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1 Introduction
The theory of impulsive differential equations describes processeswhich experience a sud-
den change of their state at certain moments. Processes with such a character arise nat-
urally and often, especially in phenomena studied in physics, chemical technology, pop-
ulation dynamics, biotechnology, and economics. For an introduction of the basic the-
ory of impulsive differential equations in Rn, see Lakshmikantham et al. [], Bainov and
Simeonov [], Samoilenko and Perestyuk [], and the references therein. The theory of
impulsive differential equations has become an important area of investigation in recent
years, and it is much richer than the corresponding theory of differential equations (see,
for instance, [–] and the references therein).
On the other hand, the theory of boundary value problems with integral boundary con-

ditions for ordinary differential equations arises in different areas of applied mathemat-
ics and physics. For example, heat conduction, chemical engineering, underground water
flow, thermo-elasticity, and plasma physics can be reduced to nonlocal problems with in-
tegral boundary conditions. For boundary value problems with integral boundary condi-
tions and comments on their importance, we refer the reader to the papers in Gallardo
[–] and the references therein. For more information about the general theory of inte-
gral equations and their relation with boundary value problems, we refer to the book of
Corduneanu [] and Agarwal and O’Regan [].
Recently, some well-knownworks, such as Hao et al. [], Zhang et al. [] and Ding and

Wang [], deal with impulsive differential equations with integral boundary conditions.
However, most of these results are obtained by using the fixed point theorem in cones. It
is well known that the method of upper and lower solutions is a powerful tool for proving
the existence results for a large class of boundary value problems, see [–].
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In [], Shen and Wang applied the method of upper and lower solutions to solve im-
pulsive differential equations with nonlinear boundary conditions as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′′(t) = f (t,x(t),x′(t)), t ∈ J , t �= tk ,

�x(tk) = Ik(x(tk)), k = , , . . . ,p,

�x′(tk) = Jk(x(tk),x′(tk)), k = , , . . . ,p,

g(x(),x′()) = , h(x(),x′()) = .

Motivated by the works mentioned above, in this paper, we shall employ the method
of upper and lower solutions together with Leray-Schauder degree theory to study the
existence of a solution of the impulsive BVP

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′′(t) + f (t,x(t),x′(t)) = , t ∈ J∗,

�x(tk) = Ik(x(tk)), k = , , . . . ,p,

�x′(tk) = Jk(x(tk),x′(tk)), k = , , . . . ,p,

x() = x() =
∫ 
 g(s)x(s)ds,

(.)

where J = [, ], J∗ = J\{t, t, . . . , tp}, f : J×R → R is continuous, Ik , Jk ∈ C(R) for  ≤ k ≤ p,
g ∈ L[, ] is nonnegative,  = t < t < t < · · · < tp < tp+ = , �x(tk) = x(t+k ) – x(t–k ) denotes
the jump of x(t) at t = tk , x(t+k ) and x(t–k ) represent the right and left limits of x(t) at t = tk ,
respectively, �x′(tk) has a similar meaning for x′(t).

2 Preliminaries
Define PC(J) = {x : J → R | x ∈ C(J∗),x(t+i ) and x(t–i ) exist, and x(t–i ) = x(ti), i = , , . . . ,p}.
PC(J) = {x ∈ PC(J) : x|(ti ,ti+) ∈ C(ti, ti+),x′(t+i ) and x′(t–i ) exist, and x′(t–i ) = x′(ti), i =
, , . . . ,p}. Note that PC(J) and PC(J) are Banach spaces with the respective norms

‖x‖∞ = sup
{∣∣x(t)∣∣ : t ∈ J

}
, ‖x‖ =max

{‖x‖∞,
∥∥x′∥∥∞

}
.

A function x ∈ E = PC(J) ∩ C(J∗) is called a solution of (.) if it satisfies the differential
equation

x′′(t) + f
(
t,x(t),x′(t)

)
= , t ∈ J∗,

the impulsive conditions�x(tk) = Ik(x(tk)),�x′(tk) = Jk(x(tk),x′(tk)) and the boundary con-
ditions x() = x() =

∫ 
 g(s)x(s)ds.

Definition . The function α ∈ E is said to be a lower solution for boundary value prob-
lem (.) if

α′′(t) + f
(
t,α(t),α′(t)

) ≥ , t ∈ J∗,

�α(tk) = Ik
(
α(tk)

)
, �α′(tk) = Jk

(
α(tk),α′(tk)

)
, k = , , . . . ,p,

α()≤
∫ 


g(s)α(s)ds, α()≤

∫ 


g(s)α(s)ds.
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The function β ∈ E is said to be an upper solution for boundary value problem (.) if

β ′′(t) + f
(
t,β(t),β ′(t)

) ≤ , t ∈ J∗,

�β(tk) = Ik
(
β(tk)

)
, �β ′(tk) = Jk

(
β(tk),β ′(tk)

)
, k = , , . . . ,p,

β()≥
∫ 


g(s)β(s)ds, β() ≥

∫ 


g(s)β(s)ds.

For α,β ∈ E, we write α ≤ β if α(t)≤ β(t) for all t ∈ J .

Definition . Let α,β ∈ E be such that α ≤ β on J . We say that f satisfies the Nagumo
condition relative to α, β if for

ω = max
≤k≤p

{ |α(tk+) – β(t+k )|
tk+ – tk

,
|β(tk+) – α(t+k )|

tk+ – tk

}
,

there exists a constant D such that

D >max
{
ω,

∥∥α′∥∥∞,
∥∥β ′∥∥∞

}
,

a continuous function � : [,∞)→ (,∞), and constants A≥ , B ≥  such that

∣∣f (t,x, y)∣∣ ≤ A|y|�(|y|) + B, t ∈ J ,α ≤ x ≤ β , y ∈ R

and

∫ D

ω


�(s)

ds > A
[
max
t∈J

β(t) –min
t∈J α(t)

]
+ Bmax

s≥ω
�–(s).

In addition, we assume that the following conditions hold:

(H) f satisfies the Nagumo condition relative to α, β ;
(H) Ik , Jk ∈ C(R,R). Jk(y, z) is nondecreasing in z ∈ [–D,D] for all ≤ k ≤ p;
(H)  <

∫ 
 g(s)ds < .

We consider the modified problem

x′′(t) + F
(
t,x(t),

d
dt

mα,β (t,x)
)
= , t ∈ J∗,

�x(tk) = Ik
(
mα,β

(
tk ,x(tk)

))
, k = , , . . . ,p,

�x′(tk) = Jk
(
mα,β

(
tk ,x(tk)

)
,n

(
tk ,x′(tk)

))
, k = , , . . . ,p,

x() = x() =
∫ 


g(s)x(s)ds,

(.)

where

F(t,x, y) = f
(
t,mα,β(t,x),n(t, y)

)
+

mα,β (t,x) – x
 + (x –mα,β (t,x))
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and

mα,β (t,x) =max
{
α(t),min

{
x,β(t)

}}
,

n(t,x) =max
{
–D,min{x,D}}.

One can find the next result, with its proof, in [].

Lemma . For each x ∈ E, the following two properties hold:
(i) d

dtmα,β (t,x) exists for a.e. t ∈ J∗;
(ii) if x,xm ∈ E and xm → x in E, then d

dtmα,β (t,xm(t)) → d
dtmα,β (t,x(t)) for a.e. t ∈ J∗.

Lemma . For any v(t) ∈ C(J), the following boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′′(t) + v(t) = , t ∈ J∗,

�x(tk) = Ik(x(tk)), k = , , . . . ,p,

�x′(tk) = Jk(x(tk),x′(tk)), k = , , . . . ,p,

x() = x() =
∫ 
 g(s)x(s)ds

has a unique solution as follows:

x(t) =
∫ 


H(t, s)v(s)ds +

∑
<tk<t

[
Ik

(
x(tk)

)
+ (t – tk)Jk

(
x(tk),x′(tk)

)]

– t
p∑
k=

[
Ik

(
x(tk)

)
+ ( – tk)Jk

(
x(tk),x′(tk)

)]

+


 –μ

∫ 



∑
<tk<s

[
Ik

(
x(tk)

)
+ (s – tk)Jk

(
x(tk),x′(tk)

)]
ds

–
ν

 –μ

p∑
k=

[
Ik

(
x(tk)

)
+ ( – tk)Jk

(
x(tk),x′(tk)

)]
, (.)

where

H(t, s) =G(t, s) +


 –μ

∫ 


G(s, τ )g(τ )dτ ,

G(t, s) =

⎧⎨
⎩
t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ ,

and

μ =
∫ 


g(s)ds, ν =

∫ 


sg(s)ds.

Lemma . If x is a solution of BVP (.), α(t) and β(t) are lower and upper solutions of
(.), respectively, α ≤ β , and

Ik
(
α(tk)

) ≤ Ik(x)≤ Ik
(
β(tk)

)
, k = , . . . ,p, (.)
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for

α(tk) ≤ x≤ β(tk),

then

α(t)≤ x(t)≤ β(t), t ∈ [, ].

Proof Denote y(t) = x(t) – β(t), we will only see that x(t) ≤ β(t) for every t ∈ J . An analo-
gous reasoning shows that x(t)≥ α(t) for all t ∈ J . Otherwise, if x(t)≤ β(t), t ∈ [, ], does
not hold, then sup≤t≤(x(t) – β(t)) > , there are three cases.
Case . Suppose that max≤t≤ y(t) = sup≤t≤(x(t) – β(t)) = y(), or max≤t≤ y(t) = y(),

we only see thatmax≤t≤ y(t) = y(). Easily, it holds that y() > . From Definition . and
(H), we have

y() = x() – β() ≤
∫ 


g(s)

(
x(s) – β(s)

)
ds

≤ max
s∈[,]

(
x(s) – β(s)

)∫ 


g(s)ds

< max
s∈[,]

(
x(s) – β(s)

)
= max

s∈[,]
y(s),

which is a contradiction.
Case . Suppose that there exist k ∈ {, , . . . ,p} and τ ∈ (tk , tk + ) such that

sup
t∈(tk ,tk+]

y(t) = y(τ ) = x(τ ) – β(τ ) > .

Then y′(τ ) =  and y′′(τ )≤ . On the other hand,

y′′(τ ) ≥ –F
(

τ ,x(τ ),
d
dt

mα,β (τ ,x)
)
+ f

(
τ ,β(τ ),β ′(τ )

)

= –f
(

τ ,m
(
τ ,x(τ )

)
,
d
dt

mα,β (τ ,x)
)
–

mα,β (τ ,x(τ )) – x(τ )
 + (x(τ ) –mα,β (τ ,x(τ )))

+ f
(
τ ,β(τ ),β ′(τ )

)

= –f
(
τ ,β(τ ),β ′(τ )

)
–

mα,β (τ ,x(τ )) – x(τ )
 + (x(τ ) –mα,β (τ ,x(τ )))

+ f
(
τ ,β(τ ),β ′(τ )

)

=
y(τ )

 + y(τ )
> ,

which is a contradiction. Hence the function y cannot have any positivemaximum interior
to the interval (tk , tk + ) for k = , , . . . ,p.
Case . According to Case , if sup≤t≤ y(t) > , then sup≤t≤ y(t) = y(t+k ), or

sup≤t≤ y(t) = y(t–k ) = y(tk), we only prove that sup≤t≤ y(t) = y(t–k ), k = , , . . . ,p. Suppose
that sup≤t≤ y(t) = y(t– ), easily, y′(t) = y′(t– ) ≥ .

http://www.advancesindifferenceequations.com/content/2014/1/183
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From (.) and (.), we have

x
(
t+

)
– x(t) = x

(
t+

)
– x

(
t–

)
= I

(
mα,β

(
t,x(t)

))
= I

(
β(t)

)
= β

(
t+

)
– β

(
t–

)
= β

(
t+

)
– β(t),

x′(t+ ) – x′(t) = x′(t+ ) – x′(t– )
= J

(
mα,β

(
t,x(t)

)
,n

(
t,x′(t)

))
≥ J

(
β(t),β ′(t)

) ≥ β ′(t+ ) – β ′(t– )
.

Hence

y
(
t+

)
= x

(
t+

)
– β

(
t+

)
= x(t) – β(t) > ,

y′(t+ ) = x′(t+ ) – β ′(t+ ) ≥ x′(t) – β ′(t) ≥ .

Suppose that y′(t+ ) =  and y is nonincreasing on some interval (t, t + γ ) ⊂ (t, t), where
γ >  is sufficiently small such that y(t) >  on t ∈ (t, t + γ ). For t ∈ (t, t + γ ),

x′′(t) – β ′′(t) ≥ –f
(
t,β(t),

d
dt

mα,β (t,x)
)
–

mα,β (t,x) – x
 + (x –mα,β (t,x))

+ f
(
t,β(t),β ′(t)

)

=
mα,β (t,x) – x

 + (x –mα,β (t,x))
> ,

which contradicts the assumption of monotonicity of y. Thus, we obtain

 < y
(
t+

)
< y(t) = y

(
t–

)
,

y′(t) = y′(t– ) ≥ .

We use the preceding procedure and deduce by induction that

y(tk) > , y′(tk)≥ , k = , , . . . ,p + ,

which contradicts that y() cannot be the maximum point. By the same analysis, we can
get that y(tk) > , k = , , . . . ,p, cannot hold. �

Lemma . –D≤ x′(t)≤D on J , where x(t) is the solution of (.).

Proof Here we only show x′(t) ≤ D. Suppose that there exists ρ ∈ (tk , tk+) with x′(ρ) =
x(tk+)–x(tk )

tk+–tk
, k ∈ {, , . . . ,p}, and as a result,

–D < –ω ≤ α(tk+) – β(tk)
tk+ – tk

≤ x′(ρ)≤ β(tk+) – α(tk)
tk+ – tk

≤ ω <D.

Therefore, there exist r, r ∈ (tk , tk+) such that x′(r) = ω, x′(r) =D and either

ω ≤ x′(t)≤D, t ∈ (r, r),

or

ω ≤ x′(t)≤D, t ∈ (r, r).

http://www.advancesindifferenceequations.com/content/2014/1/183
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We only consider the first case, since the other case can be handled similarly. It follows
from the assumption that

x′′(t) ≤ Ax′(t)�
(
x′(t)

)
+ B for t ∈ (r, r).

This implies that

∫ r

r

x′′(t)
�(x′(t))

dt ≤ A
∫ r

r
x′(t)dt + B

∫ r

r
�–(x′(t)

)
dt

= A
(
x(r) – x(r)

)
+ B

∫ r

r
�–(x′(t)

)
dt,

which yields

∫ D

ω

ds
�(s)

=
∫ x′(r)

x′(r)

ds
�(s)

≤ A
(
x(r) – x(r)

)
+ B(r – r)max

s≥ω
�–(s)

≤ A
(
max
t∈J

β(t) –min
t∈J α(t)

)
+ Bmax

s≥ω
�–(s).

This, obviously, contradicts the choice of D. The proof is complete. �

Lemma . (Schauder’s fixed point theorem) Let K be a convex subset of a normed linear
space E. Each continuous, compact map L : K → K has a fixed point.

3 Existence results
Theorem . Suppose that conditions (H)-(H) hold. Then BVP (.) has at least one
solution x ∈ E ∩C(J∗) such that

α(t)≤ x(t)≤ β(t), –D ≤ x′(t)≤D, t ∈ [, ].

Proof Solving (.) is equivalent to finding x ∈ E which satisfies

x(t) =
∫ 


H(t, s)F

(
s,x(s),

d
ds

mα,β (s,x)
)
ds +

∑
<tk<t

[
I∗k

(
x(tk)

)
+ (t – tk)J∗k

(
x(tk),x′(tk)

)]

– t
p∑

k=

[
I∗k

(
x(tk)

)
+ ( – tk)J∗k

(
x(tk),x′(tk)

)]
+


 –μ

∫ 



∑
<tk<s

[
I∗k

(
x(tk)

)

+ (s – tk)J∗k
(
x(tk),x′(tk)

)]
ds –

ν

 –μ

p∑
k=

[
I∗k

(
x(tk)

)
+ ( – tk)J∗k

(
x(tk),x′(tk)

)]
,

where I∗k (x(tk)) = Ik(mα,β (tk ,x(tk))), J∗k (x(tk),x′(tk)) = Jk(mα,β(tk ,x(tk)),n(tk ,x′(tk))).
Now, define the following operator T : E → E by

(Tx)(t) =
∫ 


H(t, s)F

(
s,x(s),

d
ds

mα,β (s,x)
)
ds

+
∑
<tk<t

[
I∗k

(
x(tk)

)
+ (t – tk)J∗k

(
x(tk),x′(tk)

)]

http://www.advancesindifferenceequations.com/content/2014/1/183
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– t
p∑

k=

[
I∗k

(
x(tk)

)
+ ( – tk)J∗k

(
x(tk),x′(tk)

)]
+


 –μ

∫ 



∑
<tk<s

[
I∗k

(
x(tk)

)

+ (s – tk)J∗k
(
x(tk),x′(tk)

)]
ds –

ν

 –μ

p∑
k=

[
I∗k

(
x(tk)

)
+ ( – tk)J∗k

(
x(tk),x′(tk)

)]
.

It is obvious that T : E → E is completely continuous.
By the Schauder fixed point theorem, we can easily obtain that T has a fixed point x ∈ E,

which is a solution of BVP (.). And by Lemma . and Lemma ., we know that α(t)≤
x(t) ≤ β(t), –D ≤ x′(t) ≤ D, then BVP (.) becomes BVP (.), therefore x(t) is a solution
of BVP (.). The proof is complete. �

Theorem . Suppose that conditions (H)-(H) hold. Assume that there exist two lower
solutions α and α and two upper solutions β and β for problem (.), satisfying the
following:

(i) α ≤ α ≤ β;
(ii) α ≤ β ≤ β;
(iii) α � β, which means that there exists t ∈ [, ] such that α > β;
(iv) if x is a solution of (.) with x≥ α, then x > α on (, );
(v) if x is a solution of (.) with x≤ β, then x < β on (, ).

If f satisfies the Nagumo condition with respect to α, β, then problem (.) has at least
three solutions x, x and x satisfying

α ≤ x ≤ β, α ≤ x ≤ β, x � β, x � α. (.)

Proof We consider the following modified problem:

x′′(t) + F
(
t,x(t),

d
dt

mα,β (t,x)
)
= , t ∈ J∗,

�x(tk) = Īk
(
x(tk)

)
, k = , , . . . ,p,

�x′(tk) = J̄k
(
x(tk),x′(tk)

)
, k = , , . . . ,p,

x() = x() =
∫ 


g(s)x(s)ds,

(.)

where Īk(x(tk)) = Ik(mα,β (tk ,x(tk))), J̄k(x(tk),x′(tk)) = Jk(mα,β (tk ,x(tk)),n(tk ,x′(tk))).
Now define the following operator T : E → E by

(Tx)(t) =
∫ 


H(t, s)F

(
s,x(s),

d
ds

mα,β (s,x)
)
ds

+
∑
<tk<t

[
Īk

(
x(tk)

)
+ (t – tk)J̄k

(
x(tk),x′(tk)

)]

– t
p∑

k=

[
Īk

(
x(tk)

)
+ ( – tk)J̄k

(
x(tk),x′(tk)

)]
+


 –μ

∫ 



∑
<tk<s

[
Īk

(
x(tk)

)

+ (s – tk)J̄k
(
x(tk),x′(tk)

)]
ds –

ν

 –μ

p∑
k=

[
Īk

(
x(tk)

)
+ ( – tk)J̄k

(
x(tk),x′(tk)

)]
.

http://www.advancesindifferenceequations.com/content/2014/1/183
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Since the functionsmα,β and n are continuous and bounded, we obtain that there exists
MF >  such that

∣∣F(
t,x(t),x′(t)

)∣∣ ≤MF .

Let

M =
MF

 –μ
+
 + ν – μ

 –μ

p∑
k=

[
max

x∈[–d,d]
∣∣Ik(x)∣∣ + max

x∈[–d,d],y∈[–D,D]
∣∣Jk(x, y)∣∣

]
,

where d =  +maxt∈J{‖α‖∞,‖β‖∞} and

� =
{
x ∈ E,‖x‖∞ ≤M

}
.

It is standard that T : E → E is completely continuous. It is immediate from the argu-
ment above that T(�̄) ⊂ �.
Thus,

deg(I – T ,�, ) = .

Let

�α =
{
x ∈ � : x > α on (, )

}
, �β =

{
x ∈ � : x < β on (, )

}
.

Since α � β, α > –M, β < M (i.e., choose M such that ‖α‖∞,‖β‖∞ < M). It follows
that �β �= ∅ �= �α , �β ∩ �α = ∅, and �\(�β ∪ �α ) �= ∅. By assumptions (iv) and (v),
there are no solutions in ∂�β ∪ ∂�α . Thus,

deg(I –T ,�, ) = deg
(
I –T ,�\(�β ∪ �α

)
, 

)
+deg

(
I –T ,�β , 

)
+deg(I –T ,�α , ).

We show that deg(I – T ,�β , ) = deg(I – T ,�α , ) = , then

deg
(
I – T ,�\(�β ∪ �α

)
, 

)
= –,

and there are solutions in �β ∪ �α , �β , �α , as required.
We now show deg(I – T ,�α , ) = . The proof that deg(I – T ,�β , ) =  is similar and

hence omitted. We define I –W , the extension to � of the restriction of I – T to �α as
follows.
Let

w(t,x, y) = f
(
t,mα,β (t,x),n(t, y)

)
+

mα,β (t,x) – x
 + (x –mα,β (t,x))

.

Thus, w is a continuous function on [, ]× R and satisfies

∣∣w(t,x, y)∣∣ ≤ A|y|�(|y|) + B for |y| <D,
∣∣w(t,x, y)∣∣ ≤M for (t,x, y) ∈ [, ]× R,

for some constantsM. Moreover, we may chooseM so that ‖α‖∞,‖β‖∞ <M.
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Consider the following problem:

x′′(t) +w
(
t,x(t),

d
dt

mα,β (t,x)
)
= , t ∈ J∗,

�x(tk) = Ĩk
(
x(tk)

)
, k = , , . . . ,p,

�x′(tk) = J̃k
(
x(tk),x′(tk)

)
, k = , , . . . ,p,

x() = x() =
∫ 


g(s)x(s)ds,

(.)

where Ĩk(x(tk)) = Ik(mα,β (tk ,x(tk))), J̃k(x(tk),x′(tk)) = Jk(mα,β (tk ,x(tk)),n(tk ,x′(tk))). Now
define the following operator:

(Wx)(t) =
∫ 


H(t, s)w

(
s,x(s),

d
ds

mα,β (s,x)
)
ds

+
∑
<tk<t

[
Ĩk

(
x(tk)

)
+ (t – tk)J̃k

(
x(tk),x′(tk)

)]

– t
p∑
k=

[
Ĩk

(
x(tk)

)
+ ( – tk)J̃k

(
x(tk),x′(tk)

)]

+


 –μ

∫ 



∑
<tk<s

[
Ĩk

(
x(tk)

)
+ (s – tk)J̃k

(
x(tk),x′(tk)

)]
ds

–
ν

 –μ

p∑
k=

[
Ĩk

(
x(tk)

)
+ ( – tk)J̃k

(
x(tk),x′(tk)

)]
.

Again, it is easy to check that x is a solution of (.) if x ∈ �α and Wx = x (note that W :
E → E is compact). Thus, deg(I –T ,�α , ) = .Moreover, it is easy to see thatW (�)⊂ �.
By assumptions (iv) and (v), there are no solutions in ∂�β ∪ ∂�α . So,

deg(I – T ,�α , ) = deg(I –W ,� \ �α , ) + deg(I –W ,�α , ) = deg(I –W ,�, ) = .

Thus there are three solutions, as required. The proof is complete. �

Theorem . Suppose that conditions (H)-(H) hold. Assume that there exist two lower
solutions α and α and two upper solutions β and β for problem (.), satisfying

(i) α ≤ α ≤ β;
(ii) α ≤ β ≤ β;
(iii) α � β;
(iv) there exists  < ε̄ <mint∈[,]{α(t) – α(t),β(t) – β(t)} such that all ε ∈ (, ε̄], the

functions α – ε and β + ε are, respectively, lower and upper solutions of (.);
(v) α – ε̄ � β + ε̄.

If f satisfies the Nagumo condition with respect to α, β, then problem (.) has at least
three solutions x, x, and x satisfying

α ≤ x ≤ β, α ≤ x ≤ β, x � β, x � α.
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Proof In the proof of Theorem ., define

�α =
{
u ∈ � : u > α – ε̄ on (, )

}
,

�β =
{
u ∈ � : u < β + ε̄ on (, )

}
,

where � is defined in Theorem .. �
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