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1 Introduction
Differential equations with fractional order have recently proved to be valuable tools for
the description of hereditary properties of various materials and systems. Many phenom-
ena in engineering, physics, continuum mechanics, signal processing, electro-magnetics,
economics, and science describes efficiently by fractional order differential equations. For
a reader interested in the systematic development of the topic, we refer the books [–].
Many researchers have studied the existence theory for nonlinear fractional differential
equations with a variety of boundary conditions; for instance, see the papers [–], and
the references therein.
In this paper, we study the existence and uniqueness of solutions for the following

boundary value problem for the fractional differential equation with nonlocal fractional
integral boundary conditions

⎧⎪⎨
⎪⎩

cDqu(t) = f (t,u(t)),  < q ≤ ,  < t < T ,∑m
i= θiIαiu(T) = ω,∑n
j= λjIβju(ηj) =

∑l
k= μk(Iγk u(T) – Iγk u(ξk)),

(.)

where cDq denotes the Caputo fractional derivative of order q, f : [,T] × R → R is a
continuous function, ηj, ξk ∈ (,T), θi,λj,μk ∈ R, for all i = , , . . . ,m, j = , , . . . ,n, k =
, , . . . , l, ω ∈ R, and Iφ is the Riemann-Liouville fractional integral of order φ >  (φ =
αi,βj,γk , i = , , . . . ,m, j = , , . . . ,n, k = , , . . . , l).
The significance of studying problem (.) is that the boundary conditions are very gen-

eral and include many conditions as special cases. In particular, if αi = βj = γk = , for all
i = , , . . . ,m, j = , , . . . ,n, k = , , . . . , l then the boundary conditions reduce to

{
(θ + θ + · · · + θm)

∫ T
 u(s)ds = ω,

λ
∫ η
 u(s)ds + · · · + λn

∫ ηn
 u(s)ds = μ

∫ T
ξ
u(s)ds + · · · +μl

∫ T
ξl
u(s)ds.

(.)
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Note that the condition (.) does not contain the values of the unknown function u at the
left side and right side of the boundary points t =  and t = T , respectively.
We develop some existence and uniqueness results for the boundary value problem (.)

by using standard techniques from fixed point theory. The paper is organized as follows:
in Section , we recall some preliminary facts that we need in the sequel and Section 
contains our main results. Finally, Section  provides some examples for the illustration
of the main results.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [, ]
and present preliminary results needed in our proofs later.

Definition . For an at least n-times differentiable function g : [,∞) → R, the Caputo
derivative of fractional order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Lemma . For q > , the general solution of the fractional differential equation cDqu(t) =
 is given by

u(t) = c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . ,n –  (n = [q] + ).

In view of Lemma ., it follows that

IqcDqu(t) = u(t) + c + ct + · · · + cn–tn– (.)

for some ci ∈R, i = , , . . . ,n –  (n = [q] + ).
For convenience we set

� =
m∑
i=

θi
Tαi+

�(αi + )
, � =

m∑
i=

θi
Tαi

�(αi + )
,

� =
n∑
j=

λj
η

βj+
j

�(βj + )
, � =

n∑
j=

λj
η

βj
j

�(βj + )
, (.)

� =
l∑

k=

μk
Tγk+ – ξ

γk+
k

�(γk + )
, � =

l∑
k=

μk
Tγk – ξ

γk
k

�(γk + )
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and

 = �(� –�) –�(� –�). (.)

Lemma . Let  �= ,  < q ≤ , αi,βj,γk > , ηj, ξk ∈ (,T) for i = , , . . . ,m, j = , , . . . ,n,
k = , , . . . , l and h ∈ C([,T],R). Then the problem

cDqu(t) = h(t), t ∈ (,T), (.)
m∑
i=

θiIαiu(T) = ω,

n∑
j=

λjIβju(ηj) =
l∑

k=

μk
(
Iγk u(T) – Iγk u(ξk)

)
,

(.)

has a unique solution given by

u(t) = Iqh(t) +
(� –�)t – (� –�)



(
ω –

m∑
i=

θiIαi+qh(T)

)

+
� –�t



( n∑
j=

λjIβj+qh(ηj) –
l∑

k=

μk
(
Iγk+qh(T) – Iγk+qh(ξk)

))
. (.)

Proof Using Lemma ., (.) can be expressed as an equivalent integral equation,

u(t) = Iqh(t) + ct + c. (.)

Taking the Riemann-Liouville fractional integral of order p >  for (.), we have

Ipu(t) = Ip+qh(t) + c
tp+

�(p + )
+ c

tp

�(p + )
. (.)

From the first condition of (.) and (.) with p = αi, it follows that

c
m∑
i=

θi
Tαi+

�(αi + )
+ c

m∑
i=

θi
Tαi

�(αi + )
= ω –

m∑
i=

θiIαi+qh(T).

According to the above process, the second condition of (.) and (.) with p = βj and
p = γk imply that

c

( l∑
k=

μk
Tγk+ – ξ

γk+
k

�(γk + )
–

n∑
j=

λj
η

βj+
j

�(βj + )

)

+ c

( l∑
k=

μk
Tγk – ξ

γk
k

�(γk + )
–

n∑
j=

λj
η

βj
j

�(βj + )

)

=
n∑
j=

λjIβj+qh(ηj) –
l∑

k=

μk
(
Iγk+qh(T) – Iγk+qh(ξk)

)
.
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Solving the system of linear equations for constants c, c, we have

c =
� –�



(
ω –

m∑
i=

θiIαi+qh(T)

)

–
�



( n∑
j=

λjIβj+qh(ηj) –
l∑

k=

μk
(
Iγk+qh(T) – Iγk+qh(ξk)

))
,

c = –
� –�



(
ω –

m∑
i=

λiIαi+qh(T)

)

+
�



( n∑
j=

λjIβj+qh(ηj) –
l∑

k=

μk
(
Iγk+qh(T) – Iγk+qh(ξk)

))
.

Substituting constants c and c into (.), we obtain (.), as required. �

3 Main results
Let C = C([,T],R) denote the Banach space of all continuous functions from [,T] to
R endowed with the norm defined by ‖u‖ = supt∈[,T] |u(t)|. Throughout this paper, for
convenience, the expression Ixf (s,u(s))(y) means

Ixf
(
s,u(s)

)
(y) =


�(x)

∫ y


(t – s)x–f

(
s,u(s)

)
ds for t ∈ [,T],

where x ∈ {q,αi + q,βj + q,γk + q} and y ∈ {t,T ,ηj, ξk}, i = , , . . . ,m, j = , , . . . ,n, k =
, , . . . , l.
As in Lemma ., we define an operator F : C → C by

(Fu)(t) = Iqf
(
s,u(s)

)
(t)

+
(� –�)t – (� –�)



(
ω –

m∑
i=

θiIαi+qf
(
s,u(s)

)
(T)

)

+
� –�t



( n∑
j=

λjIβj+qf
(
s,u(s)

)
(ηj)

–
l∑

k=

μk
(
Iγk+qf

(
s,u(s)

)
(T) – Iγk+qf

(
s,u(s)

)
(ξk)

))
. (.)

It should be noticed that problem (.) has solutions if and only if the operatorF has fixed
points.
In the following subsections we prove existence, as well as existence and uniqueness

results, for the boundary value problem (.) by using a variety of fixed point theorems.
We set

� =
Tq

�(q + )
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi| Tαi+q

�(αi + q + )

+
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))
(.)
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and

� =
(|�| + |�|) + (|�| + |�|)T

|| |ω|. (.)

3.1 Existence and uniqueness result via Banach’s fixed point theorem
Theorem . Assume that

(H) there exists a constant L >  such that |f (t,u) – f (t, v)| ≤ L|u – v|, for each t ∈ [,T]
and u, v ∈R.

If

L� < , (.)

where � is defined by (.), then the boundary value problem (.) has a unique solution
on [,T].

Proof We transform the problem (.) into a fixed point problem, u =Fu, where the oper-
ator F is defined as in (.). Observe that the fixed points of the operator F are solutions
of problem (.). Applying Banach’s contraction mapping principle, we shall show that F
has a unique fixed point.
We let supt∈[,T] |f (t, )| =M < ∞ and choose

r ≥ �M +�

 – L�
,

where a constant � is defined by (.).
Now, we show that FBr ⊂ Br , where Br = {u ∈ C : ‖u‖ ≤ r}. For any u ∈ Br , we have

∣∣(Fu)(t)
∣∣

≤ sup
t∈[,T]

{
Iq

∣∣f (s,u(s))∣∣(t) + (|�| + |�|) + (|�| + |�|)t
|| |ω|

+
(|�| + |�|) + (|�| + |�|)t

||
m∑
i=

|θi|Iαi+q
∣∣f (s,u(s))∣∣(T)

+
|�| + |�|t

||

( n∑
j=

|λj|Iβj+q
∣∣f (s,u(s))∣∣(ηj)

+
l∑

k=

|μk|
(
Iγk+q

∣∣f (s,u(s))∣∣(T) + Iγk+q
∣∣f (s,u(s))∣∣(ξk))

)}

≤ Iq
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)(T) + (|�| + |�|) + (|�| + |�|)T
|| |ω|

+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+q
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)(T)

+
|�| + |�|T

||

( n∑
j=

|λj|Iβj+q
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)(ηj)
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+
l∑

k=

|μk|
(
Iγk+q

(∣∣f (s,u(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)(T)

+ Iγk+q
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)(ξk))
)

≤ (Lr +M)Iq()(T) +
(|�| + |�|) + (|�| + |�|)T

|| |ω|

+ (Lr +M)
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+q()(T)

+ (Lr +M)
|�| + |�|T

||

( n∑
j=

|λj|Iβj+q()(ηj)

+
l∑

k=

|μk|
(
Iγk+q()(T) + Iγk+q()(ξk)

))

≤ (Lr +M)
Tq

�(q + )
+
(|�| + |�|) + (|�| + |�|)T

|| |ω|

+ (Lr +M)
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi| Tαi+q

�(αi + q + )

+ (Lr +M)
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))

= (Lr +M)� +� ≤ r,

which implies that FBr ⊂ Br .
Next, we let u, v ∈ C . Then for t ∈ [,T], we have

∣∣(Fu)(t) – (Fv)(t)
∣∣

≤ Iq
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(t)
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(T)
+

|�| + |�|T
||

( n∑
j=

|λj|Iβj+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(ηj)

+
l∑

k=

|μk|
(
Iγk+q

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣(T) + Iγk+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(ξk))
)

≤ L‖u – v‖ Tq

�(q + )

+ L‖u – v‖ (|�| + |�|) + (|�| + |�|)T
||

m∑
i=

|θi| Tαi+q

�(αi + q + )

+ L‖u – v‖ |�| + |�|T
||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))

= L�‖u – v‖,
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which implies that ‖Fu –Fv‖ ≤ L�‖u – v‖. As L� < , F is a contraction. Therefore, we
deduce, by Banach’s contraction mapping principle, that F has a fixed point which is the
unique solution of problem (.). The proof is completed. �

3.2 Existence and uniqueness result via Banach’s fixed point theorem and Hölder
inequality

Theorem . Suppose that f : [,T]×R → R is a continuous function satisfying the fol-
lowing assumption:

(H) |f (t,u) – f (t, v)| ≤ δ(t)|u – v|, for t ∈ [,T], u, v ∈R and δ ∈ L 
σ ([,T],R+), σ ∈ (, ).

Denote ‖δ‖ = (
∫ T
 |δ(s)| 

σ ds)σ . If

‖δ‖
{
Tq–σ

�(q)

(
 – σ

q – σ

)–σ

+
(|�| + |�|)T + (|�| + |�|)

||

×
m∑
i=

|θi|Tαi+q–σ

�(αi + q)

(
 – σ

αi + q – σ

)–σ

+
|�| + |�|T

||

( n∑
j=

|λj|ηβj+q–σ

�(βj + q)

(
 – σ

βj + q – σ

)–σ

+
l∑

k=

|μk|
�(βj + q)

(
Tγk+q–σ + ξ

γk+q–σ

k
)(  – σ

γk + q – σ

)–σ
)}

< ,

then the boundary value problem (.) has a unique solution.

Proof For u, v ∈ C([,T],R) and for each t ∈ [,T], by Hölder’s inequality, we have

∣∣(Fu)(t) – (Fv)(t)
∣∣

≤ Iq
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(t)
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(T)

+
|�| + |�|T

||

( n∑
j=

|λj|Iβj+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(ηj)

+
l∑

k=

|μk|
(
Iγk+q

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣(T) + Iγk+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(ξk))
)

≤ 
�(q)

∫ t


(t – s)q–δ(s)

∣∣u(s) – v(s)
∣∣ds

+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|
�(αi + q)

∫ T


(T – s)αi+q–δ(s)

∣∣u(s) – v(s)
∣∣ds

+
|�| + |�|T

||

( n∑
j=

|λj|
�(ηj + q)

∫ ηj


(ηj – s)ηj+q–δ(s)

∣∣u(s) – v(s)
∣∣ds

+
l∑

k=

|μk|
�(γk + q)

(∫ T


(T – s)γk+q–δ(s)

∣∣u(s) – v(s)
∣∣ds

+
∫ ξk


(ξk – s)γk+q–δ(s)

∣∣u(s) – v(s)
∣∣ds)

)

http://www.advancesindifferenceequations.com/content/2014/1/181
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≤ 
�(q)

(∫ t



(
(t – s)q–

) 
–σ ds

)–σ (∫ t



(
δ(s)

) 
σ ds

)σ

‖u – v‖

+
(|�| + |�|) + (|�| + |�|)T

||

×
m∑
i=

|θi|
�(αi + q)

(∫ T



(
(T – s)αi+q–

) 
–σ ds

)–σ(∫ T



(
δ(s)

) 
σ ds

)σ

‖u – v‖

+
|�| + |�|T

||

( n∑
j=

|λj|
�(ηj + q)

(∫ ηj



(
(ηj – s)βj+q–

) 
–σ ds

)–σ (∫ ηj



(
δ(s)

) 
σ ds

)σ

+
l∑

k=

|μk|
�(γk + q)

((∫ T



(
(T – s)γk+q–

) 
–σ ds

)–σ (∫ T



(
δ(s)

) 
σ ds

)σ

+
(∫ ξk



(
(ξk – s)γk+q–

) 
–σ ds

)–σ(∫ ξk



(
δ(s)

) 
σ ds

)σ ))
‖u – v‖

≤ ‖δ‖
[
Tq–σ

�(q)

(
 – σ

q – σ

)–σ

+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Tαi+q–σ

�(αi + q)

×
(

 – σ

αi + q – σ

)–σ

+
|�| + |�|T

||

( n∑
j=

|λj|ηβj+q–σ

j

�(ηj + q)

(
 – σ

βj + q – σ

)–σ

+
l∑

k=

|μk|
�(γk + q)

(
Tγk+q–σ + ξ

γk+q–σ

k
)(  – σ

γk + q – σ

)–σ
)]

‖u – v‖.

It follows that F is contraction mapping. Hence Banach’s fixed point theorem implies
that F has a unique fixed point, which is the unique solution of the problem (.). The
proof is completed. �

3.3 Existence and uniqueness result via nonlinear contractions
Definition . Let E be a Banach space and let F : E → E be a mapping. F is said to be
a nonlinear contraction if there exists a continuous nondecreasing function � :R+ →R

+

such that �() =  and �(ε) < ε for all ε >  with the property

‖Fu – Fv‖ ≤ �
(‖u – v‖), ∀u, v ∈ E.

Lemma . (Boyd and Wong []) Let E be a Banach space and let F : E → E be a non-
linear contraction. Then F has a unique fixed point in E.

Theorem . Let f : [,T]×R →R be a continuous function satisfying the assumption

(H) |f (t,u) – f (t, v)| ≤ h(t) |u–v|
H∗+|u–v| , t ∈ [,T], u, v ≥ , where h : [,T]→R

+ is continuous
and a constant H∗ defined by

H∗ = Iqh(T) +
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+qh(T) + |�| + |�|T
||

×
( n∑

j=

|λj|Iβj+qh(ηj) +
l∑

k=

|μk|
(
Iγk+qh(T) + Iγk+qh(ξk)

))
. (.)

Then the boundary value problem (.) has a unique solution.
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Proof Wedefine the operatorF : C → C as (.) and a continuous nondecreasing function
� :R+ →R

+ by

�(ε) =
H∗ε
H∗ + ε

, ∀ε ≥ .

Note that the function � satisfies �() =  and �(ε) < ε for all ε > .
For any u, v ∈ C and for each t ∈ [,T], we have

∣∣(Fu)(t) – (Fv)(t)
∣∣

≤ Iq
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(t)
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(T)

+
|�| + |�|T

||

( n∑
j=

|λj|Iβj+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(ηj)

+
l∑

k=

|μk|
(
Iγk+q

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣(T) + Iγk+q
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣(ξk))
)

≤ Iq
(
h(s)

|u – v|
H∗ + |u – v|

)
(T)

+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+q
(
h(s)

|u – v|
H∗ + |u – v|

)
(T)

+
|�| + |�|T

||

( n∑
j=

|λj|Iβj+q
(
h(s)

|u – v|
H∗ + |u – v|

)
(ηj)

+
l∑

k=

|μk|
(
Iγk+q

(
h(s)

|u – v|
H∗ + |u – v|

)
(T) + Iγk+q

(
h(s)

|u – v|
H∗ + |u – v|

)
(ξk)

))

≤ �‖u – v‖
H∗

(
Iqh(T) +

(|�| + |�|) + (|�| + |�|)T
||

m∑
i=

|θi|Iαi+qh(T)

+
|�| + |�|T

||

( n∑
j=

|λj|Iβj+qh(ηj) +
l∑

k=

|μk|
(
Iγk+qh(T) + Iγk+qh(ξk)

)))

≤ �
(‖u – v‖).

This implies that ‖Fu–Fv‖ ≤ �(‖u–v‖). ThereforeF is a nonlinear contraction. Hence,
by Lemma . the operator F has a unique fixed point which is the unique solution of the
boundary value problem (.). This completes the proof. �

3.4 Existence result via Krasnoselskii’s fixed point theorem
Lemma. (Krasnoselskii’s fixed point theorem []) LetM be a closed, bounded, convex,
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.
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Theorem . Let f : [,T]×R →R be a continuous function satisfying (H). In addition
we assume that

(H) |f (t,u)| ≤ φ(t), ∀(t,u) ∈ [,T]×R, and φ ∈ C([,T],R+).

Then the boundary value problem (.) has at least one solution on [,T] provided

(|�| + |�|) + (|�| + |�|)T
||

m∑
i=

|θi| Tαi+q

�(αi + q + )

+
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))
< . (.)

Proof Setting supt∈[,T] |ϕ(t)| = ‖ϕ‖ and choosing

ρ ≥ ‖ϕ‖� +� (.)

(where � and � are defined by (.) and (.), respectively), we consider Bρ = {u ∈
C([,T],R) : ‖u‖ ≤ ρ}. We define the operators F and F on Bρ by

Fu(t) = Iqf
(
s,u(s)

)
(t), t ∈ [,T],

Fu(t) =
(� –�)t – (� –�)



(
ω –

m∑
i=

θiIαi+qf
(
s,u(s)

)
(T)

)

+
� –�t



( n∑
j=

λjIβj+qf
(
s,u(s)

)
(ηj)

–
l∑

k=

μk
(
Iγk+qf

(
s,u(s)

)
(T) – Iγk+qf

(
s,u(s)

)
(ξk)

))
, t ∈ [,T].

For any x, y ∈ Bρ , we have

∣∣Fu(t) +Fv(t)
∣∣

≤ sup
t∈[,T]

{
Iq

∣∣f (s,u(s))∣∣(t) + (|�| + |�|) + (|�| + |�|)t
|| |ω|

+
(|�| + |�|) + (|�| + |�|)t

||
m∑
i=

|θi|Iαi+q
∣∣f (s, v(s))∣∣(T)

+
|�| + |�|t

||

( n∑
j=

|λj|Iβj+q
∣∣f (s, v(s))∣∣(ηj)

+
l∑

k=

|μk|
(
Iγk+q

∣∣f (s, v(s))∣∣(T) + Iγk+q
∣∣f (s, v(s))∣∣(ξk))

)}

≤ ‖ϕ‖
[

Tq

�(q + )
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi| Tαi+q

�(αi + q + )

+
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))]
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+
(|�| + |�|) + (|�| + |�|)T

|| |ω|

= ‖ϕ‖� +� ≤ ρ.

This shows that Fu +Fv ∈ Bρ . It is easy to see using (.) that F is a contraction map-
ping.
Continuity of f implies that the operatorF is continuous.Also,F is uniformly bounded

on Bρ as

‖Fu‖ ≤ Tq

�(q + )
‖φ‖.

Now we prove the compactness of the operator F.
We define sup(t,u)∈[,T]×Bρ

|f (t,u)| = f < ∞, and consequently we have

∣∣(Fu)(t) – (Fu)(t)
∣∣ = 

�(q)

∣∣∣∣
∫ t



[
(t – s)q– – (t – s)q–

]
f
(
s,u(s)

)
ds

+
∫ t

t
(t – s)q–f

(
s,u(s)

)
ds

∣∣∣∣
≤ f

�(q + )
∣∣tq – tq

∣∣,
which is independent of u and tends to zero as t – t → . Thus,F is equicontinuous. So
F is relatively compact on Bρ . Hence, by the Arzelá-Ascoli theorem,F is compact on Bρ .
Thus all the assumptions of Lemma . are satisfied. So the conclusion of Lemma .
implies that the boundary value problem (.) has at least one solution on [,T]. �

3.5 Existence result via Leray-Schauder’s nonlinear alternative
Theorem. (Nonlinear alternative for single valuedmaps []) Let E be a Banach space,
C a closed, convex subset of E,U an open subset of C, and  ∈U . Suppose that F :U → C is
a continuous, compact (that is, F(U) is a relatively compact subset of C)map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Assume that

(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ C([,T],R+) such that

∣∣f (t,u)∣∣ ≤ p(t)ψ
(|u|) for each (t,u) ∈ [,T]×R;

(H) there exists a constantM >  such that

M
ψ(M)‖p‖� +�

> ,

where � and � are defined by (.) and (.), respectively.

Then the boundary value problem (.) has at least one solution on [,T].
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Proof Let the operator F be defined by (.). Firstly, we shall show that F maps bounded
sets (balls) into bounded sets in C([,T],R). For a number r > , let Br = {u ∈ C([,T],R) :
‖u‖ ≤ r} be a bounded ball in C([,T],R). Then for t ∈ [,T] we have

∣∣(Fu)(t)
∣∣

≤ sup
t∈[,T]

{
Iq

∣∣f (s,u(s))∣∣(t) + (|�| + |�|) + (|�| + |�|)t
|| |ω|

+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+q
∣∣f (s,u(s))∣∣(T)

+
|�| + |�|T

||

( n∑
j=

|λj|Iβj+q
∣∣f (s,u(s))∣∣(ηj)

+
l∑

k=

|μk|
(
Iγk+q

∣∣f (s,u(s))∣∣(T) + Iγk+q
∣∣f (s,u(s))∣∣(ξk))

)}

≤ ψ
(‖u‖)Iqp(s)(T) + (|�| + |�|) + (|�| + |�|)T

|| |ω|

+ψ
(‖u‖) (|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+qp(s)(T)

+ψ
(‖u‖) |�| + |�|T

||

( n∑
j=

|λj|Iβj+qp(s)(ηj)

+
l∑

k=

|μk|
(
Iγk+qp(s)(T) + Iγk+qp(s)(ξk)

))

≤ ψ
(‖u‖)‖p‖ Tq

�(q + )
+
(|�| + |�|) + (|�| + |�|)T

|| |ω|

+ψ
(‖u‖)‖p‖ (|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi| Tαi+q

�(αi + q + )

+ψ
(‖u‖)‖p‖ |�| + |�|T

||

×
( n∑

j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))

≤ ψ
(‖u‖)‖p‖

[
Tq

�(q + )
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi| Tαi+q

�(αi + q + )

+
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))]

+
(|�| + |�|) + (|�| + |�|)T

|| |ω|,

and consequently

‖Fu‖ ≤ ψ(r)‖p‖� +�.
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Next we will show that F maps bounded sets into equicontinuous sets of C([,T],R).
Let τ, τ ∈ [,T] with τ < τ and u ∈ Br . Then we have

∣∣(Fu)(τ) – (Fu)(τ)
∣∣

≤ 
�(q)

∣∣∣∣
∫ τ



[
(τ – s)q– – (τ – s)q–

]
f
(
s,u(s)

)
ds +

∫ τ

τ

(τ – s)q–f
(
s,u(s)

)
ds

∣∣∣∣
+
(|�| + |�|)|ω|

|| (τ – τ) +
|�| + |�|

||
m∑
i=

|θi|Iαi+q
∣∣f (s,u(s))∣∣(T)(τ – τ)

+
|�|
|| (τ – τ)

( n∑
j=

|λj|Iβj+q
∣∣f (s,u(s))∣∣(ηj)

+
l∑

k=

|μk|
(
Iγk+q

∣∣f (s,u(s))∣∣(T) + Iγk+q
∣∣f (s,u(s))∣∣(ξk))

)

≤ ψ(r)
�(q)

∣∣∣∣
∫ τ



[
(τ – s)q– – (τ – s)q–

]
p(s)ds +

∫ τ

τ

(τ – s)q–p(s)ds
∣∣∣∣

+
(|�| + |�|)|ω|

|| (τ – τ) +
|�| + |�|

|| ψ(r)
m∑
i=

|θi|Iαi+qp(s)(T)(τ – τ)

+
|�|
|| ψ(r)(τ – τ)

( n∑
j=

|λj|Iβj+qp(s)(ηj)

+
l∑

k=

|μk|
(
Iγk+qp(s)(T) + Iγk+qp(s)(ξk)

))
.

As τ – τ → , the right-hand side of the above inequality tends to zero indepen-
dently of u ∈ Br . Therefore by the Arzelá-Ascoli theorem the operator F : C([,T],R) →
C([,T],R) is completely continuous.
Let u be a solution. Then, for t ∈ [,T], and following similar computations to those in

the first step, we have

∣∣u(t)∣∣ ≤ ψ
(‖u‖)‖p‖� +�,

which leads to

‖u‖
ψ(‖u‖)‖p‖� +�

≤ .

In view of (H), there existsM such that ‖u‖ �=M. Let us set

U =
{
u ∈ C

(
[,T],R

)
: ‖u‖ <M

}
.

We see that the operator F :U → C([,T],R) is continuous and completely continuous.
From the choice of U , there is no u ∈ ∂U such that u = νFu for some ν ∈ (, ). Conse-
quently, by the nonlinear alternative of Leray-Schauder type, we deduce thatF has a fixed
point u ∈ U which is a solution of the boundary value problem (.). This completes the
proof. �
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4 Examples
In this section, we present some examples to illustrate our results.

Example . Consider the following fractional integral boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

cD 
 u(t) = sin(π t)

(+t) · |u(t)|
+|u(t)| +


 ,  < t < ,√

I/u() – 
 I

√
u() = ,

Iπ/u(/) – 
 I

√
/u(/) = 

 (I
√

πu() – I
√

πu(/)).

(.)

Here q = /, T = , m = , n = , l = , ω = , α = /, α =
√
, β = π/, β =

√
/,

γ =
√

π , θ =
√
, θ = –/, λ = , λ = –/, μ = /, η = /, η = /, ξ = /, and

f (t,u) = (sin(π t)|u|)/(( + t)( + |u|)) + (/). Since |f (t,u) – f (t, v)| ≤ (/)|u – v|, (H)
is satisfied with L = /. We can show that

� =
Tq

�(q + )
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi| Tαi+q

�(αi + q + )

+
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))

≈ ..

Thus L� ≈ . < . Hence, by Theorem ., the boundary value problem (.) has
a unique solution on [, ].

Example . Consider the following fractional integral boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cD 
 u(t) = et

(+t) · |u(t)|
+|u(t)| +


 ,  < t < /,

I/u(/) + 
 I

√
u(/) = /,

I
√
u(/) + 

 I
/u(/) = 

 (I
√

πu(/) – I
√

πu(/))
+ 

 (I
/u(/) – I/u(/)).

(.)

Here q = /, T = /, m = , n = , l = , ω = /, α = /, α =
√
, β =

√
, β = /,

γ =
√

π , γ = /, θ = , θ = /, λ = , λ = /,μ = /,μ = /, η = /, η =
/, ξ = /, ξ = /, and f (t,u) = (et|u|)/(( + t)( + |u|)) + (/). We choose h(t) = et/
and we obtain

H∗ = Iqh(T) +
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi|Iαi+qh(T)

+
|�| + |�|T

||

( n∑
j=

|λj|Iβj+qh(ηj) +
l∑

k=

|μk|
(
Iγk+qh(T) + Iγk+qh(ξk)

))

≈ ..

Clearly,

∣∣f (t,u) – f (t, v)
∣∣ = et

( + t)

( |u| – |v|
 + |u| + |v| + |u||v|

)
≤ et



( |u – v|
. + |u – v|

)
.
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Hence, by Theorem ., the boundary value problem (.) has a unique solution on
[, /].

Example . Consider the following fractional integral boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cD 
 u(t) = e–t sin(π t)

(+t) · |u(t)|
+|u(t)| + t,  < t < ,

I/u() + 
 I

√
u() = ,

,Iπ/u(/) + 
, I

/
√
u(/) = 

 (I
√

πu() – I
√

πu(/))
+ 

, (I
√

π/u() – I
√

π/u(/)).

(.)

Here q = /, T = ,m = , n = , l = , ω = , α = /, α =
√
, β = π/, β = /

√
, γ =√

π , γ =
√

π/, θ = , θ = /, λ = ,, λ = /,, μ = /, μ = /,,
η = /, η = /, ξ = /, ξ = /, and f (t,u) = (e–t sin(π t)|u|)/(( + t)( + |u|)) + t.
Since |f (t,u) – f (t, v)| ≤ (/)|u – v|, (H) is satisfied with L = /. We find that

(|�| + |�|) + (|�| + |�|)T
||

m∑
i=

|θi| Tαi+q

�(αi + q + )

+
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))

≈ . < .

Clearly,

∣∣f (t,u)∣∣ = ∣∣∣∣e–t sin(π t)( + t)
· |u(t)|
 + |u(t)| + t

∣∣∣∣ ≤ e–t


+ t.

Hence, by Theorem ., the boundary value problem (.) has at least one solution on
[, ].

Example . Consider the following fractional integral boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

cD 
 u(t) = 

 ( + t)( u
+|u| +

|u|
+|u| ),  < t < ,

I/u() –
√
I/u() – 

 I
√
u() = π ,


 I

√
u(/) = 

 (I
/u() – I/u(/)) – (I/u() – I/u(/)).

(.)

Here q = /, T = , m = , n = , l = , ω = π , α = /, α = /, α =
√
, β =

√
, γ =

/, γ = /, θ = , θ = –
√
, θ = –/, λ = /, μ = /, μ = –, η = /, ξ = /,

ξ = /, and f (t,u) = (/)( + t)((u/( + |u|)) + (|u|/( + |u|))). Then we get

� =
Tq

�(q + )
+
(|�| + |�|) + (|�| + |�|)T

||
m∑
i=

|θi| Tαi+q

�(αi + q + )

+
|�| + |�|T

||

( n∑
j=

|λj|
η

βj+q
j

�(βj + q + )
+

l∑
k=

|μk|
(
Tγk+q + ξ

γk+q
k

�(γk + q + )

))

≈ .
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and

� =
(|�| + |�|) + (|�| + |�|)T

|| |ω| ≈ ..

Clearly,

∣∣f (t,u)∣∣ = ∣∣∣∣ 


(
 + t

)( u

 + |u| +
|u|

 + |u|
)∣∣∣∣ ≤ 


(
 + t

)(|u| + 
)
.

Choosing p(t) = (/)( + t) and ψ(|u|) = |u| + , we can show that

M
ψ(M)‖p‖� +�

> ,

which implies thatM > .. Hence, by Theorem ., the boundary value problem
(.) has at least one solution on [, ].
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