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Abstract

In this paper, a class of neutral delay Hopfield neural networks with time-varying
delays in the leakage term on time scales is considered. By utilizing the exponential
dichotomy of linear dynamic equations on time scales, Banach's fixed point theorem
and the theory of calculus on time scales, some sufficient conditions are obtained for
the existence and exponential stability of almost periodic solutions for this class of
neural networks. Finally, a numerical example illustrates the feasibility of our results
and also shows that the continuous-time neural network and the discrete-time
analogue have the same dynamical behaviors. The results of this paper are
completely new and complementary to the previously known results even when the
time scale T=R or Z.
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1 Introduction

The dynamical properties for delayed Hopfield neural networks have been extensively
studied since they can be applied into pattern recognition, image processing, speed detec-
tion of moving objects, optimization problems and many other fields. Besides, due to the
finite speed of information processing, the existence of time delays frequently causes oscil-
lation, divergence, or instability in neural networks. Therefore, it is of prime importance to
consider the delay effects on the stability of neural networks. Up to now, neural networks
with various types of delay have been widely investigated by many authors [1-20].

However, so far, very little attention has been paid to neural networks with time delay in
the leakage (or ‘forgetting’) term [21-35]. Such time delays in the leakage terms are diffi-
cult to handle and have been rarely considered in the literature. In fact, the leakage term
has a great impact on the dynamical behavior of neural networks. Also, recently, another
type of time delays, namely, neutral-type time delays which always appear in the study of
automatic control, population dynamics and vibrating masses attached to an elastic bar,
etc., has drawn much research attention. So far there have been only a few papers that have
taken neutral-type phenomenon into account in delayed neural networks [33—43].

In fact, both continuous and discrete systems are very important in implementation and
applications. But it is troublesome to study the existence of almost periodic solutions for
continuous and discrete systems respectively. Therefore, it is meaningful to study that on
time scales which can unify the continuous and discrete situations (see [44—50]).
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To the best of our knowledge, up to now, there have been no papers published on the
existence and stability of almost periodic solutions to neutral-type delay neural networks
with time-varying delays in the leakage term on time scales. Thus, it is important and, in
effect, necessary to study the existence of almost periodic solutions for neutral-type neural
networks with time-varying delay in the leakage term on time scales.

Motivated by above, in this paper, we propose the following neutral delay Hopfield neu-
ral networks with time-varying delays in the leakage term on time scale T:

() = —ei(O)xi (£ - mi0)) Zal, £)fi (i (¢ - 75(8)))

+Zd,,(t) f 0 ()l (%;(5)) As+2b,,(t)g, A(t-oy(1)))

j=1 j=1

+ Ze,}(t)/ Sl,(s)k, A(s)) As+ (), i=1,2,...,n, (1.1)

t=g(0)

where T is an almost periodic time scale that will be defined in the next section, x;()
denotes the potential (or voltage) of cell i at time ¢, ¢;(t) > 0 represents the rate at which
the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs at time £, ;(¢), b;(£), d;;(t) and e;(£) represent the delayed
strengths of connectivity and neutral delayed strengths of connectivity between cell i and
j at time ¢, respectively, 6;(-) and &;(-) are the kernel functions determining the distributed
delays, f;, g, #; and k; are the activation functions in system (1.1), [;(¢) is an external input
on the ith unit at time ¢, 7;;(t) > 0 and 0y;(t) > 0 correspond to the transmission delays of
the ith unit along the axon of the jth unit at time ¢.

If T = R, then system (1.1) is reduced to the following continuous-time neutral delay
Hopfield neural network:

x(8) = —ciBxi(t = i) + Y @yt (xi(t - (1))

j=1

+Zd,,(t) / 0;() 1 (x;(s)) ds+Zbl,(t)g, (- 0y(t)))

j=1 j=1
n t

+ ) ey(t) f Ej(9)k;(xi(9)) ds + (), i=1,2,...,m, 1.2)
j=1 £=g;i(8)

and if T = 7Z, then system (1.1) is reduced to the discrete-time neutral delay Hopfield neural
network

Axi(t) = —c(t) xl t —ni(t Zﬂu x] t - Tt](t)))

+Zd,, £) Z 0;(s)hj(x;(s)) + Zb,,(t)g, Axj(t - 0y(1)))

s=t-8;(t) j=1

Y ei(t) Y EOk(Ax() + L), i=12,...,n (1.3)

U stego
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where t € Z and Ax(£) = x(t + 1) — x(£). When 5;(t) =0, d;;(t) =0, e;(t) =0, i,j = 1,2,...,n,
Bai [37] and Xiao [38] studied the almost periodicity of (1.2), respectively. However, even
when ;(£) =0,i=1,2,...,n, the almost periodicity to (1.3), the discrete-time analogue of
(1.2), has been not studied yet.

For convenience, for any almost periodic function f(¢) defined on T, we define /= =
infier [F(O), £+ = super [FD).

The initial condition associated with system (1.1) is of the form
x:(t) = @i(t), xiA(t) = <piA(t), te[-,0]lr,i=1,2,...,n,

where ¢;(-) denotes a real-value bounded A-differentiable function defined on [—¢, 0] and
v=maxi<ij<n{n;, 750,85, 57}

Throughout this paper, we assume that:

(H1) ci(t) > 0 with —¢c; e R*, n;(£) = 0, 7;;(t) = 0, 055(£) = 0, §;;(£) = 0, &;(£) = 0, a;(¢), by(t),
dij(), e;(t) and I;(¢) are all almost periodic functions on T, £ — n;(t) € T, t — 7;i(t) € T,
t—oy(t)eT, t-8(t)eT, t—¢g(t) e Tfort €T, i,j=1,2,...,1.

(Hy) There exist positive constants L; > 0, /; > 0, Lf’ >0, ll'f >0 suchthatfori=1,2,...,n,

fi(®) - fi®)| < Lilx -yl |gi(x) - @) < Lilx -y,
i) = )| < LM —yl, k() - k)| < Elx -y,

where x,y € R and f;(0) = g;(0) = /;(0) = k;(0) = 0.
(H3) Fori,j=1,2,...,n, the delay kernels 6;;, &; : T — R are continuous and integrable with

t t
0< / |0;(s)| As < 6y, 0< / |&5(s)| As < &;.
-5 -

J y

Our main purpose of this paper is to study the existence and global exponential stabil-
ity of the almost periodic solution to (1.1). Our results of this paper are completely new
and complementary to the previously known results even when the time scale T = R or Z.
The organization of the rest of this paper is as follows. In Section 2, we introduce some
definitions and make some preparations for later sections. In Section 3 and Section 4, by
utilizing Banach’s fixed point theorem and the theory of calculus on time scales, we present
some sufficient conditions which guarantee the existence of a unique globally exponen-
tially stable almost periodic solution for system (1.1). In Section 5, we present examples to
illustrate the feasibility and effectiveness of our results obtained in previous sections. We
draw a conclusion in Section 6.

2 Preliminaries
In this section, we shall first recall some basic definitions and lemmas which will be useful
for the proof of our main results.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators o, p : T — T and the graininess t : T — R* are defined, respectively, by

o(t)=inf{seT:s>t}, pt)=sup{seT:s<t} and wn()=0c(t)-t.
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A point t € T is called left-dense if ¢ > inf T and p(t) = ¢, left-scattered if p(t) < ¢, right-
dense if t < sup T and o (¢) = ¢, and right-scattered if o () > £. If T has a left-scattered maxi-
mum 1, then T* = T \ {m}; otherwise T* = T. If T has a right-scattered minimum 1, then
Ty =T\ {m}; otherwise Ty = T.

A function f : T — R is right-dense continuous provided it is continuous at right-dense
point in T and its left-side limits exist at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function
onT.

For y: T — R and t € TX, we define the delta derivative of y(¢), y* (), to be the number
(if it exists) with the property that for a given ¢ > 0, there exists a neighborhood U of ¢
such that

(e @) =¥)] -y*®)[o&) = s]| < e|o () 5|

forallse U.

If y is continuous, then y is right-dense continuous, and if y is delta differentiable at ¢,
then y is continuous at .

Let y be right-dense continuous. If Y2 (£) = y(¢), then we define the delta integral by

t
/ y(s)As=Y(t) - Y(a).
A function r: T — R is called regressive if

1+ u(@®)r(t) #0

for all £ € TX. The set of all regressive and rd-continuous functions r : T — R will be de-
noted by R = R(T) = R(T,R). We define the set R* = R*(T,R) ={re R: 1+ u(t)r(t) >
0,vteT}.

If r is a regressive function, then the generalized exponential function e, is defined by

e(t,s) = exp{/t Eu(,)(r(f))AT} fors,t €T,

with the cylinder transformation

Eu(2) =

Log(;;hz) if h ?, 0,
z ifh=0.

Let p,q: T — R be two regressive functions, we define

PO q:=p+q+upq op:=— ,  pOq:=pd(O9).

Then the generalized exponential function has the following properties.

Definition 2.1 [51] Let p,q: T — R be two regressive functions, define

pOq=p+q+upq Oop=- , pPOq=pd(O9).
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Lemma 2.1 [51] Assume that p,q:T — R are two regressive functions, then
(1) eo(t,s) =1ande,(t,t) =1;
(2) eyo(t),s) = (1 + u(@p))ey(t; s);
(3) epltys) = o (st = egp(s, b);
(4) ey(t, s)ep(s, r) =ey(t,r);
(5) (ecp(t,9)™ = (GP)(t)eep(t s);
(6) ifa,b,ceT, then fa p(t)e,(c,o (b)) At = e,(c,a) —e,(c, b).

Definition 2.2 [51] Assume that f: T — R is a function and let ¢ € T*. Then we define
f2(t) to be the number (provided it exists) with the property that given any ¢ > 0, there is
a neighborhood U of ¢ (i.e., U = (¢ — §,¢t + §) N T for some § > 0) such that

[ (c®) —f©)] -F2B)[o) ~s]| <e|o(t) -]

for all s € U. We call f2(t) the delta (or Hilger) derivative of f at £. Moreover, we say that
f is delta (or Hilger) differentiable (or, in short, differentiable) on T* provided £ (t) exists
for all ¢ € TX. The function f* : TX — R is then called the (delta) derivative of f on T*.

Definition 2.3 [52] A time scale T is called an almost periodic time scale if
[M:={reR:ttteTVteT}#{0}.

Definition 2.4 [52] Let T be an almost periodic time scale. A function f € C(T,E") is
called an almost periodic function if the e-translation set of

E(e,f)={reN:|f(t+7)-f(t)| <&Vt € T}

is a relatively dense set in T for all ¢ > 0; that is, for any given ¢ > 0, there exists a constant
() > 0 such that each interval of length I/(¢) contains a t(¢) € E(¢,f) such that

[f(t +7T) —f(t)| <g, VteT.
7 is called the e-translation number of f and [(¢) is called the inclusion length of T'(¢, f).
Definition 2.5 [52] Let A(¢) be an # x n rd-continuous matrix on T, the linear system
x2) =A@)x@), teT (2.1)

is said to admit an exponential dichotomy on T if there exist positive constants k, «, pro-
jection P and the fundamental solution matrix X(¢) of (2.1), satisfying

||X(t)PX’1 (0 (s)) ||0 < kegy (t, o(s)), s, t €T, t>o0(s),

XU -P)X (o (s)) ||0 <kega(o(s),t), s,teT,t<als),

where || - |lo is a matrix norm on T (say, for example, if A = (4;}),.»m, then we can take

IAllo = (0 Y7 lagl)?).

Page 5 of 22
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Consider the following almost periodic system:
22t =A@t)x(t) +f(t), teT, (2.2)
where A(¢) is an almost periodic matrix function, f(£) is an almost periodic vector function.

Lemma 2.2 [52] Ifthe linear system (2.1) admits exponential dichotomy, then system (2.2)
has a unique almost periodic solution

x(t) = / X()PX! (O’ (s))f(s)As - / XU -P)x! (a(s))f(s)As,

where X(t) is the fundamental solution matrix of (2.1).

Lemma 2.3 [53] Let ¢;(t) be an almost periodic function on T, where ¢;(t) > 0, —¢;(t) € R*,
i=1,2,...,n,Vt € T and min <;<, {inf,er ¢;(¢)} = 1 > 0, then the linear system

x%(t) = diag(—c1(£), —¢2(0); ..., —ca(£))x() (2.3)
admits an exponential dichotomy on T.
One can easily prove the following.

Lemma 2.4 Suppose that f(t) is an rd-continuous function and c(t) is a positive rd-
continuous function satisfying —c(t) € R*. Let

a0) - / eo(t,0(9)f(5)As,

where ty € T, then

g () =f(t) +/ [—c(t)e_c(t,a(s))f(s)]As.

to

3 Existence of almost periodic solutions
Let AP(T) = {x(¢) € C(T,R) : x(¢) is a real-valued, almost periodic functionon T}, Y =
{x(2) € CY(T,R) : x(2), x*(t) € AP(T)} and

X= {‘P = ((pl(t),goz(t),...,w,,(t))T c@i(t)eY,i= 1,2,...,n}.

For V¢ € X, if we define induced modulus |l¢||x = max{||¢|lo, |¢* [0}, where

o le@l, = max|e)]

1<i<n

lello = sup |p(2)
teT
and @2(¢) = (p{(), 2 (2), ..., 92 (£))T, then X is a Banach space.
Theorem 3.1 Assume that (H,)-(H3) and

_ ) 1 Gy (ot noo_ty nopy. noogvrhp. no otk
(Hs) r=maxi<i<y max{g, 1+ E}(ci nf o agli+ 3L b+ L di L0+ Y el x
;) <1
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hold, then there exists exactly one almost periodic solution of system (1.1) in the region
Xo = {¢(®) | ¢ - ¢ollx < {%}, where

I ct

R = max max{ =, I <1 + —’) },
1<i<m c: C,
- 13 13

t t !
$o = (f I1(s)e_q(t,U(S))ASv--r/ In(S)e—Cn(t'U(s))As> ‘

Proof Rewrite (1.1) in the form

t

xlA(t) = _Ci(t)xi(t) + Ci(t) A(S)As + Zﬂt] t)f x} rl]( )))

£=n;(£) j=1

+Zd,, (t) 0 () (%;(s)) As+2b,,(t gi(x (£ - 05(0)))

t-8;5(t) =1

+Ze,,(t)/ Ei(©)ki(x1 () As + I(t), i=1,2,...,m

t=g(0)

For any ¢ € X, we consider the following system:

t

X2 (t) = —ci()xi(t) + ci(t) A(s)As + Z“u (¢5(t - 75(0)))

t=n;(t)

+Zd,,t) 0;(s)j (¢ ( As+2b,,(tg, o2 (t—o0;(t)))

j=1
+Ze,, ® Ei(©ki(¢ () As + (1), i=1,2,...,n. (3.1)
i(®)

Since min;<;<, {inf,cr ¢;(£)} > 0, it follows from Lemma 2.2 and Lemma 2.3 that system (3.1)

has a unique almost periodic solution which can be expressed as follows:

() = (L ©,450),...,222)",

n

where

xf-b(t) = / e (t,a(s)) |:ci(s) ¢ (u)Au + Zal](s)f qb, - Ty s)))

o0 s=n;(s

+ Z diy(s) / 0wy (@5 () A + Z by(s)gi (" (s - 03(s)))

j=1

+ Z e,,(s)/

= {t/

EL/(M)/( ®; (u))Au+I(s):|As, i=1,2,...,n

Now, we define a mapping 7" : Xo — Xg by (T¢)(¢) = x2(t), Vo € X,.
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By the definition of || - ||x, we have

lgollx = max{ligollo, |45, }
/t Ii(s)e_, (t,o(s))As

oo

’

= maxy sup max
teT 1=i=n

(t)—/t ci(t)Ii(s)e_cl.(t,a(s))As

o0

I o1, ¢
<maxymaxj-—, max [ |1+ —= =R.
1<izn| 1<i<n C;

Hence, forany ¢ € Xo = {¢ | ¢ € X, [|¢ — dollx < 1= r}, one has

Sup max
teT 1<i<n

TR R
I61% < ligollx + 16 - dollc < R+ +— = ‘
-r 1l-r

Next, we will show that T'(X,) C Xo. In fact, for any ¢ € X, we have

IT® - gollo
t s
= sup max { / e, (t,o(s)) |:c,'(s) R (u)Au
teT 1=i=n o) s=1;(s)

+ Zdu(s / 0, ()i (d;(w)) Au + Z‘ bi(9)g (97 (s - 03(s)))
; Z e55) f

dij(s j=1
= {z/ }

<supmax{/ e_,(t, o(s))|: A“On, +Zﬂ Lj ||¢’||0+Zb Ll ¢® Ho

teT 15i<n

Ei(w)k;( ?; (M))Auj| As

+ Zd;Lf@,nmm + Z e IIO}AS}
t
<sup max{/ e_,(t,0(s)) (c n +Za L +Zblll

teT 1=i=n

+ Zdll i 03 + Ze;l/két/) ||¢||XAS}

1<i<n

< max{ (c n +ZallL +Zbul +Zd;Llhel,+Ze,;1fgl,)}||¢||X

and

[(T¢ —¢0)?,

ci(t) ¢ W) Au+ Y ay(O)fi((t - 75(0)))
j=1

t-n;(t)

= sup max {

teT 1<i<n

(3.2)

Page 8 of 22
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+Zdl,(t) / 0; ()1 (x;(s)) As+Zb,, £)gi (% (£ - 0y1(1)))
j=1

j=1

+ Zel,(t) / £/ (x2(9) As

f‘{t/

_/t ci(t)e_ci(t,a(s)) |:ci(s) ' qbiA(u)Au

) 5-1;(s)

+Za,, (65 - 75(5))) Zd:,(s) / 6,00 (0)) A

+Zbl,(s)g, (- 03()) Zel,(s) /

S{L}

Sl](u)k é; (u))Au:| As

|

n n
o+ + + +1hp + 1k
<sup 1n<1;a<>;[ <ci ni + Z“szi + Zbijl,- + ZdUL] 0 + Zeul] Sl,) lollx
tet j=1 j=1 j=1
{o.¢]

t
’ C:r/ E-ci (t’a(s) (c r)l + ZallL + sz}l
+ Zd;l‘] 9‘1 + Ze;l]k&}) ||¢||XAS]

h k
51123{<1+ —) (c 0 +ZauL +Zb i +Zd;L]9,,+Ze;1] s,,)}nqsnx.

Thus, we obtain

I1Té - ¢ollx
=max{||7¢ - ¢ollo,

(To - ¢0)* |, }

1 c
< max maxy —,1+ —
1<i<n z_ L_

x (ajnl + Za L+ Zbul + Zd;L,he,, + Ze;l]k&l,) léllx

R
=gl < T

which implies (T'¢) € Xy, so the mapping 7 is a self-mapping from X, to X,.
Finally, we prove that T is a contraction mapping. Taking ¢, ¥ € Xy, we have that

ITé—T¥lo
+1h + 7k
<m{ ( i +Za L +sz,l +Zd,,L,0u+Z ,,l,su)}w—wnx

=rl¢-¥lx

Page 9 of 22
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and

[(Te - Tv)* |,
< max { <1 + —) (c n+ Z“;,L + Zbul + Zd;LIhH,, + Zeﬂf%) }
<i< =
x = lix
=rl¢-¥lx.

Noticing that r < 1, it means that 7 is a contraction mapping. Thus, there exists a unique
fixed point ¢ € X, such that T¢ = ¢. Then system (1.1) has a unique almost periodic so-
lution in the region Xy = {¢(t) € X | [[p — doll < 1= r} This completes the proof. (|

4 Exponential stability of the almost periodic solution

Definition 4.1 The almost periodic solution %(£) = (¥;(£), %2(t), ..., %,(£))T of system (1.1)
with initial value @(¢) = (@1(2), @a2(t), ..., @.(t))T is said to be globally exponentially sta-
ble. If there exist positive constants A with ©A € R* and M > 1 such that every solution
x(2) = (x1(£), %2(2), . .., %,,(£)) T of system (1.1) with initial value ¢(t) = (¢1(£), 92(2), ..., 0. ()T
satisfies

() - %(2) ||, < Mees (t, t) 1 lIx,  VE € [—1,+00) g, £ > to,
where

(%(6) %) [},

”x(t) —x(t) ”1 = max{ ”x(t) —x(t)

0’

1l =max{ sup max|0) - @], sup max|o?(0) - (@) )]
te[-,0]y 1=i=7 tel0l 15

and tg € [, 0].

Theorem 4.1 Assume that (Hy)-(Ha) hold, then system (1.1) has a unique almost periodic
solution which is globally exponentially stable.

Proof From Theorem 3.1, we see that system (1.1) has at least one almost periodic solution
x(t) = (x1(£), %2(2), ..., x,(t))T. Suppose that x(£) = (x;(2), %2(t), ..., %,(£))T is an arbitrary so-
lution. Set y;(¢) = x;(t) — x:(¢), i =1,2,..., n, then it follows from system (1.1) that

i) = 22 (0) - &1 (0)

= —ci(Oxi(t—mi(®) + Y ag@)f (x(t - 74(8)))

j=1

+ Zdl,(t) / 0, ()1 (x;(s)) As+Zbl}(t)g] ()

j=1 j=1

+Ze,,(t) / E5(6)K (2(5)) As + (O (¢ - mi(0)

t=t;i(t)
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= ag®)fi (%t - T(0)) Z bi(Og (% (t - 03(2)))

j=1

—Z@n/ 65y (5(5)) As - Z%m/ £/ (52(9) As

t=z;(t)

= —ci(t)yi(t — ni(£)) }:%mv%t'MM)f@ﬁ—mmW
+Zmﬂg (t-0()) - (% (£ - 03(0)))]

+ Zdu(t) 0;(s)[ 1y (x;(s)) = 1y (%;(5)) | As

t-5;(0)

+Ze,,(t) / Ei(9) [k (1 (9)) — ki (% () ] As

12 ft]

= _Cz(t)yz(t ni t) Za’/ t)F )’; t tl]( )))

j=1

+2bl, 07 (- 0,(0) Zdu [ eor6e)as
+Zel,(t/

12 Cl/(

)&, K; (77 (s)) As

wherei=1,2,...,nand fori,j=1,2,...,n,

Ei(5(t = 7®)) = (5 (¢ = 5(8)) + % (¢ - 7(®))) — £ (%:(t - 75(0)))
g} (t—050)) =g} (£ = 05(0) + %7 (¢ - 0())) — (%" (¢ — 03(8))),
H(y)(9) = I (x(9) = (%), K507 (6)) = ki (%7 (9)) = K (& (9))-

From (H;) we have that for i,j =1,2,...,n,

B0t = w®))] < Li[y (£ — 5(0) |,
|G (" (¢ = 03(®))) | < Gy} (£ = 030))

and

[ 0ys)| = L7 1

K0 @) <] o)

The initial condition of (4.1) is

vilt) =) - @), YO =9 O -¢ ), tel-,0lni=12,...,n

(4.1)
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Let ©; and A; be defined by

Oiw)=¢ —w- exp(w sup u(s)) (c;' n; exp(wn;')
seT

+ Z%L exp a)t Zbl]l exp wo ] )

j=1 j=1

+ Zd,,L] Oexp(w) + Zel} ; E; exp(w)) i=1,2,...,n
j:

j=1

and

seT

A(w)=¢; —w- <c:' exp (w sup u(s)) +c — a)) (c;'ni* exp(wn;')

+ ZaUL exp( oty Zbul exp a)ol])
j=1 j=1

+Zdu ;0 exp(e Ze;llkfl}exp ), i=12,...,n

By (H3), fori=1,2,...,n, we get

0,(0)=c¢; - (c;'r/l + Z%L + Zb i+ Zd;LIhGU + Zel] ; Eu) >0
and

Ai0)=c; - (cl’r +c; (c nl+ ZaUL +Zb 1 +Zd;Llh9,, + Zew&,,)

Since ®;, A; are continuous on [0, +00) and ®;(w), O;(w) - —00, as w — +00, so there
exist w;, w; > 0 such that ®;(w;) = Aj(w]) = 0 and O;(w) > 0 for w € (0, w;), Ai(w) > 0 for
we0,0),i=1,2,...,n

By choosing a = min{wy, wy,...,w,, of, w},..., 0}, we have ©;(a) > 0, Aia) >0, i =
1,2,...,n. So, we can choose a positive constant 0 < A < min{a, min;<;<,{c; }} such that

®;(A) >0, A;(A)>0, i=1,2,...,n,

which implies that

A
i j=1 J=1

+ Zd;LIhH,, exp() + Zeu IE; exp(,\)> <1 (4.2)

j=1
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and

+ A
(1 LG exp( fupseT M(S))) <c;77;r exp(An}) Z%L exp(kt )

c; —A
13 11

+ Zbl]l exp Aal] Zd;L]hGU exp(L) + Zeu ; Sl, exp A)) <1, (4.3)

j=1 j=1

where i=1,2,...,n. Let

¢

M:max{ z }
; o+ noaE + +1hp no_+jk ’

Isisnleinf + )y apLi+ y i 1bul +Y 0 i 1dgL,9 + 2 el-jlja,

by (Hs) we have M > 1. Thus

1 A
S w (c nf exp(An;) }Xl:a*L jexp(At;)
+ Zbul exp Aol} Zd;Lth,, exp(A) + Ze;llkéll exp A))
Jj=1 j=1

Rewrite (4.1) in the form

PO+ alem® =) [ ) As+2al, (¢ - 75(0)
t-n;

+ Z by(t) t oy(t Z dy(t / 0;(s)H; (y,'(s)) As

£-8;(2)

+ Z e;(t) Eij(s)l(/(y/A (s)) As, i=12,...,n. (4.4)

£=¢;5(t)

Multiplying the both sides of (4.4) by e_, (¢, 0 (s)) and integrating over [y, t]T, we get

yi(t) = yito)e_c; (¢, to) + / eci(t,a(S)){ci(S) ()yf (s)As
s—n;(s

to

n

+ Y agOF (s - () + Y by(6) Gy (s - 0(s)))

Jj=1 Jj=1

+Zdl,(s> / 6 H, (3y(1)) A

+ Z e;i(s) &;(wK; (yjA(u))Au} As, i=12,...,n. (4.5)

= {t](

It is easy to see that

ly@|, = [v®, < I¥lx < Meer(t, ) I1¥ |,  Vt € [-1,0]r.

Page 13 of 22
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We claim that
ly@®) |, < Meg (£, 20)I1¥ llx, V¥t € (0, +00)r. (4.6)

To prove (4.6), we first show that for any p > 1, the following inequality holds:

|y, < pMeci(t,t0) 1Y l1x, Vet € (0,+00)r. (4.7)

If (4.7) is not true, then there must be some #; € (0, +00)t and some i1, i3 € {1,2,...,n} such

that
[y, = max{|y@)] o [y* @] o} = max{|y, @)}, [y, @)}
> pMeg,(t1, o) 1Y ||
and
Iy®)], < pMeci(t,t)I1¥llx, e [-utlr.
Therefore, there must exist a constant ¢ > 1 such that
[y, = max{{[ye)] g, [y @) o} = max{[y, )] |y, ()]}
= cpMey (1, t0) 1V |1 (4.8)
and
Iy, < coMecy(t,00) 1 llx, ¢ € [-t,alr. (4.9)

By (4.5), (4.8), (4.9) and (H;)-(H3), we obtain

lya (0| < 19 llxe—;, (£, %) +CPM€eA(t1»fo)||1/f||X/ e, (t1,0(5))ex(t1,0(5))

X [cfl / : ()ek(a(s),G)AG + Zalfl/Ljek(a(s),s—tilj(s))
S— i1

j=1

+ Z b;ljlje,\ (cr (s),s — a,-lj(s) Z dluL/ G,Ue)\ a(s) s)

j=1

+ Z €ajlf§i1j€x (a (s), s) } As

j=1

5]
< 1 e, (o) + pMees BtV 1 [ g, 00(0,0)

to

X {Cflﬂf]ex(tf(s) s—1;,(s)) ZaluL e (o (s),s — 7(5))

j=1

+ Z b} liex (o (s),s — 0yy(s)) + Z d;uLl Onjer (o (s),s)

j=1
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+ Z e;'ljlllv(éiljex (0 (s), s) } As

j=1

5]
< 1 e, (o) + pMees B, )V 1 [ gy 00(0,0)

to

X {cl*l n;, €Xp [A(n; + iggu(s))] + Z a; ;L exp[k (‘Ei;j + igy)u(s))]
j=1

+ Z bml exp[ <ai;j + izq}y)u(s))] + ]2:: dl*uLl 9,1, exp(k sup u(s))

seT

+ Z elu ; SZU exp(k sup ,u,(s)) } As

j=1

€—c; 1 (1, t0)

1
= cpMeg,.(t, to) IV lIx {Pﬂ

+ exp(k suﬂl?,u(s)) |:c:'1 n; exp(An))) + Z a;Liexp(rty))
se } 1

+ thul exp ka Zd;]LJhQ,U + Zeq/ ; 5,1,:|

j=1

x/le_cil@x(tl,a(s))As}

to

1
< CPMeex(thto)HWHXiM ;-1 (t1, %) +exp(k SquI)M( )) |:C;r177i+l exp(An;,)
se

n
)
»Saientin)« o)+ St e
j=1

J=1 J=1
1

: —-»[ <><(>>}

_(Ca o

1 exp(Asupseru(s) [ . . .
< CpMeeA(tl,to)HWHX{ [1\7 - | i exp(rar)
i

hp
* Z”tuL exp )‘Tu/ thul exp )‘0111 Zd:ruLl &Y
Jj=1 Jj=1

exp(A sup,cy 4(s))
+ Zem f§z1;>:| -0t t0) + a—ﬁ ¢t exp(Any))
i

+ ZamL exp Arm thul exp(kolu)

j=1 j=1
+ Z d:;lL} 9’11 CXP()») + Z ell] j Sll] exp(k)) }
j=1 j=1

< cpMeg; (11, to) |1 ¥ [ x. (4.10)
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By Lemma 2.4 and (4.5), we have, fori=1,2,...,n,

¥ (0) = —ci(B)yi(to)e_c,(t, o) + (c,'(t) / ( )yf(s)As + 3 ay(t)F; (¢ - (1))
t—n;(t

j=1
+ Zbl/ y] (£=04(0) >+ Zdi;’(t)/ 0;i(s)H;(y(s)) As
j=1 —0(t
+ Zel](t) El] I< y/ ( ))
0]
+/ —ci(t)e_ (t,cr(s)){ci(s)/ u)Au + Zuu(s y, s — Ty(s )))
to s=n;(s
+ Zb,, s)G yl — oji(s Zd,,(s)/ 0( u)H y,(u))
j=1
+ Ze,,(s) 5,, (u))Au} As. (4.11)
§— {U

Thus, it follows from (4.8), (4.9) and (4.11) that

5]
v (0] < cfyec,, (b1, 20) 1V [1xc + cpMeg (11, t0)||1ﬂ||x(cf2 / ex(t,0)A0
t;

1-1iy (t1)

+Z%2,L e)\(tbh Tiyj tl) mel e t1,t1 0;2;(f1))

j=1 j=1

n
+ Z d,2,L, szjex(tb h) + Z e;;/'lll'(éizjek(tlr tl))
j=1 j1

i

+ ¢, cpMeg; (1, fo)lll/fllx/ e, (t,065))e(t,0(5)

to

s
X C:;/ e,\(a(s),Q)AQ
5=y (5)

+ Z“;szfe)‘ (o(s),s - Tizj(s) mel e (o(s),s— o,zl(s))

j=1

n

Z dQ]L] 065 (0 (9),8) + elfzjl]lféizje,\ (o(s),s) } As

j-1

= ¢ e, (t1, o)1V lIx + cpMee. (t1, to) ¥ l1x (Clz nien(t, =iy (8))

n

n
+ Y al Lies (bt~ Tiy(0) + Y bjlies (Bt — 0(1))

j=1 j=1

n _ tl
+ Zd;,L, Oinj + Ze;,l,»kéizj) + ¢, cpMec; (t1, to) 1V [l x / e, on(t1,0(5))
]':

=1 f0


http://www.advancesindifferenceequations.com/content/2014/1/178

Li et al. Advances in Difference Equations 2014, 2014:178 Page 17 of 22
http://www.advancesindifferenceequations.com/content/2014/1/178

X [c:’2 n;’ze)\ (0 (s),s — iy (s)) + Z a;'Zije;\ (a (s),s — tizj(s))

j=1

+ mele,\ (8),5 — 01y (5)) + Zd;”L, Ojer (0(5),5)

+ Z efzjl]/féizjek (0 (s),s) ] As

j=1

= ¢ e, (ti, o)1V |Ix + cpMeg. (t1, to) ¥ l1x (C;; n;, exp(An;,)

+ Zcsz exp( Ar mel exp()mm)

j=1 j=1
+ Zdzy j Viaj exp(i) + Zelﬂ i 5l2] CXP(A))
j=1

X <1 + ci*2 exp (A sup u(s)) /tl €_c, @ (tl, o(s)) As)

seT 0

+

¢
ie,ciz@,\(tl,to) + (C;;’?;; exp(An;))

< cpMeg, (t1, to) Iy ||X{ M

+ ZamL exp )\rm mel exp(kolzl)

j=1 j=1
+ ZdlZILthm exp(A) + Zem ; 5,2, exp(k))
j=1 j=1

X (1 + ci*2 exp (A suq;r)u(s)) /tl €_c, @ (tl, o(s)) As) }

0

+

cl
< cpMeg, (t1, to) | ||x{ “Ze_

&€ _n(tto) + (C:; n eXp(M,Z)

+ ZamL exp(rty;) + mel exp(roy’;)
j=1 j=1

+ Z d;;lL 0;jexp() + Z 6;2,»1,{(552/ exp(k))
Jj=1

j-1

x (1 +cj) exp(k suq;r)u(s)) ﬁ (e—(cfz—’\)(tl’ to) — 1)) }

1 exp(Asup,cr uls))
< cpMeeA(tl,to)nwnx{ [/\7 -\ b, exp(hy)
i3

+ ZamL exp(rtyy;) + mel exp(roy’;)
j=1 j=1

+ ZdlZI i inj eXP()\) + 26121 i %-12] eXP(A))] c —A (tb tO)

j=1
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¢;, exp(A supyr p(s)) .
+ (1 + P ci 0}, exp(rn)) ;:amL jexp(rty;)

+ Zblzll exp )Lalzl Zdlz] j0irj exp(A) + Zem A Eiyj exp(k)) }

j=1 j=1
< cpMeg; (t1, t0) 1Y Il x. (4.12)

In view of (4.10) and (4.12), we get

|38, < coMeen (1, to) 1V I

which contradicts (4.8), and so (4.7) holds. Letting p — 1, then (4.6) holds. Hence, the
almost periodic solution of system (1.1) is globally exponentially stable. This completes
the proof. g

Remark 4.1 When T =R, n;(t) = dj(t) = e;(t) =0, i = 1,2,...,n, Theorem 3.1 and Theo-
rem 4.1 are reduced to Theorem 2.3 and Theorem 3.1 in [37], respectively.

Remark 4.2 According to Theorem 3.1 and Theorem 4.1, we see that the existence and
exponential stability of almost periodic solutions for system (1.1) only depend on time
delays #; (the delays in the leakage term) and do not depend on time delays 7;; and o;;.

5 Anexample
In this section, we give an example to illustrate the feasibility and effectiveness of our
results obtained in Sections 3 and 4.

Example 5.1 Let n = 3. Consider the following neutral Hopfield neural network on time
scale T

xlA(t) = —c;(t) xl t —Ni t) Zat/ x/ t - tl](t)))

+Zd,, £) 0;(s)h; (x As+2b,, )gi (22 (¢ - (D))

£-38;(t)

+ Zeu (t) E(9)k;(x () As + Ii(8), (5.1)

0

where i = 1,2, 3 and the coefficients are as follows:

c(t)=0.5+0.1]sint|, () = 0.6 + 0.3| cos /2], c3(t) = 0.8 + 0.1] sin 2¢|,
o - 1+ |sin/2¢] (o) - 1.8 + 0.2| cos +/2t]| o - 2.5 + 0.5 sin 2¢|
T T 100 o B 200

0.08|sin¢| 0.15|cos~/2¢]  0.06]|cost|
(a(t))5,5 = | 015]cost|  0.12|cos+/2¢| 0.04]sin~/2¢] |,
0.10|sin¢| 0.08|sin+/2¢]  0.09]|sin¢|
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0.10[sin¢| 0.06|sin~/2¢]  0.05|cost|
(byj(1)) 4,5 = | 0.06]sin¢] 0.03|cos+/2¢| 0.08]sinv/2¢] |,
0.12|cost| 0.04|sin~/2¢]  0.07|sin¢|

0.02|cost| 0.15|sin~/2¢]  0.01|cos¢|
(dj(t));,5 = | 0.05]sint| 0.12|cos/2¢| 0.03]sinv/2¢|
0.03|sin¢| 0.08|cos~/2t]  0.01]sint|

0.02|cost| 0.01]sin~/2¢]  0.05|cos¢|
(e(t))5,5 = | 0.01]sint] 0.03|cos~/2¢] 0.04]cos v/2¢|
0.02|cost| 0.04|sin~/2¢| 0.01] sin¢|

fix) =02]x,  folx)=04|sinx|,  fi(x) =,

g1(x) = 0.3]| cos x|, &(x) = 0.1]x], g3(x) = 0.5] sinx]|,
hi(x) = 0.1|x], hy(x) = 0.4 sinx|, h3(x) = 0.2]x],
ki(x) = 0.3| cos x|, ko (x) = k3(x) = 0.2]x|,

0;(u) = exp(—2u), &;j(u) = exp(—4u),

8;;(t) = 0.001] sin ¢, g;(t) = 0.002| cost|, i,j=1,2,3.

Take 7; > 0, 05 > 0, I;(¢) (i,j = 1,2,3) to be arbitrary almost periodic functions. If T = R,
then wu(t) = 0 and if T = Z, then u(t) = 1. By calculating, we can easily check, for above
two cases, that —¢c; € R*, r & 0.7961 < 1. By Theorem 3.1 and Theorem 4.1, we know that
system (5.1) has a unique almost periodic solution that is globally exponentially stable.
This shows that the almost periodicity of system (5.1) does not depend on time scale T. In
particular, the continuous-time neural network and the discrete-time analogue described

by (5.1) have the same dynamical behaviors (see Figures 1-4).

o
T

-3 . . . .
0 20 40 60 80 100

time t

Figure 1 Continuous situation x1, X2, x3 with time t.
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0.4

0.2

. -1 _
X -axis 1 x,-axis
Figure 2 Continuous situation x4, x2, X3.
1.5
—k— X,
+X2 4
X3
kil i X L
i 3
-1.5F 1
ot A
o5 . . . .
0 20 40 60 80 100

time t

Figure 3 Discrete situation x1, x2, x3 with time t.

Figure 4 Discrete situation x1, x2, X3.
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6 Conclusion

In this paper, a class of neutral delay Hopfield neural networks with neutral time-varying
delays in the leakage term on time scales is investigated. For the model, we have given
some sufficient conditions ensuring the existence and global exponential stability of al-
most periodic solutions by using the exponential dichotomy of linear dynamic equations
on time scales, Banach’s fixed point theorem and the theory of calculus on time scales.
These obtained results are new and complement previously known results. Furthermore,
a simple example is given to demonstrate the effectiveness of our results and the example
also shows that the continuous-time neural network and the discrete-time analogue have
the same dynamical behaviors.
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