

as h → +. A similar inequality is obtained for H[X̃n(t – h), X̃n(t)] →  as h → +. In the
sequel, we shall show that for {X̃n(t)} the Cauchy convergence condition is satisfied uni-
formly in t, and as a consequence {X̃n(·)} is uniformly convergent. For n > m > , from
(.) we obtain

sup
t∈I

H
[
X̃n(t), X̃m(t)

]
= sup

t∈J
H

[
X̃n(t), X̃m(t)

] ≤
n–∑
k=m

sup
t∈J

H
[
X̃k+(t), X̃k(t)

]

≤M
n–∑
k=m

(
(t – t)k+

(k + )!
+k λ

(t – t)k+

(k + )!
+ · · · +k λk

(t – t)k+

(k + )!
+
(t – t)k+

(k + )!

)
.

The convergence of this series implies that for any ε >  we find n ∈N large enough such
that for n,m > n,

H
[
X̃n(t), X̃m(t)

] ≤ ε. (.)

Since (KC(R),H) is a complete metric space and (.) holds, the sequence {X̃n(·)} is uni-
formly convergent to a mapping X̃ ∈ C([t – σ , t + r],KC(R)). We shall show that X̃ is
(ii)-solution to (.). Since X̃n(t) = ϕ(t – t) for every n = , , , . . . and every t ∈ [t –σ , t],
we easily have X̃(t) = ϕ(t – t). For s ∈ [t, t + r] and n ∈N,

H
[∫ t

t
F
(
s, X̃n

s
)
ds,

∫ t

t
F(s, X̃s)ds

]
≤ L

∫ t

t
sup

θ∈[s–σ ,s]
H

[
X̃n(θ ), X̃(θ )

]
dθ → ,

H
[∫ t

t

∫ s

t
G

(
s, τ , X̃n

τ

)
dτ ds,

∫ t

t

∫ s

t
G(s, τ , X̃τ )dτ ds

]

≤ L
∫ t

t

∫ s

t
sup

θ∈[τ–σ ,τ ]
H

[
X̃n(υ), X̃(υ)

]
dυ ds→ 

as n→ ∞ for any t ∈ [t, t + r]. Consequently, we have

H
[
ϕ(), X̃(t) + (–)

∫ t

t

(
F(s, X̃s) +

∫ t

t
G(t, s, X̃s)ds

)
ds

]

≤H
[
X̃n(t), X̃(t)

]
+

∫ t

t

(
H

[
F
(
s, X̃n–

s
)
,F(s, X̃s)

]
+

∫ s

t
H

[
G

(
s, τ , X̃n–

τ

)
,G(s, τ , X̃τ )

]
dτ

)
ds.

We infer that

H
[
ϕ(), X̃(t) + (–)

∫ t

t

(
F(s, X̃s) +

∫ t

t
G(t, s, X̃s)ds

)
ds

]
= 
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for every t ∈ [t, t +r]. Therefore, X̃ is the (ii)-solution of (.), due to Lemma . it follows
that X̃ is the (ii)-solution of (.). For the uniqueness of the (ii)-solution X̃, let us assume
that X̃, Ỹ ∈ C([t –σ , t + r],KC(R)) are two solutions of (.). By definition of the solution,
X̃(t) = Ỹ (t) if t ∈ [t – σ , t]. Note that for t ∈ [t, t + r],

H
[
X̃(t), Ỹ (t)

]
≤ L

∫ t

t

(
sup

θ∈[s–σ ,s]
H

[
X̃(θ ), Ỹ (θ )

]
+

∫ s

t
sup

υ∈[τ–σ ,τ ]
H

[
X̃(υ), Ỹ (υ)

]
dτ

)
ds.

If we put a(s) = supr∈[s–σ ,s]H[X̃(r), Ỹ (r)], s ∈ [t, t] ⊂ [t, t + r], then we obtain

a(t)≤ L
∫ t

t

(
a(s) +

∫ s

t
a(τ )dτ

)
ds,

and by Lemma . we obtain that a(t) =  on [t, t + r]. This proves the uniqueness of the
(ii)-solution for (.) �

Remark . The existence and uniqueness results for solutions of problem (.) can be
obtained by using the contraction principle.

Now, we present the studies and results concerning the global existence and uniqueness
of two solutions for (.), each one corresponding to a different type of differentiability, by
using the contraction principle, which was studied in [] for fuzzy functional differential
equations. In the following, for a given k > , we consider the set Sk of all continuous
interval-valued functions X ∈ C([t –σ ,∞),KC(R)) such that X(t) = ϕ(t– t) on [t –σ , t]
and supt≥t–σ {H[X(t), ] exp(–kt)} < ∞. On Sk we can define the following metric:

Hk[X,Y ] = sup
t≥t–σ

{
H

[
X(t),Y (t)

]
exp(–kt)

}
, (.)

where k >  is chosen suitably later. It is easy to prove that the space (Sk ,Hk) of contin-
uous interval-valued functions X : [t,∞) → KC(R) is a complete metric space with dis-
tance (.).

Theorem . Assume that
(i) F ∈ C([t,∞)×Cσ ,KC(R)), G ∈ C([t,∞)× [t,∞)×Cσ ,KC(R)) and there exists a

constant L >  such that

max
{
H

[
F(t,X),F(t,Y )

]
,H

[
G(t, s,X),G(t, s,Y )

]} ≤ LHσ [X,Y ]

for all X,Y ∈ Cσ and t, s ≥ t;
(ii) there existM >  and b >  such that

max
{
H

[
F(t, ), 

]
,H

[
G(t, s, ), 

]} ≤M exp(bt)

for all t ≥ t, where b < k.
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Then
(a) the interval-valued functional integro-differential equation (.) has (i)-solution on

[t,∞);
(b) the interval-valued functional integro-differential equation (.) has (ii)-solution on

[t,∞) if the following condition holds:∫ t

t

(
len

(
F(s,Xs)

)
+

∫ t

t
len

(
G(t, s,Xs)

)
ds

)
ds≤ len

(
ϕ()

)
, t ≥ t. (.)

Proof Since the way of the proof is similar for both cases, we only consider the case of
(ii)-differentiability for X. Note that the space (Sk ,Hk) under inequality (.) depends on
the positive constant k, the functions F ,G and the initial condition ϕ. In (Sk ,Hk), the conti-
nuity of F ,G guarantees that Sk under inequality (.) is a closed set in C([t,∞),KC(R)),
so that Sk under inequality (.) is a complete metric space considering the distance Hk .
We consider the complete metric space (Sk ,Hk) and define an operator

T : Sk → Sk ,

X → TX

given by

(TX)(t) =

{
ϕ(t – t) if t ∈ [t – σ , t],
ϕ()� (–)

∫ t
t
(F(s,Xs) +

∫ s
t
G(s, τ ,Xτ )dτ )ds if t ≥ t.

We can choose a big enough value for k such that T is a contraction, so the Banach fixed
point theorem provides the existence of a unique fixed point for T, that is, a unique solu-
tion for (.).
First, we shall prove that T(Sk) ⊆ Sk , i.e., the operator T is well defined, with assumption

k > b. Indeed, let X ∈ Sk . For each t ≥ t, we get

Hk
[
(TX)(t), 

]
= sup

t≥t

{
H

[
ϕ()� (–)

∫ t

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds, 

]
exp(–kt)

}

≤ sup
t≥t

{(
H

[
ϕ(), 

]
+

∫ t

t

{
H

[
F(s,Xs),F(s, )

]
+H

[
F(s, ), 

]}
ds

+
∫ t

t

(∫ s

t

{
H

[
G(s, τ ,Xτ ),G(s, τ , )

]
+H

[
G(s, τ , ), 

]}
dτ

)
ds

)
exp(–kt)

}

≤ sup
t≥t

{(
H

[
ϕ(), 

]
+ L

∫ t

t
Hσ [Xs, ]ds +

M
b
exp(bt)

+ L
∫ t

t

(∫ s

t
Hσ [Xτ , ]dτ

)
ds +

M
b

exp(bt)
)
exp(–kt)

}

≤ sup
t≥t

{(
H

[
ϕ(), 

]
+ L

∫ t

t
sup

θ∈[–σ ,]
H

[
X(s + θ ), 

]
ds +

M
b
exp(bt)

+ L
∫ t

t

(∫ s

t
sup

θ∈[–σ ,]
H

[
X(τ + θ ), 

]
dτ

)
ds +

M
b

exp(bt)
)
exp(–kt)

}
.
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Since X ∈ Sk , there exists ρ >  such thatH[X(t), ] < ρ exp(kt) for all t ≥ t –σ . Therefore,
for all t ≥ t, we obtain

Hk
[
(TX)(t), 

]
≤ sup

t≥t

{(
H

[
ϕ(), 

]
+

(
 +


k

)
ρL
k

exp(kt) +
(
 +


b

)
M
b
exp(bt)

)
exp(–kt)

}
≤H

[
ϕ(), 

]
+

(
 +


b

)

b
(M + ρL) ≤ K +

(
 +


b

)

b
(M + ρL) < ∞.

We infer that TX ∈ Sk .
Next, we shall prove that T is a contraction by metric Hk . Let X,Y ∈ Sk . Then, for θ ∈

[–σ , ], H[(TX)(t + θ ), (TY )(t + θ )] = . For each t ≥ t, we have

Hk
[
(TX)(t), (TY )(t)

]
= sup

t≥t

{
H

[
(TX)(t), (TY )(t)

]
exp(–kt)

}
= sup

t≥t

{
H

[
ϕ()� (–)

∫ t

t

(
F(s,Xs) +

∫ s

t
G(s, τ ,Xτ )dτ

)
ds,

ϕ()� (–)
∫ t

t

(
F(s,Ys) +

∫ s

t
G(s, τ ,Yτ )dτ

)
ds

]
exp(–kt)

}

≤ sup
t≥t

{(
L

∫ t

t

(
Hσ [Xs,Ys] +

∫ s

t
Hσ [Xτ ,Yτ ]dτ

)
ds

)
exp(–kt)

}

= sup
t≥t

{(
L

∫ t

t
sup

θ∈[–σ ,]
H

[
X(s + θ ),Y (s + θ )

]
ds

+ L
∫ t

t

(∫ s

t
sup

θ∈[–σ ,]
H

[
X(τ + θ ),Y (τ + θ )

])
ds

)
exp(–kt)

}

= sup
t≥t

{(
L

∫ t

t
sup

r∈[s–σ ,s]
H

[
X(r),Y (r)

]
dr

+ L
∫ t

t

(∫ s

t
sup

υ∈[τ–σ ,τ ]
H

[
X(υ),Y (υ)

]
dυ

)
ds

)
exp(–kt)

}

≤ LHk[X,Y ] sup
t≥t

(∫ t

t

(
exp

(
k(r – t)

)
+

∫ s

t
exp

(
k(υ – t)

)
dυ

)
dr

)
≤ ( + k)LHk[x, y]

k
.

Choosing k > b and (+k)L
k < , it follows that the operator T on Sk is a contraction. Using

the Banach fixed point theorem provides the existence of a unique fixed point for T, and
the unique fixed point of T is in the space Sk , that is, a unique solution for (.) in the case
of (ii)-differentiability. �

4 Illustrations
In this part, some simple examples are given to illustrate the theory of IFIDEs. We shall
consider IFIDEs (.) with (i) and (ii) derivatives, respectively. Let us start the illustrations
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with considering the following interval-valued functional integro-differential equation:{
Dg

HX(t) = F(t,Xt) +
∫ t
t
k(t, s)Xs ds, t ∈ J ,

X(t) = ϕ(t – t), t ∈ [–σ , t],
(.)

where F : I×Cσ → KC(R), k(t, s) : I× I → R. LetX(t) = [X(t),X(t)]. By using Corollary .,
we have the following two cases.
If we consider the derivative ofX(t) by using (i)-differentiability, then fromCorollary .,

we have Dg
HX(t) = [X ′(t),X ′(t)] for t ≥ t. Therefore, (.) is translated into the following

delay integro-differential system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X ′(t) = F(t,Xt ,Xt) +

∫ t
t
k(t, s)Xs ds, t ≥ t,

X ′(t) = F(t,Xt ,Xt) +
∫ t
t
k(t, s)Xs ds, t ≥ t,

X(t) = ϕ(t – t), σ ≤ t ≤ t,
X(t) = ϕ(t – t), σ ≤ t ≤ t.

(.)

If we consider the derivative of X(t) by using (ii)-differentiability, then from Corol-
lary ., we have Dg

HX(t) = [X ′(t),X′(t)] for t ≥ t. Therefore, (.) is translated into the
following delay integro-differential system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X ′(t) = F(t,Xt ,Xt) +
∫ t
t
k(t, s)Xs ds, t ≥ t,

X ′(t) = F(t,Xt ,Xt) +
∫ t
t
k(t, s)Xs ds, t ≥ t,

X(t) = ϕ(t – t), σ ≤ t ≤ t,
X(t) = ϕ(t – t), σ ≤ t ≤ t,

(.)

where

k(t, s)Xs =

{
k(t, s)Xs, k(t, s)≥ ,
k(t, s)Xs, k(t, s) < ,

k(t, s)Xs =

{
k(t, s)Xs, k(t, s)≥ ,
k(t, s)Xs, k(t, s) < .

Remark . If we ensure that the solutions (X(t),X(t)) of systems (.) and (.) respec-
tively are valid sets of interval-valued functions and if the derivatives (X′(t),X ′(t)) are valid
sets of interval-valued functions with two kinds of differentiability respectively, then we
can construct the solution of interval-valued functional differential equation (.).

Next, we shall consider two examples being a simple illustration for the theory of
interval-valued functional integro-differential equations.

Example . Let us consider the linear interval-valued functional integro-differential
equation (with k(t, s)≡ ) under two kinds of Hukuhara derivatives{

Dg
HX(t) = –λX(t – 

 ),
X(t) = ϕ(t), t ∈ [– 

 , ],
(.)

where ϕ(t) = [–, ], λ > . In this example we shall solve (.) on [, ].
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Figure 1 (i)-solution to (4.4) (λ = 0.5).

Case . Considering (i)-differentiability, problem (.) is translated into the following
delay system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

X ′(t) = –λX(t – 
 ), t ≥ ,

X ′(t) = –λX(t – 
 ), t ≥ ,

X(t) = –, – 
 ≤ t ≤ ,

X(t) = , – 
 ≤ t ≤ .

(.)

Solving delay system (.) by using the method of steps, we obtain a unique (i)-solution to
(.) defined on [, ] and it is of the form

X(t) =

{
[–( + λt), ( + λt)] for t ∈ [,  ],
[–( + λt + λ(t–)

 ),  + λt + λ(t–)
 ] for t ∈ [  , ].

The (i)-solution is illustrated in Figure .
Case . Considering (ii)-differentiability, problem (.) is translated into the following

delay system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ′(t) = –λX(t – 

 ), t ≥ ,
X ′(t) = –λX(t – 

 ), t ≥ ,
X(t) = –, – 

 ≤ t ≤ ,
X(t) = , – 

 ≤ t ≤ .

(.)

We obtain a unique (ii)-solution to (.) defined on [, ] and it is of the form

X(t) =

{
[λt – ,  – λt] for t ∈ [,  ],
[–( – λt + λ(t–)

 ),  – λt + λ(t–)
 ] for t ∈ [  , ].

The (ii)-solution is illustrated in Figure .

Example . Let us consider the linear interval-valued functional integro-differential
equation under two kinds of Hukuhara derivatives{

Dg
HX(t) = X(t – 

 ) + α
∫ t
t
e(s–t)X(s – 

 )ds,
X(t) = ϕ(t), t ∈ [– 

 , ],
(.)

where ϕ(t) = [,  – t], α ∈ R\{}. In this example we shall solve (.) on [, /].
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Figure 2 (ii)-solution to (4.4) (λ = 0.5).

Case . (α > ) From (.), we get⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ′(t) = X(t – 

 ) + α
∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X ′(t) = X(t – 
 ) + α

∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X(t) = , –
 ≤ t ≤ ,

X(t) =  – t, –
 ≤ t ≤ .

(.)

Following the method of steps, we obtain the (i)-solution to (.) defined on [, /] and
it is of the form

X(t) =
[
 +

t

+

α


(
 – e–t

)
,  + t –

t


+ α

(
 – t – e–t

)]
, t ∈ [, /].

From (.) we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ′(t) = X(t – 

 ) + α
∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X ′(t) = X(t – 
 ) + α

∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X(t) = , –
 ≤ t ≤ ,

X(t) =  – t, –
 ≤ t ≤ .

(.)

The (ii)-solution to (.) defined on [, /] is of the form

X(t) =
[
 + t –

t


+ α

(
 – t – e–t

)
,  +

α


(
 – e–t

)]
, t ∈ [, /].

In Figures  and , (i)-solution and (ii)-solution curves of (.) are given.
Case . (α < ) From (.) we get⎧⎪⎪⎪⎨⎪⎪⎪⎩

X ′(t) = X(t – 
 ) + α

∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X ′(t) = X(t – 
 ) + α

∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X(t) = , –
 ≤ t ≤ ,

X(t) =  – t, –
 ≤ t ≤ .

(.)

By solving delay integro-differential system (.), we obtain (i)-solution

X(t) =
[
 +

t

+ α

(
 – t – e–t

)
,  + t –

t


+

α


(
 – e–t

)]
, t ∈ [, /].

The (i)-solution of (.) on [–/, /] is illustrated in Figure .
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Figure 3 Graphs of X(t), X(t) for t ∈ [ –12 , 12 ],
α = 0.1.

Figure 4 Graphs of X(t), X(t) for t ∈ [ –12 , 12 ],
α = 0.1.

Figure 5 Graphs of X(t), X(t) for t ∈ [ –12 , 12 ],
α = –0.1.

From (.) we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ′(t) = X(t – 

 ) + α
∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X ′(t) = X(t – 
 ) + α

∫ t
 e

(s–t)X(s – 
 )ds, t ≥ ,

X(t) = , –
 ≤ t ≤ ,

X(t) =  – t, –
 ≤ t ≤ .

(.)

By solving delay integro-differential systems (.), we obtain (ii)-solution

X(t) =
[
 + t –

t


+

α


(
 – e–t

)
,  +

t

+ α

(
 – t – e–t

)]
, t ∈ [, /].

The (ii)-solution of (.) on [–/, /] is illustrated in Figure .
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Figure 6 Graphs of X(t), X(t) for t ∈ [ –12 , 12 ],
α = –0.1.

5 Conclusion
In this study, we have established the local and global existence and uniqueness results
of two solutions for interval-valued functional integro-differential equations. For the lo-
cal existence and uniqueness, we use the method of successive approximations under the
Lipschitz condition, and for global existence and uniqueness, we use the contraction prin-
ciple under suitable conditions. In our further work, we would like to use these results
to study the local and global existence and uniqueness results of solutions for interval-
valued functional integro-differential equations under Caputo-type interval-valued frac-
tional derivatives.
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