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1 Introduction
The development in numerical analysis has propelled interest in difference equations
and their relationship to their differential counterparts. The theory of discrete nonlin-
ear boundary value problems has often been connected (e.g. Gaines []) to the study of
corresponding topics in differential equations and the investigation of the differences be-
tween the two approaches. This spirit remains in the recent publications (see e.g. Kelley
and Peterson [], Agarwal [] or Bereanu andMawhin []). This paper can be seen as a part
of this research stream. We investigate the nonlinear discrete Sturm-Liouville problems
coupled with a nonlinear boundary value condition, transform it into the equivalent oper-
ator equation, and use Dancer’s bifurcation theorem to obtain the existence of a positive
solution.
It is well known that the discrete Sturm-Liouville boundary value problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = f

(
k, y(k)

)
, k ∈ {, . . . ,N} =: I,

ay() – a�y() = , ay(N + ) + a�y(N) = ,
(.)

has been studied by many authors; see [–] and the references therein. Here �y(k) =
y(k+)–y(k) for all k ∈ Z, p,q : I →R are functions, f : I×R →R is a continuous function.
In , Agarwal and O’Regan [] studied the existence of solutions of (.) by fixed

point theorem whenever p(·) ≡ , q(·) = . In , Atici [] obtained the existence of
positive solutions of (.) by the fixed point theorem in cones. Cabada and Otero-Espinar
[], Rodríguez [, ], Rodríguez and Abernathy [], Ma [], Henderson et al. [], and
Anderson et al. [] also studied the discrete Sturm-Liouville problems by various meth-
ods. It is worth to point out that Rodríguez and Abernathy [] studied the existence of
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solutions of the following boundary value problem of the difference equation:

�
[
p(k – )�x(k – )

]
+ q(k)x(k) +ψ

(
x(k)

)
=G

(
x(k)

)
, k ∈ {a + , . . . ,b + },

αx(a) + β�x(a) + η(x) = ϕ(x), γ x(b + ) + δ�x(b) + η(x) = ϕ(x),
(.)

where a and b are integers, α +β �= , γ  + δ �= , α �= β , γ �= δ, p : {a, . . . ,b+} → (,∞),
q : {a + , . . . ,b + } → R, ψ :R → R is continuously differentiable, G : X → Y , ϕ : X → R

and ϕ : X → R are all continuous, η,η : X → R are continuously Fréchet differentiable;
hereX is the set of real-valued functions defined on {a, . . . ,b+}, Y is the set of real-valued
functions defined on {a + , . . . ,b + }. Under some hypotheses, they showed that (.) has
a solution by the Brouwer fixed point theorem.
However, as far as we know, there is very little work to study the existence of positive

solutions of second-order difference equation with nonlinear boundary value condition.
Motivated by the above works [–], we study the global structure of positive solutions
of the following discrete boundary value problem:

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = λa(k)f

(
y(k)

)
, k ∈ I,

–�y() + αg
(
y()

)
= , �y(N) + βg

(
y(N + )

)
= ,

(.)

where α,β ≥  are constants, the functions p : {, , . . . ,N} → (,∞), q,a : I → [,∞) with
a(k) >  on k ∈ I and functions f , g satisfy the following:
(H) f ∈ C([,∞), [,∞)) with f (s) >  for s >  and there exist constants f, f∞ ∈ (,∞)

and functions ξ , ζ ∈ C([,∞)) such that

f (s) = fs + ξ (s), ξ (s) = o
(|s|) as s→ +,

f (s) = f∞s + ζ (s), ζ (s) = o
(|s|) as s → +∞.

(H) g ∈ C([,∞), [,∞)) with g(s) >  for s >  and there exist constants
g, g∞ ∈ (,∞) and functions ,η ∈ C([,∞)), such that

g(s) = gs + (s), (s) = o
(|s|) as s→ +,

g(s) = g∞s + η(s), η(s) = o
(|s|) as s→ +∞.

Through careful analysis we have found that the boundary condition in (.) is nonlinear
but it can be linearized and this makes it possible to establish existence results for posi-
tive solutions of (.) in terms of the principal eigenvalue of the corresponding linearized
problem. Notice that this condition is different from those given in [, ].
Let Î := {, , . . . ,N ,N + }, and define E = {y | y : Î → R} to be the space of all maps from

Î into R. Then it is a Banach space with the norm ‖y‖ =maxk∈Î |y(k)|.
Let P := {y ∈ E | y(k) ≥ ,k ∈ Î}. Then P is a cone which is normal and has a nonempty

interior and E = P – P.
By the constant λ

 we denote the first eigenvalue of the eigenvalue problem,

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = λa(k)fy(k), k ∈ I,

–�y() + αgy() = , �y(N) + βgy(N + ) = .
(.)
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By a constant λ∞
 we denote the first eigenvalue of the eigenvalue problem,

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = λa(k)f∞y(k), k ∈ I,

–�y() + αg∞y() = , �y(N) + βg∞y(N + ) = .
(.)

It is well known (cf. Kelly and Peterson []) that for ν ∈ {,∞}, λν
 is positive and simple,

and that it is a unique eigenvalue with positive eigenfunction ϕν
 ∈ E.

Let C be the closure of the set

{
(λ,u) ∈ (,∞)× E | (λ,u) is a positive solution of (.) in R× E

}
.

Theorem . Let (H)-(H) hold. Then there exists an unbounded, closed, and connected
component C ⊂ (,∞)× E in C , which joins (λ

 , ) with (λ∞
 ,∞).Moreover, if

λ∞
 < λ < λ

 or λ
 < λ < λ∞

 (.)

hold. Then (.) has at least one positive solution.

Corollary . Let (H)-(H) hold. If

λ∞
 <  < λ

 or λ
 <  < λ∞



hold. Then the problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = a(k)f

(
y(k)

)
, k ∈ I,

–�y() + αg
(
y()

)
= , �y(N) + βg

(
y(N + )

)
= 

has at least one positive solution.

Remark . Compared with references [, ], Theorem . gives the sharp condition (.)
for the existence of a positive solution of (.). In fact, let us consider the function

f (s) = λ
 s + arctan

(
s

 + s

)
,

which satisfies f = f∞ = λ
 , then the nonlinear boundary value problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = f

(
y(k)

)
, k ∈ I,

–�y() + αy() = , �y(N) + βy(N + ) = 

has no positive solution.

The rest of this paper is organized as follows. In Section , we state some preliminary
results and Dancer’s bifurcation theorem. It is worth to note that the proof of the main
result is based upon Dancer’s bifurcation theorem, which is different from the topological
degree arguments used in [, , , ]. In Section , we reduce (.) to a compact operator
equation and prove Theorem . and Corollary ..

http://www.advancesindifferenceequations.com/content/2014/1/188
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2 Preliminaries and Dancer’s global bifurcation theorem
Let φ(k), ψ(k) be the solution of the initial value problem

–�
[
p(k – )�φ(k – )

]
+ q(k)φ(k) =  for k ∈ I,

φ() = , �φ() = ᾱ,
(.)

and

–�
[
p(k – )�ψ(k – )

]
+ q(k)ψ(k) =  for k ∈ I,

ψ(N + ) = , �ψ(N) = –β̄ ,
(.)

respectively, where ᾱ, β̄ ∈ [,∞). It is easy to compute and show that
(i) φ(k) =  + ᾱ

∑k–
s=

p()
p(s) +

∑k–
s= (

∑k–
j=s


p(j) )q(s)φ(s) > , and φ is increasing on Î ;

(ii) ψ(k) =  + β̄
∑N

s=k
p(N)
p(s) +

∑N
s=k+(

∑N–
j=k+


p(j) )q(s)ψ(s) > , and ψ is decreasing on Î .

Lemma . Let h : I →R. Then the linear boundary value problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = h(k), k ∈ I,

–�y() + ᾱy() = , �y(N) + β̄y(N + ) = 
(.)

has a solution

y(k) =
N∑
s=

G(k, s)h(s), k ∈ Î, (.)

where

G(k, s) =

{
φ(s)ψ(k),  ≤ s ≤ k ≤ T + ,
φ(k)ψ(s),  ≤ k ≤ s ≤ T .

(.)

Moreover, if h(k) ≥  and h �≡  on I , then y(k) >  on Î .

Proof It is a direct consequence of Atici [, Section ], so we omit it. �

Let ω,ω ∈ (,∞). Then the linear boundary value problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = , k ∈ I,

–�y() + ᾱy() = w, �y(N) + β̄y(N + ) = w

(.)

has a solution

y(k) =
ω

( + β̄)φ(N + ) – φ(N)
φ(k) +

ω

( + ᾱ)ψ() –ψ()
ψ(k), k ∈ Î. (.)

From the properties of φ(k), ψ(k), it follows that

y(k) > , k ∈ Î.

http://www.advancesindifferenceequations.com/content/2014/1/188


Lu and Ma Advances in Difference Equations 2014, 2014:188 Page 5 of 11
http://www.advancesindifferenceequations.com/content/2014/1/188

Let T : E → E be defined as follows:

T[h](k) =
N∑
s=

G(k, s)h(s), k ∈ Î.

By a standard compact operator argument, it is easy to show that T is a compact operator
and it is strongly positive, meaning that Th >  on Î for any h ∈ E with the condition that
h≥  and h �≡  on I ; see [, ].
Let R[ω,ω] :R → E be defined as

R[ω,ω](k) =
ω

( + β̄)φ(N + ) – φ(N)
φ(k) +

ω

( + ᾱ)ψ() –ψ()
ψ(k), k ∈ Î.

Then R[ω,ω] is a linear bounded function in E.
Suppose that E is a real Banach space with norm ‖ · ‖. Let K be a cone in E. A nonlinear

mapping A : [,∞) × K → E is said to be positive if A([,∞) × K ) ⊂ K . It is said to be
K-completely continuous if A is continuous and maps bounded subsets of [,∞)×K to a
precompact subset of E. Finally, a positive linear operator V on E is said to be a linear mi-
norant for A if A(λ,u) ≥ μV (u) for (λ,u) ∈ [,∞)×K . If B is a continuous linear operator
on E, denote by r(B) the spectrum radius of B. Define

CK (B) =
{
λ ∈ [,∞) | there exists u ∈ K with ‖u‖ =  and u = λBu

}
. (.)

The following lemmawill play a very important role in the proof of ourmain results, which
is essentially a consequence of Dancer [, Theorem ].

Lemma . Assume that
(i) K has a nonempty interior and E = K –K ;
(ii) A : [,∞)×K → E is K -completely continuous and positive, A(λ, ) =  for λ ≥ ,

A(,u) =  for u ∈ K and

A(λ,u) = λBu + F(λ,u),

where B : E → E is a strongly positive linear compact operator on E with r(B) > ,
F : [,∞)×K → E satisfies ‖F(λ,u)‖ = o(‖u‖) as ‖u‖ →  locally uniformly in λ.

Then there exists an unbounded connected subset C of

DK (A) =
{
(λ,u) ∈ [,∞)×K | u = A(λ,u),u �= 

} ∪ {(
r(B)–, 

)}

such that (r(B)–, ) ∈ C .
Moreover, if A has a linear minorant V and there exists a (μ, y) ∈ (,∞) × K such that

‖y‖ =  and μV (y) ≥ y, then C can be chosen in DK (A)∩ ([,μ]×K ).

3 The proof of themain result
To prove Theorem ., we begin with the reduction of (.) to a suitable equation for a
compact operator.

http://www.advancesindifferenceequations.com/content/2014/1/188
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From Lemma . and the compactness of T , let T : E → E denote the inverse operator
of the linear boundary value problem

–�
[
p(k – )y(k – )

]
+ q(k)y(k) = h(k), k ∈ I,

–�y() + αgy() = , �y(N) + βgy(N + ) = .

Taking into account ᾱ = αg, β̄ = βg, one can repeat the argument of the operator T with
some minor changes, and it follows that T is a linear mapping of E compactly into E and
it is strongly positive.
Let R be the solution of the linear boundary value problem

–�
[
p(k – )y(k – )

]
+ q(k)y(k) = , k ∈ I,

–�y() + αgy() = –
(
y()

)
, �y(N) + βgy(N + ) = –

(
y(N + )

)
.

Repeating the argument of R[ω,ω] with someminor changes, it follows that R :R → E
is a linear, bounded mapping and

R
[
τ
(
–(y)

)]
(k) =

–(y(N + ))φ(k)
( + βg)φ(N + ) – φ(N)

+
–(y())ψ(k)

( + αg)ψ() –ψ()
, k ∈ Î,

here τ : {y(), y(), . . . , y(N + )} → {y(), y(N + )} is the trace operator and φ(k), ψ(k)
satisfies (.) and (.) with ᾱ = αg, β̄ = βg, respectively. Then the problem (.) is equiv-
alent to the operator equation

y(k) = λT
[
afy + ξ (y)

]
(k) + R

[
τ
(
–(y)

)]
(k), k ∈ Î. (.)

Similarly, let T∞ : E → E denote the inverse operator of the linear boundary value prob-
lem

–�
[
p(k – )y(k – )

]
+ q(k)y(k) = h(k), k ∈ I,

–�y() + αg∞y() = , �y(N) + βg∞y(N + ) = .

Then T∞ is a linear mapping of E compactly into E and it is strongly positive. Let R∞ be
the solution of the linear boundary value problem

–�
[
p(k – )y(k – )

]
+ q(k)y(k) = , k ∈ I,

–�y() + αg∞y() = –η
(
y()

)
, �y(N) + βg∞y(N + ) = –η

(
y(N + )

)
.

Then R∞ :R → E is a linear mapping bounded mapping and

R∞
[
τ
(
–η(y)

)]
(k) =

–η(y(N + ))φ∞(k)
( + βg∞)φ∞(N + ) – φ∞(N)

+
–η(y())ψ∞(k)

( + αg∞)ψ∞() –ψ∞()
, k ∈ Î,

here φ∞(k), ψ∞(k) satisfies (.) and (.) with ᾱ = αg∞, β̄ = βg∞, respectively. Further-
more, the problem (.) is also equivalent to the operator equation

y(k) = λT∞
[
af∞y + ζ (y)

]
(k) + R∞

[
τ
(
–η(y)

)]
(k), k ∈ Î. (.)

http://www.advancesindifferenceequations.com/content/2014/1/188
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From (H) and (H), it follows that

lim|s|→

ξ (s)
s

= , lim|s|→

(s)
s

= , (.)

lim|s|→∞
ζ (s)
s

= , lim|s|→∞
η(s)
s

= . (.)

Let ζ̄ (r) = max{|ζ (s)| |  ≤ s ≤ r}, η̄(r) = max{|η(s)| |  ≤ s ≤ r}. Then ζ̄ and η̄ are nonde-
creasing and satisfy

lim|s|→∞
ζ̄ (s)
s

= lim|s|→∞
η̄(s)
s

= .

Let us consider

y = λT
[
afy + ξ (y)

]
+ R

[
τ
(
–(y)

)]
=: A(λ, y) (.)

as a bifurcation problem from the trivial solution u ≡ .
Define the linear operator B

By(k) := T[afy](k), k ∈ Î.

It is easy to verify that B : P → P is completely continuous and strongly positive on E. From
[, Theorem .], it follows that λ

 = [r(B)]–. Define F : [,∞)× E → E by

F(λ, y) := λT
[
ξ (y)

]
+ R

[
τ
(
–(y)

)]
,

then we have from (.)

∥∥F(λ, y)∥∥ = o
(‖y‖) locally uniform in λ.

So, we imply that if (λ,u) with λ >  is a nontrivial solution of (.), then y ∈ intP. Combin-
ing this with Lemma ., we conclude that there exists an unbounded connected subset C
of the set

{
(λ, y) ∈ [,∞)× P | y = A(λ, y), y ∈ intP

} ∪ {(
λ
 , 

)}
such that (λ

 , ) ∈ C .

Proof of Theorem . It is clear that any solution of (.) of the form (λ, y) yields a solution
y of (.). We will show that C joins (λ

 , ) to (λ∞
 ,∞).

Let (μn, yn) ∈ C satisfy

|μn| + ‖yn‖ → ∞, n→ ∞.

Then μn >  for all n ∈ N since y =  is the only solution for (.) (i.e. (.), since (.) and
(.) are equivalent to (.)) for λ = .

http://www.advancesindifferenceequations.com/content/2014/1/188
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In fact, suppose on the contrary that y is a nontrivial solution of the problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = , k ∈ I,

–�y() + αg
(
y()

)
= , �y(N) + βg

(
y(N + )

)
= ,

then y satisfies the linear boundary value problem

–�
[
p(k – )�y(k – )

]
+ q(k)y(k) = , k ∈ I,

–�y() + α̃y() = , �y(N) + β̃y(N + ) = ,

here α̃ = α
g(y())
y() , β̃ = β

g(y(N+))
y(N+) . This together with (H) and [, Lemma .] implies that

y≡ , which is a contradiction. Therefore, (.) with λ =  has only a trivial solution.
Case  λ∞

 < λ < λ
 .

In this case, we show that

(
λ∞
 ,λ


) ⊆ {

λ ∈R | ∃(λ, y) ∈ C
}
.

We divide the proof into two steps.
Step . We show that if there exists a constant numberM >  such that

μn ⊂ (,M], (.)

then C joins (λ
 , ) with (λ∞

 ,∞).
From (.), we have ‖yn‖ → ∞ as n→ ∞. We divide the equation

yn = μnT∞
[
af∞yn + ζ (yn)

]
+ R∞

[
τ
(
–η(yn)

)]
in Î

by ‖yn‖ and let vn = yn
‖yn‖ . Since vn is bounded in E, choosing a subsequence and relabeling

if necessary, we see that vn → v̄ for some v̄ ∈ E with ‖v̄‖ = . Moreover, from (.) and the
fact that ζ̄ and η̄ are nondecreasing, we have

lim
n→∞

|ζ (yn)|
‖yn‖ = lim

n→∞
|η(yn)|
‖yn‖ = ,

since limn→∞ |ζ (yn)|
‖yn‖ ≤ limn→∞ ζ̄ (|yn|)

‖yn‖ ≤ limn→∞ ζ̄ (‖yn‖)
‖yn‖ and limn→∞ |η(yn)|

‖yn‖ ≤ limn→∞ η̄(|yn|)
‖yn‖ ≤

limn→∞ η̄(‖yn‖)
‖yn‖ . Thus

v̄ = μ̄T∞[af∞v̄],

where μ̄ = limn→∞ μn, again choosing a subsequence and relabeling if necessary. So it
follows that

–�
[
p(k – )�v̄(k – )

]
+ q(k)v̄(k) = μ̄af∞v̄(k), k ∈ I,

–�v̄() + αg∞v̄() = , �v̄(N) + βg∞v̄(N + ) = .

http://www.advancesindifferenceequations.com/content/2014/1/188
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Since ‖v̄‖ = , and v̄ ≥ , the strong positivity of T∞ ensures that v̄ >  on Ī . Therefore,
μ = λ∞

 , and accordingly, C joins (λ
 , ) to (λ∞

 ,∞).
Step . We show that there exists a constantM such that μn ∈ (,M] for all n.
By Lemma ., we only need to show that A has a linear minorant V and there exists a

(μ, y) ∈ (,∞)× P such that ‖y‖ =  and μV (y) ≥ y.
From (H) and (H), there exist constants κ,κ ∈ (,∞) such that

f (y) ≥ κy, and g(y) ≤ κy for any y≥ . (.)

By the samemethod as used for defining T and R, we may define T∗ and R∗ as follows:
Let T∗ : E → E denote the inverse operator of the linear boundary value problem

–�
[
p(k – )y(k – )

]
+ q(k)y(k) = h(k), k ∈ I,

–�y() + ακy() = , �y(N) + βκy(N + ) = .

Then T∗ is a linear mapping of E compactly into E and it is strong positive. Let R∗ be the
solution of the linear boundary value problem

–�
[
p(k – )y(k – )

]
+ q(k)y(k) = , k ∈ I,

–�y() + ακy() = χ
(
y()

)
, �y(N) + βκy(N + ) = χ

(
y(N + )

)
,

where χ (y) = κy – g(y). Then R∗ :R → E is a linear, bounded mapping and

R∗[τ(
χ (y)

)]
(k) =

χ (y(N + ))φ∗(k)
( + βκ)φ∗(N + ) – φ∗(N)

+
χ (y())ψ∗(k)

( + ακ)ψ∗() –ψ∗()
, k ∈ Î,

where φ∗(k), ψ∗(k) satisfies (.) and (.) with ᾱ = ακ, β̄ = βκ, respectively.
Moreover, the problem (.) can be rewritten as the operator equation

y(k) = λT∗[af (y)](k) + R∗[τ(
χ (y)

)]
(k), k ∈ Î. (.)

Thus

A(λ, y) = λT∗[af (y)] + R∗[τ(
χ (y)

)]
≥ λT∗[aκy].

Choose

V (y) := T∗[aκy](k) in Î.

Then V is a linear minorant of A. Let λ∗
 be the eigenvalue of the linear problem

–�
[
p(k – )y(k – )

]
+ q(k)y(k) = λκy(k), k ∈ I,

–�y() + ακy() = , �y(N) + βκy(N + ) = ,

http://www.advancesindifferenceequations.com/content/2014/1/188
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and let ϕ∗
 ∈ P be the corresponding eigenfunction. Then

λ∗
V

(
ϕ∗

)
= ϕ∗

 .

Therefore we have from Lemma .

|μn| ≤ λ∗
 .

Case  λ
 < λ < λ∞

 .
In this case, if (μn, yn) ∈ C is such that

lim
n→∞(μn + yn) = +∞

and limn→∞ μn =∞, then

(
λ
 ,λ

∞


) ⊆ {
λ ∈R | ∃(λ, y) ∈ C

}
and moreover,

({λ} × E
) ∩ C �= ∅.

If there exists M > , such that for all n ∈ N, μn ∈ (,M]. Applying a similar argument
to that used in Step  of Case , after taking a subsequence and relabeling if necessary, it
follows that

(μn, yn) →
(
λ∞
 ,∞)

, as n→ ∞.

Again C joins (λ
 , ) to (λ∞

 ,∞) and the result follows. �

Proof of Corollary . It is a direct consequence of Theorem ., so we omit it. �

Example Let us consider the following boundary value problem of the difference equa-
tion:

–�u(k – ) = λf
(
u(k)

)
, k ∈ {, , , , },

–�u() + g
(
u()

)
= , �u() + g

(
u()

)
= ,

(.)

where

f (u) =

{

u + u

 ,  ≤ u ≤ ,
u
u– + u, u ≥ ,

and g(u) =

{
u,  ≤ u ≤ ,
(u – ) + 

u , u ≥ .

Obviously, the conditions (H), (H) are satisfied, furthermore f = 
 , f∞ = , g = ,

g∞ = , and λ
 ≈ ., λ∞

 ≈ .. From Theorem ., the problem (.) has at
least one positive solution u on Î if . < λ < ..

http://www.advancesindifferenceequations.com/content/2014/1/188
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