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Abstract
We establish some properties of iterations of the remainder operator which assigns to
any convergent series the sequence of its remainders. Moreover, we introduce the
spaces of multiple absolute summable sequences. We also present some tests for
multiple absolute convergence of series. These tests extend the well-known classical
tests for absolute convergence of series. For example we generalize the Raabe, Gauss,
and Bertrand tests. Next we present some applications of our results to the study of
asymptotic properties of solutions of difference equations. We use the spaces of
multiple absolute summable sequences as the measure of approximation.
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1 Introduction
Let r denote the operator which assigns to any convergent series the sequence of its re-
mainders. The purpose of this paper is to study the basic properties of iterations rm of
r and apply these results to the study of asymptotic properties of solutions of difference
equations. We also study the spaces of multiple absolute summable sequences. Moreover,
we obtain extensions of some classical tests for absolute convergence of series.
The paper is organized as follows. In Section , we introduce our notation and terminol-

ogy. In Section , we define the iterations of the remainder operator and the spaces S(m)
ofm-times summable sequences. Moreover, we establish some basic properties of rm. For
example, we show that

�mrmx = (–)mx and rm�mz = (–)mz ()

for any sequence x ∈ S(m) and any sequence z convergent to zero. This means that the
operator (–)mrm is inverse to the restriction �m|Z where Z denotes the space of all con-
vergent to zero sequences.
In Section , we introduce the spaces A(m) of absolutelym-times summable sequences

and establish the relationships between A(m) and the spaces O(ns). We also extend some
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classical tests for absolute convergence of series. For example, the Raabe test states that

if lim infn
( |an|

|an+| – 
)
> , then

∞∑
n=

|an| < ∞.

In Lemma . we show that

if lim infn
( |an|

|an+| – 
)
> , then

∞∑
n=

∞∑
k=n

|ak| < ∞

and, more generally,

if lim infn
( |an|

|an+| – 
)
>m, then

∞∑
i=

∞∑
i=i

· · ·
∞∑

im=im–

|aim | < ∞.

On the other hand,

if n
( |an|

|an+| – 
)

≤m for large n, then
∞∑
i=

∞∑
i=i

· · ·
∞∑

im=im–

|aim | =∞.

Similarly in Lemma . we show that

lim sup
log |an|
logn

< –m implies
∞∑
i=

∞∑
i=i

· · ·
∞∑

im=im–

|aim | < ∞

and

log |an|
logn

≥ –m for large n implies
∞∑
i=

∞∑
i=i

· · ·
∞∑

im=im–

|aim | =∞.

For x ∈ S(m), by definition, we have

rm(x)(n) =
∞∑
i=n

∞∑
i=i

· · ·
∞∑

im=im–

xim . ()

If |x| ∈ S(m), i.e., x ∈ A(m), then x ∈ S(m) and

rm(x)(n) =
∞∑
k=

(
m –  + k
m – 

)
xn+k =

∞∑
i=n

(
m + i – n – 

m – 

)
xi. ()

We use () to obtain basic properties of the operator rm. At the end of Section , using
all possible �pA(m) and rpA(m), we obtain an infinite stratification of the space of all
sequences convergent to zero. This stratification induces a substratification of A(m) for
anym.
In Section , we present some applications of our results to the study of asymptotic

properties of solutions of difference equations. We use the spaces A(p) as the measure of
approximation. For example, we apply our results and fixed point theorems to the study of
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solutions with prescribed asymptotic behavior. More precisely, using the Schauder fixed
point theorem and the Knaster-Tarski fixed point theorem, we establish conditions un-
der which for a given sequence b and a solution y of the equation �my = b there exists a
solution x of the equation

�mxn = anf (xσ (n)) + bn ()

such that

x ∈ y +A(p).

We also show that if a,b ∈ A(m+p) and x is a solution of () such that the sequence (f (xn))
is bounded, then

x ∈Ker�m +A(p).

Hence x is asymptotically polynomial. The equality

�m(
(–)mrmx

)
= x

for x ∈ S(m), which is a consequence of (), plays a crucial role in the application of fixed
point theorems to the study of solutions of difference equations. The value rmx is used,
mainly implicitly, in the study of solutions with prescribed asymptotic behavior. In some
papers the multiple sums () appear explicitly; see for example [–] or []. This paper is
a continuation of the papers [, ] and []. Our studies were inspired by the papers [–]
and the papers [–], and [].
Some applications of our results to the study of asymptotic properties of solutions of

nonautonomous difference equations are presented in [].

2 Notation and terminology
Let N, Z, R denote the set of positive integers, the set of all integers and the set of real
numbers, respectively. The space of all sequences x :N →R we denote by SQ.
If p,k ∈ Z, p≤ k, then N(p), N(p,k) denote the sets defined by

N(p) = {p,p + , . . .}, N(p,k) = {p,p + , . . . ,k}.

If x, y in SQ, then xy denotes the sequence defined by pointwise multiplication

xy(n) = xnyn.

Moreover, |x| denotes the sequence defined by |x|(n) = |xn| for every n.
We use the symbols ‘big O’ and ‘small o’ in the usual sense but for a ∈ SQ we also regard

o(a) and O(a) as subspaces of SQ. More precisely, let

o() = {x ∈ SQ : x is convergent to zero}, O() = {x ∈ SQ : x is bounded}

http://www.advancesindifferenceequations.com/content/2014/1/189
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and for a ∈ SQ let

o(a) = ao() =
{
ax : x ∈ o()

}
, O(a) = aO() =

{
ax : x ∈O()

}
.

Form ∈N() we define

Pol(m – ) =Ker�m =
{
x ∈ SQ :�mx = 

}
.

Then Pol(m – ) is the space of all polynomial sequences of degree less than m. For m ∈
N(), k ∈N we define numbers smk by

smk =
(
m + k – 

m

)
=
k(k + ) · · · (k +m – )

m!
.

For p ∈N we define

Fin(p) = {x ∈ SQ : xn =  for n≥ p}.

We say that a subset U of a metric space X is a uniform neighborhood of a subset Y of X
if there exists a positive number ε such that

⋃
y∈Y

B(y, ε) ⊂ U ,

where B(y, ε) denotes an open ball of radius ε about y.
A sequence x ∈ SQ is called nonoscillatory if xnxn+ ≥  for large n.
Assume f :R → R. We say that a sequence x ∈ SQ is f -bounded if the sequence f ◦ x is

bounded. Note that x ◦ σ is f -bounded for any f -bounded sequence x and any sequence
σ :N →N.

Example . If f (t) = et , then f -boundedness of a sequence x is equivalent to the bound-
edness above of x. Assume f (t) = t– for t 	= , f () =  and let L(x) denote the set of limit
points of a given sequence x. Then f -boundedness of x is equivalent to the condition
 /∈ L(x).

3 Iterated remainder operator
In this section we introduce the remainder operator r, the spaces S(m) of m-times
summable sequences and iterations rm : S(m) → S(). Next in Lemma . we establish
some basic properties of rm and the relationships between rm and �m. Let

S() = o() = {x ∈ SQ : limxn = },
S() =

{
x ∈ SQ : the series

∑
xn is convergent

}
.

For x ∈ S(), we define the sequence r(x) by the formula

r(x)(n) =
∞∑
j=n

xj.

http://www.advancesindifferenceequations.com/content/2014/1/189
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Then r(x) ∈ S() and we obtain the remainder operator

r : S()→ S().

Form ∈ N we define, by induction, the linear space S(m + ) and the linear operator rm+ :
S(m + ) → S() by

S(m + ) =
{
x ∈ S(m) : rm(x) ∈ S()

}
, rm+(x) = r

(
rm(x)

)
.

The value rm(x)(n) we denote also by rmn (x) or simply rmn x.

Lemma . Assume x, y ∈ SQ,m,k ∈N, p ∈N() and q ∈N(,m – ). Then
() if |x| ∈ S(m), then x ∈ S(m) and |rmx| ≤ rm|x|,
() |x| ∈ S(m) if and only if

∑∞
n= sm–

n |xn| < ∞,
() |x| ∈ S(m) if and only if

∑∞
n= nm–|xn| < ∞,

() |x| ∈ S(m) if and only if O(x)⊂ S(m),
() if |x| ∈ S(m), then rmn x = sm–

 xn + sm–
 xn+ + sm–

 xn+ + · · · ,
() if |x| ∈ S(m), then rmk |x| ≤ ∑∞

n=k nm–|xn|,
() if x ∈ S(m), then �mrmx = (–)mx,
() if x = o(), then �mx ∈ S(m) and rm�mx = (–)mx,
() �mS() = S(m), rmS(m) = S(),
() �pS(m) = S(m + p), rpS(m + p) = S(m),
() if x, y ∈ S(m) and xn ≤ yn for n≥ p, then

rmn x ≤ rmn y for n≥ p,

() if x ∈ S(m) and yn = xn for n ≥ p, then y ∈ S(m) and

rmn y = rmn x for n ≥ p,

() if y ∈ S(m) and ≤ x ≤ y, then x ∈ S(m),
() if |x| ∈ S(m) and y is bounded, then yx ∈ S(m) and

∣∣rm(yx)∣∣ ≤ |y|rm|x|,

() if |yx| ∈ S(m), |y| is nondecreasing and positive, then |x| ∈ S(m),

|y|rm|x| ≤ rm|yx| and �qrmx = o
(
n–qy–

)
,

() if t ∈ (–∞, ] and
∑∞

n= nm–t–|xn| < ∞, then �qrmx = o(nt–q).

Proof Assertion () is proved in Lemma  of []. Assertion () is proved in Lemma  of
[]. () is proved in Lemma  of []. Since |x| ∈ O(x) we see that () is a consequence of
(). () is proved in Lemma  of []. Assertion () follows from (). Assertion () is
proved in Lemma  of []. Assertion () follows from Lemma  of []. Assertion () is
an easy consequence of (). Assertion () is a consequence of () and (). Assertion
() is obvious for m = . For m >  it can easily be proved by induction. Assertion () is

http://www.advancesindifferenceequations.com/content/2014/1/189
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an easy consequence of (). Assertion () is well known for m = . Assume it is true for
certainm ≥ . Let ≤ x≤ y and y ∈ S(m+). Then y ∈ S(m) and, by assumption, x ∈ S(m).
Moreover, using () we have

 ≤ rmx≤ rmy

and, by (), rmy ∈ S(). Hence rmx ∈ S() andwe obtain x ∈ S(m+). Assertion () follows
from () and Lemma  of []. Assume |y| is nondecreasing and positive and |yx| ∈ S(m).
Then the sequence y– is bounded and using () we have |x| = |y|–|yx| ∈ S(m). Moreover,
using (), we have

|yn|rmn |x| = |yn|sm–
 |xn| + |yn|sm–

 |xn+| + |yn|sm–
 |xn+| + · · ·

≤ sm–
 |ynxn| + sm–

 |yn+xn+| + sm–
 |yn+xn+| + · · · = rmn |yx|

for any n. Hence |y|rm|x| ≤ rm|yx|. Using (), we obtain

|y|∣∣rmx∣∣ ≤ |y|rm|x| ≤ rm|yx| = o() and rmx = o
(
y–

)
. ()

By (), |ynqx| ∈ S(m – q). Hence, replacing y by nqy and m by m – q in (), we obtain
rm–qx = o(n–qy–). Therefore

�qrmx =�qrqrm–qx = (–)qrm–qx = o
(
n–qy–

)

and we obtain (). Using () and taking yn = n–t in () we obtain (). �

Remark . For x ∈ S(m) and n ∈N, by definition of rm, we have

rmn x =
∞∑
i=n

∞∑
i=i

· · ·
∞∑

im=im–

xim .

Moreover, if |x| ∈ S(m), then, by Lemma .(), we have

rmn x =
∞∑
k=

(
m –  + k
m – 

)
xn+k .

Remark . By Lemma .() and () the restriction �m|S() : S() → S(m) is a bijec-
tion with inverse (–)mrm.

Remark . If X is a linear subspace of S() and Y is a linear subspace of S(m), then, using
Lemma .() and (), we have

rm�mX = X, �mrmY = Y .

For any m ∈ N we have S(m) ⊂ S() = o() = o(n). In the following example we show
that for anym ∈ N and any ε >  there exists a sequence x such that

x ∈ S(m) \O(
n–ε

)

and, moreover, limn→∞ nε|xn| =∞.

http://www.advancesindifferenceequations.com/content/2014/1/189
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Example . Letm ∈N and ε > . Choose δ ∈ (, ε). Let yn = (–)nn–δ and x =�my. Then
y ∈ S(), x ∈ S(m) and

|xn| =
∣∣�myn

∣∣ =
∣∣∣∣∣

m∑
i=

(–)m+i
(
m
i

)
yn+i

∣∣∣∣∣

=

∣∣∣∣∣
m∑
i=

(–)m+i
(
m
i

)
(–)n+i(n + i)–δ

∣∣∣∣∣ =
∣∣∣∣∣(–)m+n

m∑
i=

(
m
i

)
(n + i)–δ

∣∣∣∣∣ ≥ n–δ .

Hence nε|xn| ≥ nε–δ → ∞ and x ∈ S(m) \O(n–ε).

4 Absolute summable sequences
In this section we introduce the spaces A(m) of absolutelym-times summable sequences.
We establish the relationships between A(m) and the spaces o(ns) and O(ns). There exist
many tests for the absolute convergence of series. Most of them may be extended to the
case A(m). For example we present five of them in Lemmas .-.. At the end of the
section, using all possible �pA(m) and rpA(m) we obtain an infinite stratification of the
set S() \A(∞).
Form ∈N() we define the set A(m) by

A(m) =
{
a ∈ SQ : |a| ∈ S(m)

}
.

Moreover, let

A(∞) =
∞⋂
k=

A(k), o
(
n–∞)

=
⋂
s∈R

o
(
ns

)
, Fin =

∞⋃
p=

Fin(p).

Remark . Note that A() = S() and the condition a ∈A() is equivalent to the absolute
convergence of the series

∑∞
n= an. Moreover, A(m) is a linear subspace of S(m) for any

m ∈N(). Note also that if p ∈ N and λ ∈ (–, ), then

Fin(p) ⊂ Fin⊂ o
(
λn) ⊂A(∞).

Lemma . Assume a ∈ SQ,m ∈N() and s ∈R. Then
(a) a ∈A(m + )⇔ (nman) ∈ A(),
(b) a ∈A(m + )⇔ (nan) ∈A(m),
(c) (ns) ∈A(m) ⇔ s < –m.

Proof Assertion (a) is a consequence of Lemma .(), (b) is a consequence of (a). Asser-
tion (c) follows from (b) and from the fact that the condition (ns) ∈ A() is equivalent to
the condition s < –. �

Example . Let m ∈N(). If we define a sequence x by

xn =


nm logn
,

then, using Lemma .(a), we obtain x ∈ o(n–m) \A(m).

http://www.advancesindifferenceequations.com/content/2014/1/189
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Example . Assumem ∈N and ε > . Choose p ∈N such that p– < ε. Let

A =
{
kp : k ∈ N

}
, B =N \A, an =

⎧⎨
⎩
n–p– for n ∈ A,

n– for n ∈ B.

Then

∑
n∈A

an =
∞∑
k=

(
kp

)–p– =
∞∑
k=

k– < ∞,
∑
n∈B

an ≤
∞∑
n=

n– <∞,

and nεan = nε–p– for n ∈ A. Hence lim supn→∞ nεan =∞ and we obtain a ∈A() \O(n–ε).
Let bn = n–man. Then, by Lemma .(a),

b ∈A(m) \O(
n–m+–ε

)
.

Remark . Note that for real s, t the conditions o(ns) ⊂ o(nt) and O(ns) ⊂ O(nt) are
equivalent to the condition s ≤ t.

Lemma . Assume m ∈N, ε >  and s ∈R. Then
(a) O(n–m–ε) ⊂A(m) ⊂ o(n–m+),
(b) o(ns) ⊂A(m) ⇔ s < –m,
(c) A(m) ⊂O(ns) ⇔ s≥ –m + ,
(d) A(∞) = o(n–∞).

Proof Assertion (a) follows from Lemma ., (b) is a consequence of (a) and Example .,
(c) is a consequence of (a) and Example .. Let m ∈ N(). If s < –m, then, by (b), o(ns) ⊂
A(m). Hence o(n–∞) ⊂A(m) for any m ∈N(). Therefore

o
(
n–∞) ⊂A(∞).

Let s ∈ R. Choose m ∈ N() such that m >  – s. If a ∈ A(m), then, by the convergence of
the series

∑∞
n= nm–|an|, we have nm–an = o() and so a ∈ o(n–m) ⊂ o(ns). Hence A(m) ⊂

o(ns). Therefore A(∞) ⊂ o(ns) for any s ∈R and we obtain

A(∞) ⊂ o
(
n–∞)

. �

Lemma . (Comparison test) Assume a,b ∈ SQ and m ∈N. Then
(a) if |an| ≤ |bn| for large n and b ∈A(m), then a ∈A(m),
(b) if |an| ≥ |bn| for large n and b /∈A(m), then a /∈A(m),
(c) if lim sup |an/bn| <∞ and b ∈ A(m), then a ∈A(m),
(d) if lim inf |an/bn| >  and a ∈A(m), then b ∈ A(m),
(e) if |an+/an| ≤ |bn+/bn| for large n and b ∈A(m), then a ∈A(m).

Proof Assertion (a) follows from Lemma .(). Assertions (b), (c), (d), and (e) are con-
sequences of (a). �

http://www.advancesindifferenceequations.com/content/2014/1/189
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Lemma . (Generalized logarithmic test) Assume a ∈ SQ,m ∈N and

un =
log |an|
logn

.

Then
(a) if lim supun < –m, then a ∈A(m),
(b) if un ≥ –m for large n, then a /∈A(m),
(c) if lim infun > –m, then a /∈ A(m),
(d) if limun = –∞, then a ∈A(∞).

Proof If lim supun < –m, then there exists a number s < –m such that un < s for large n.
Then |an| ≤ ns for large n. Hence, using Lemma . and Lemma ., we obtain (a). If un ≥
–m for large n, then |an| ≥ n–m for large n and (b) follows from Lemma . and the fact
that (n–m) /∈ A(m). Assertion (c) follows immediately from (b), and (d) is a consequence
of (a). �

Lemma . (Generalized Raabe test) Assume a ∈ SQ,m ∈N and

un = n
( |an|

|an+| – 
)
.

Then
(a) if lim infun >m, then a ∈A(m),
(b) if un ≤m for large n, then a /∈A(m),
(c) if lim supun <m, then a /∈A(m),
(d) if limun =∞, then a ∈A(∞).

Proof For m =  assertion (a) follows from the usual Raabe test. Assume it is true for cer-
tain m ≥  and lim infun >m + . Let

bn = nan, wn = n
( |bn|

|bn+| – 
)
.

Then

wn = n
(

n|an|
(n + )|an+| –

n + 
n + 

)
=

n
n + 

(
n|an|
|an+| – n – 

)
=

n
n + 

(un – ).

Hence lim infwn = lim infun –  > m and, by inductive hypothesis, b ∈ A(m). Hence, by
Lemma .(b), a ∈ A(m + ) and we obtain (a). Similarly we may obtain (b), by taking
bn = nan, using the usual Raabe test and Lemma .(b). Assertion (c) follows from (b), and
(d) is a consequence of (a). �

Lemma . (Generalized Gauss test) Let a ∈ SQ,m ∈N, α,β ∈R, s < – and

|an|
|an+| = α +

β

n
+O

(
ns

)
.

Then
(a) if α > λ > , then a ∈ o(λn),

http://www.advancesindifferenceequations.com/content/2014/1/189
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(b) if α < , then a /∈ o(),
(c) if α =  and β >m, then a ∈A(m),
(d) if α =  and β ≤m, then a /∈A(m).

Proof Note that

lim
n→∞

|an|
|an+| = α.

Hence (a) and (b) follow from the d’Alembert ratio test. For m =  assertions (c) and (d)
follow from the usual Gauss test. Assume they are true for certain m ≥ . Let bn = nan,
un = /(n + ). Then

|bn|
|bn+| =

n
n + 

|an|
|an+| = ( – un)

(
 +

β

n
+O

(
ns

))

=  +
β

n
+O

(
ns

)
–


n + 

–
β

n(n + )
–


n + 

O
(
ns

)

=  +
β – 
n

+
(

n
–


n + 

)
+O

(
ns

)
+O

(
n–

)
+O

(
ns–

)

=  +
β – 
n

+O
(
ns

′)

for certain s′ < –. If β >m+, then β – >m and, by inductive hypothesis, b ∈A(m). Sim-
ilarly, if β ≤ m + , then b /∈ A(m). Now, assertions (c) and (d) follow from Lemma .(b).

�

Lemma . (Generalized Bertrand test) Assume a ∈ SQ,m ∈N and

|an|
|an+| =  +

m
n

+
λn

n logn
. ()

Then
(a) if lim infλn > , then a ∈A(m),
(b) if λn ≤  for large n, then a /∈A(m),
(c) if lim supλn < , then a /∈ A(m).

Proof Let bn = nan. Then

|bn|
|bn+| =

n
n + 

(
 +

m
n

+
λn

n lnn

)

=
n

n + 
+

m
n + 

+
λn

(n + ) logn

=  +
m – 
n + 

+
(

n
n + 

)
λn

n logn

=  +
m – 
n

– cn +
znλn

n logn
,

where

zn =
n

n + 
, cn =

m – 
n

–
m – 
n + 

=
m – 
n(n + )

.

http://www.advancesindifferenceequations.com/content/2014/1/189
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Let

wn = cnn logn =
(m – ) logn

n + 
, τn = znλn –wn.

Then

limwn = , lim zn = , lim inf τn = lim infλn ()

and

|bn|
|bn+| =  +

m – 
n

+
τn

n logn
. ()

Moreover,

wn ≥ ,  < zn < , τn ≤ λn. ()

Form =  assertion (a) follows from the classical Bertrand test. Assume it is true for certain
m– ≥ . Then using the inductive hypothesis, (), and (), we have b ∈A(m–).Hence, by
Lemma ., a ∈ A(m) andwe obtain (a). Analogously, using (), we obtain (b). Assertion (c)
is a consequence of (b). The proof is complete. �

Remark . Computing λn from () we have

λn =
(
n
( |an|

|an+| – 
)
–m

)
logn. ()

Replacing () by () in Lemma . one can obtain another form of the Bertrand test.

Lemma . Assume m ∈N. Then
(a) �A(m) ⊂A(m),
(b) A(m) ⊂ rA(m),
(c) rA(m) ⊂A(m – ),
(d) A(m) ⊂ �A(m – ).

Proof For y ∈ SQ let Ey ∈ SQ be defined by

Ey(n) = y(n + ).

Let x ∈ S(m). By Lemma .() there exists y ∈ S() such that x =�my. Obviously E�y =
�Ey and, by induction, E�my =�mEy. Moreover, Ey ∈ S(). Hence

Ex = E�my =�mEy ∈ S(m).

Now assume x ∈A(m). Then |x| ∈ S(m) and |Ex| = E|x| ∈ S(m). Hence

 ≤ |�x| ≤ |Ex| + |x| ∈ S(m).

http://www.advancesindifferenceequations.com/content/2014/1/189
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By Lemma .() we have �x ∈A(m). Hence

�A(m) ⊂A(m) and A(m) = r�A(m) ⊂ rA(m).

From |x| ∈ S(m) we have r|x| ∈ S(m – ). Moreover,  ≤ |rx| ≤ r|x|. Hence |rx| ∈ S(m – ).
Therefore rx ∈A(m – ) and we obtain

rA(m) ⊂A(m – ), A(m) = �rA(m)⊂ �A(m – ).

The proof is complete. �

Example . Let m ∈ N, xn = n–m, y = �x. By Theorem . in [], we have y ∈ O(n–m–).
Hence, by Lemma ., y ∈ A(m). On the other hand x /∈ A(m) and we obtain y = �x /∈
�A(m). Therefore y ∈ A(m) \ �A(m).

Example . Let m ∈ N, s ∈ (m,m + ], xn = (–)nn–s. Then, by Lemma ., x ∈ A(m) \
A(m + ). Assume x ∈ rA(m + ). Choose y ∈ A(m + ) such that x = ry. Then, using
Lemma .(), we obtain �x = �ry = –y ∈ A(m + ). Since x is alternating we have
|�x| ≥ |x|. Hence, by Lemma ., y = �x /∈ A(m + ). This contradiction shows that
x ∈A(m) \ rA(m + ).

Remark . Using Lemma . we obtain the following infinite diagram, where arrows
denote inclusions:

· · · ––––––→ rA() ––––––→ rA() ––––––→ rA() ––––––→ S()�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
· · · ––––––→ rA() ––––––→ rA() ––––––→ A() ––––––→ S()�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
· · · ––––––→ rA() ––––––→ A() ––––––→ �A() ––––––→ S()�⏐⏐ �⏐⏐

�⏐⏐
�⏐⏐

· · · ––––––→ A() ––––––→ �A() ––––––→ �A() ––––––→ S()�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
...

...
...

...

Using Remark . and Example . we can see that any vertical arrow represents a proper
inclusion. Analogously, using Remark . and Example . we can see that any horizontal
arrow represents a proper inclusion.

Remark . Introducing new notation

Sk+pk =�pA(k), Sk–mk = rmA(k),

S∞
k =

∞⋂
n=

Snk , Sn∞ =
∞⋂
k=

Snk , S∞
∞ =

∞⋂
k=

Skk

http://www.advancesindifferenceequations.com/content/2014/1/189
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for k,p ∈N() andm ∈N(,k) we can extend the diagram from Remark . in the follow-
ing way:

S∞ ––––––→ ·· · ––––––→ S ––––––→ S ––––––→ S ––––––→ S�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
S∞ ––––––→ ·· · ––––––→ S ––––––→ S ––––––→ S ––––––→ S�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
S∞ ––––––→ ·· · ––––––→ S ––––––→ S ––––––→ S ––––––→ S�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
S∞ ––––––→ ·· · ––––––→ S ––––––→ S ––––––→ S ––––––→ S�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐
...

...
...

...
...�⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐ �⏐⏐

S∞∞ ––––––→ ·· · ––––––→ S∞
 ––––––→ S∞

 ––––––→ S∞
 ––––––→ S∞



Note that if k,n,p ∈ N() andm ∈N(,n), then

�pSnk = Sn+pk , rmSnk = Sn–mk , �pSn∞ = Sn+p∞ , rmSn∞ = Sn–m∞ ,

�mS∞
k = S∞

k = rmS∞
k , �mS∞

∞ = S∞
∞ = rmS∞

∞.

Moreover,

S∞
∞ = A(∞) = o

(
n–∞)

.

5 Approximative solutions of difference equations
In this section we present some applications of our previous results in the study of asymp-
totic properties of solutions of difference equations. We use the spaces A(p) to measure
the ‘degree of approximation’.
Assumem ∈N, a,b ∈ SQ, f :R →R, σ :N →N and limn→∞ σ (n) =∞. We consider the

equation

�mxn = anf (xσ (n)) + bn. (E)

By a solution of (E) we mean a sequence x :N → R satisfying (E) for all large n. Note that
the assumption σ :N →N does not exclude the case of equations with delayed argument.
For example we may define σ (n) = n –  for n >  and σ (n) =  for n≤ .
In Theorem ., using fixed point theorems and the iterated remainder operator, we

establish conditions under which there exist solutions of (E) with prescribed asymptotic
behavior. In Theorem . we show that in many cases some assumptions of Theorem .
are necessary. In Theorem . we establish conditions under which all f -bounded solu-
tions of (E) are asymptotically polynomial.
In the proof of our first theorem we will use the Schauder fixed point theorem and the

following version of the Knaster-Tarski fixed point theorem.

http://www.advancesindifferenceequations.com/content/2014/1/189
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Lemma . If X is a complete partially ordered set and amap T : X → X is nondecreasing
then there exists x ∈ X such that T(x) = x.

A simple proof of this result can be found in [] (or in []).

Theorem . Assume p ∈ N(), a ∈ A(m + p), y ∈ SQ, �my = b, f is bounded on some
uniform neighborhood U of the set y(N) and one of the following conditions is satisfied:
(a) f is nondecreasing on U and (–)man ≥  for large n,
(b) f is nonincreasing on U and (–)man ≤  for large n,
(c) f is continuous on U .

Then there exists a solution x of (E) such that

x ∈ y +A(p).

Proof For x ∈ SQ let x̄ = f ◦ x ◦ σ . Choose c >  andM >  such that

∞⋃
n=

(yn – c, yn + c) ⊂U ,
∣∣f (t)∣∣ ≤M for t ∈U . ()

Let

ρ =Mrm|a|.

Choose numbers k and k such that ρn < c for n≥ k and σ (n)≥ k for n ≥ k. Let

S =
{
x ∈ SQ : |x – y| ≤ ρ and xn = yn for n < k

}
.

It is easy to see that S, with natural order defined by x ≤ z if xn ≤ zn for every n ∈ N, is a
complete partially ordered set. If x ∈ S and n≥ k, then |xσ (n) – yσ (n)| < c. Hence

xσ (n) ∈U ()

for any x ∈ S and n ≥ k. If x ∈ S, then, by () and (), the sequence x̄ is bounded and so
ax̄ ∈A(m + p). We define an operator H : S → SQ by

H(x)(n) :=

⎧⎨
⎩
yn for n < k,

yn + (–)mrmn (ax̄) for n≥ k.

If n≥ k, then, using Lemma .() and Lemma .(), we obtain

∣∣H(x)(n) – yn
∣∣ = ∣∣rmn (ax̄)∣∣ ≤ rmn |ax̄| ≤Mrmn |a| = ρn.

Hence H(S)⊂ S.
Assume now that the condition (a) is satisfied. We can assume that (–)man ≥  for

n ≥ k. Let x, z ∈ S and x ≤ z. Since f is nondecreasing on U we have f (xσ (n)) ≤ f (zσ (n)) for
n≥ k. Hence

(–)manf (xσ (n)) ≤ (–)manf (zσ (n))

http://www.advancesindifferenceequations.com/content/2014/1/189
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for n ≥ k. By Lemma.(), we haveH(x)(n)≤H(z)(n) for n≥ k.Moreover,H(x)(n) = yn =
H(z)(n) for n < k. Hence H(x) ≤ H(z). Now, using the Knaster-Tarski fixed point theorem
we obtain x ∈ S such that H(x) = x. Analogously if condition (b) is satisfied then H(x) = x
for certain x ∈ S.
Assume (c) and let d be a metric on S defined by

d(x, z) = ‖x – z‖ = sup
n∈N

|xn – zn|.

Let BS denote the Banach space of all bounded sequences x ∈ SQ with the norm ‖x‖ =
supn∈N |xn| and let

T =
{
x ∈ BS : |x| ≤ ρ and xn =  for n < k

}
.

It is easy to see that T is a convex and closed subset of BS. Choose an ε > . Then there
exists q ∈ N such that ρn < ε for n ≥ q. For n = , . . . ,q let Gn denote a finite ε-net for the
interval [–ρn,ρn] and let

G = {x ∈ T : xn ∈Gn for n≤ q and xn =  for n > q}.

ThenG is a finite ε-net for T . Hence T is a complete and totally boundedmetric space and
so, T is compact. Hence T is a convex and compact subset of the Banach space BS and,
by the Schauder fixed point theorem, any continuous map T → T has a fixed point. Let
F : T → S be a map given by F(x)(n) = xn + yn. Then F is an isometry of T onto S. Assume
U : S → S is a continuous map and let W = F– ◦ U ◦ F . Then W : T → T is continuous
and there exists a point z ∈ T such thatWz = z. Let x = Fz. Then

x = Fz = FWz = FF–UFz =Ux.

Hence any continuous map U : S → S has a fixed point. Let ε > . Choose q ∈ N(k) and
α >  such that

M
∞∑
m=q

nm–|an| < ε and α

q∑
n=k

nm–|an| < ε.

Let

W =
q⋃

n=k

[yn – ρn, yn + ρn].

ThenW ⊂U . By compactness ofW , f is uniformly continuous onW . Hence there exists
δ >  such that if s, t ∈ W and |s – t| < δ, then |f (s) – f (t)| < α. Assume x, z ∈ S, d(x, z) < δ.
Let u = x̄ – z̄. Then

d(Hx,Hz) = sup
n≥k

∣∣rmn (ax̄) – rmn (az̄)
∣∣

= sup
n≥k

∣∣rmn (au)∣∣ ≤ sup
n≥k

rmn |au| = rmp |au|

http://www.advancesindifferenceequations.com/content/2014/1/189
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≤
q∑

n=k

nm–|anun| +
∞∑
n=q

nm–|anun|

≤ α

q∑
n=k

nm–|an| + M
∞∑
n=q

nm–|an| < ε.

Hence H is continuous and there exists x ∈ S such that H(x) = x. Then

xn =H(x)(n) = yn + (–)mrmn (ax̄)

for n≥ k. Hence

x –
(
y + (–)mrm(ax̄)

) ∈ Fin(k).

Since the sequence x̄ is bounded, we have ax̄ ∈ O(a). Hence

x ∈ y + rmO(a) + Fin(k) ⊂ y +A(p).

Moreover, for n≥ k, by Lemma .(), we have

�mxn =�myn + (–)m�mrmn (ax̄) = bn + anf (xσ (n)).

Hence x is a solution of (E). The proof is complete. �

Remark . The conclusion x ∈ y + A(p) of Theorem . may be written in the form

y ∈ x +A(p).

We can say that y is an approximative solution of (E) with ‘degree of approximation’ A(p).

Remark. Using Lemma.we can replace the assumption a ∈A(m+p) of Theorem.
by

lim infn
( |an|

|an+| – 
)
>m + p.

Analogously, the conclusion of this theorem may be replaced: there exist a solution x of
(E) and a sequence z ∈ SQ such that x = y + z and

lim supn
( |zn|

|zn+| – 
)

≥ p.

Similarly, using other tests, we can obtain many formulations of this theorem.

Theorem . Assume q ∈ N, p ∈ N(), ε > , s ∈ (–∞, –p), a,b, y ∈ SQ, �my = b, a is
nonoscillatory, there exists a uniform neighborhood U of the set y(N(q)) such that f |U ≥ ε

or f |U ≤ –ε, and one of the following conditions is satisfied:
(a) there exists a solution x of (E) such that x = y + o(ns),

http://www.advancesindifferenceequations.com/content/2014/1/189
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(b) there exists a solution x of (E) such that x ∈ y + S(p).
Then a ∈A(m + p).

Proof By Lemma . we have o(ns) ⊂ A(p) ⊂ S(p). Hence, there exists a solution x of (E)
and a sequence z ∈ S(p) such that x = y + z. Let x̄ = f ◦ x ◦ σ . For large n we have

anx̄n + bn = anf (xσ (n)) + bn =�mxn =�myn +�mzn = bn +�mzn.

By Lemma .(),�mz ∈ S(m+p). Hence, by Lemma .(), we have ax̄ ∈ S(m+p). Since
zn = o(), we have xσ (n) ∈ U for large n. Hence the sequence ax̄ is nonoscillatory and we
obtain |ax̄| ∈ S(m + p), which means ax̄ ∈ A(m + p). Moreover,

|an| = |anx̄n||x̄n|– ≤ |anx̄n|ε–

for large n. Hence, by Lemma .(), a ∈A(m + p). The proof is complete. �

Remark . Theorem . extends Theorem  of [] and parts of Theorems  and  of [].

Lemma . Assume m ∈ N, p ∈N(), x ∈ SQ and �mx ∈A(m + p). Then

x ∈ Pol(m – ) + A(p).

Proof Using Lemma .(c) we obtain

rmA(m + p) ⊂A(p). ()

Let z = (–)mrm�mx. Then �mz =�m(–)mrm�mx =�mx. Hence

x – z ∈Ker�m = Pol(m – ).

By () we have z ∈A(p). Hence

x = (x – z) + z ∈ Pol(m – ) + A(p). �

Theorem . Assume p ∈ N(), a,b ∈ A(m + p) and x is an f -bounded solution of (E).
Then

x ∈ Pol(m – ) + A(p).

Proof The sequence x̄ = f ◦ x ◦ σ is bounded. Hence ax̄ ∈ O(a) and we obtain �mx ∈
O(|a| + |b|). Therefore �mx ∈A(m + p) and, by Lemma ., we have

x ∈ Pol(m – ) + A(p). �
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