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Abstract
Ramanujan in his deathbed letter to GH Hardy concerned the asymptotic properties
of modular forms and mock theta functions. For the mock theta function f (q), he
claimed that as q approaches an even order 2k root of unity ζ ,

lim
q→ζ

(f (q) – (–1)k(1 – q)(1 – q3)(1 – q5) · · · (1 – 2q + 2q4 – · · · )) = O(1),

where (1 – q)(1 – q3)(1 – q5) · · · (1 – 2q + 2q4 – · · · ) =∏∞
n=1

1–qn

(1+qn)2
. Recently, Folsom,

Ono and Rhoades have proved two closed formulas for the implied constant and
formulated an open problem which is related to their two theorems. In this note, we
give a new proof on the problem of the two theorems by using some results about
the generating functions of convex compositions given by GE Andrews and
Appell-Lerch sums.
MSC: 11F37; 11F03; 11F99
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1 Introduction
In his deathbed letter to Hardy, Ramanujan gave no definition of mock theta functions
but just listed  examples and a qualitative description of the key properties that he had
noticed. Since that time, many papers studying the  specific examples have been written
by many famous mathematicians such as Watson, Selberg and Andrews []. Due to the
work of Zweger [, ], Bringmann and Ono [, ], Zagier [] and others, we are able to
recognize Ramanujan’s mock theta functions as holomorphic parts of certain harmonic
weak Maass forms of weight /, originally defined by Bruinier and Funke []. This real-
ization has resulted in many applications in combinatorics, number theory, physics and
representation theory.
While the theory of the weak Maass forms has led to a flood of applications in many

disparate areas of mathematics, it is still not the case that we fully understand the deeper
framework surrounding the contents of Ramanujan’s last letter to Hardy. Here we revisit
Ramanujan’s original claims from his deathbed letter [], which begins by summarizing
the asymptotic properties, near roots of unity, of the Eulerian series which were modular
forms. He then asked whether others with similar asymptotic were necessary for the sum-
mation of a modular form and a function which is O() at all roots of unity. In fact, the
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recent work by Griffin et al. [] has confirmed that there are no weakly holomorphicmod-
ular forms which exactly cut out the singularities of Ramanujan’s mock theta functions.

Claim (Ramanujan []) As q approaches a primitive even order k root of unity ζ radially
within the unit disk, then

lim
q→ζ

(
f (q) – (–)k( – q)

(
 – q

)(
 – q

) · · · ( – q + q – · · · )) =O(), ()

where the mock theta function f (q) is defined by

f (q) :=  +
∞∑
n=

qn

( + q)( + q) · · · ( + qn)
, ()

and

∞∏
n=

 – qn

( + qn)
= ( – q)

(
 – q

)(
 – q

) · · · ( – q + q – · · · ).
Throughout this paper, let q = eπ iτ . The function f (q) is convergent for |q| <  and those

roots of unity q with odd order. For the even order roots of unity, f (q) has exponential
singularities. For example, f (–.)∼ –. · , f (–.)∼ –. · , f (–.)∼
–. · .
In order to cut out the exponential singularity at q = –, Ramanujan found the function

b(q) which is modular form up to multiplication by q– 
 , defined in his notation as

b(q) := ( – q)
(
 – q

)(
 – q

) · · · ( – q + q – · · · ). ()

Ramanujan’s last letter also inspired the problem of determining the asymptotic of the
coefficients of mock theta functions such as f (q). Andrews [] and Dragonette [] ob-
tained asymptotic for coefficients of f (q), then Bringmann and Ono [] proved an exact
formula for these coefficients. In the recentwork, Folsom et al. [, ] provided two closed
formulas for the implied constant O().

Theorem . (Folsom-Ono-Rhoades Theorem . of [, ]) If ζ is a primitive even order
k root of unity, as q approaches ζ radially within the unit disk, then

lim
q→ζ

(
f (q) – (–)kb(q)

)
= –

k–∑
n=

( + ζ )
(
 + ζ ) · · · ( + ζ n)ζ n+. ()

Remark
() Theorem . makes Ramanujan’s claim a special case of a more general result.
() Since empty products equal , then Theorem . shows that

lim
q→–

(
f (q) + b(q)

)
= . ()

() Zudilin [] has given an elementary proof of Theorem . by using Dyson’s rank
function and the Andrews-Garvan crank function in his recent work.
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In themeantime, Folsom et al. [] proved a different form formula for theO() constant
as follows.

Theorem . (Folsom-Ono-Rhoades Theorem . of []) If ζ is a primitive even order
k root of unity, as q approaches ζ radially within the unit disk, then

lim
q→ζ

(
f (q) – (–)kb(q)

)

=

{


∑k/–
n= (–)nζ n+( + ζ )( + ζ ) · · · ( + ζ n), if k ≡  (mod ),

 + 
∑ k–


n= (–)n+ζ n+( + ζ ) · · · ( + ζ n–), if k ≡  (mod ).

()

Remark The authors left an open problem as a challenge for someone to find an elemen-
tary proof to show that the constants appearing in Theorem . match those appearing in
Theorem .. Interesting enough, Theorem . possesses a proof in [] that makes use of
q-series transformations only, while Theorem . is a particular instance of a much more
general result whose proof uses a machinery of mock theta functions []. The principal
goal of this note is to give a new proof of the problem without using the relation of these
two theorems.

2 Statement of results
As pointed out by many authors, Theorem . is a special case of a more general one,
which surprisingly relates two well-known q-series: Dyson’s rank function R(ω;q) and the
Andrews-Garvan crank function C(ω;q). They play a prominent role in studying integer
partition congruences.
In order to define these series, we let

(a;q)∞ := ( – a)( – aq)
(
 – aq

) · · · , ()

and for all n ∈ Z, we denote

(a;q)n := ( – a)( – aq) · · · ( – aqn–
)
. ()

It follows that

(a;q)n =
(a;q)∞
(aqn;q)∞

. ()

Following the paper [] by Zudilin and the notation above, we can rewrite f (q) and b(q)
as follows:

f (q) :=  +
∞∑
n=

qn

( + q)( + q) · · · ( + qn)
=

∞∑
n=

qn

(–q;q)n
, ()

b(q) := ( – q)
(
 – q

) · · · ( – q + q – · · · )
=

(
q;q

)
∞

∞∑
n=–∞

(–)nqn

=

(q;q)∞
(–q;q)∞

. ()
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For the results of Theorems . and ., we have

lim
q→ζ

(
f (q) – (–)kb(q)

)
= –

k–∑
n=

( + ζ ) · · · ( + ζ n)ζ n+ = –μ(ζ ), ()

where

μ(q) :=
∞∑
n=

(–q;q)nq
n+, ()

and

lim
q→ζ

(
f (q) – (–)kb(q)

)

=

⎧⎨
⎩

∑ k
 –
n= (–)nζ n+( + ζ )( + ζ ) · · · ( + ζ n), if k ≡  (mod ),

 + 
∑ k–


n= (–)n+ζ n+( + ζ ) · · · ( + ζ n–), if k ≡  (mod ),

=

{
–ψ(–ζ ), if k ≡  (mod ),
φ(–ζ ), if k ≡  (mod ),

()

where

ψ(q) :=
∞∑
n=

(
–q;q

)
nq

n+ =
∞∑
n=

qn

(q;q)n
, ()

and

φ(q) :=  +
∞∑
n=

(–)n
(
q;q

)
nq

n+ =
∞∑
n=

qn

(–q;q)n
. ()

Here ψ(q) and φ(q) are two third-order mock theta functions in Ramanujan’s Lost Note-
book.
Recall that Dyson’s rank function is given by

R(ω;q) =
∞∑
n=

∑
m∈Z

N(m,n)ωmqn :=  +
∞∑
n=

qn

(ωq;q)n(ω–q;q)n
, ()

where N(m,n) is the number of partitions of n with rankm.
The rank of a partition is defined to be its largest part minus the number of its parts. If

ω �=  is a root of unity, it is known that R(ω;q) is (up to a power of q) a mock theta function
which is the holomorphic part of a harmonic Maass form of weight /.
The Andrews-Garvan crank function is defined by

C(ω;q) =
∞∑
n=

∑
m∈Z

M(m,n)ωmqn :=
(q;q)∞

(ωq;q)∞(ω–q;q)∞
, ()

whereM(m,n) is the number of partitions of n with crankm.
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For any roots of unity ω, C(ω;q) is (up to a power of q) a modular form. Otherwise, we
need the q-hypergeometric series U(ω;q) which arises in the study of strongly unimodal
sequences; it is defined by

U(ω;q) =
∞∑
n=

∑
m∈Z

μ(m,n)(–ω)mqn :=
∞∑
n=

(ωq;q)n
(
ω–q;q

)
nq

n+, ()

where μ(m,n) is the number of strongly unimodal sequences of size n with rankm.
Theorem . is a special case of the following theoremwhich relates these three q-series,

here we define ζn := e π i
n .

Theorem . (Folsom-Ono-Rhoades Theorem . of []) Let  ≤ a < b and  ≤ h < k
be integers with gcd(a,b) = gcd(h,k) =  and b | k. If h′ is an integer satisfying hh′ ≡ –
(mod k), as q approaches ζ h

k radially within unity disk, then

lim
q→ζhk

(
R
(
ζ a
b ;q

)
– ζ –ah′k

b C
(
ζ a
b ;q

))
= –

(
 – ζ a

b
)(
 – ζ –a

b
)
U

(
ζ a
b ; ζ

h
k
)
. ()

By taking a = , b = , and m = k, so that ζ a
b = –, ζ = ζ h

m is a primitive even order k root
of unity, Theorem . follows directly because of the fact that f (q) = R(–;q), b(q) = C(–;q)
and μ(q) =U(–;q).

Based on the results above, in this note, we try to explain the relation between the two
theorems, our results are as follows.

Theorem . Let ζ be a primitive even order k root of unity, as q approaches ζ radially
within the unit disk, we have
() if k ≡  (mod ), then

lim
q→ζ

(
f (q) – (–)kb(q)

)
= –μ(ζ ) = –ψ(–ζ ), ()

() if k ≡  (mod ), then

lim
q→ζ

(
f (q) – (–)kb(q)

)
= –μ(ζ ) = φ(–ζ ). ()

Obviously, we can get the following corollary from Theorem . directly.

Corollary . Let ζ be a primitive even order k root of unity,
() if k ≡  (mod ), then

μ(ζ ) =ψ(–ζ ), ()

() if k ≡  (mod ), then

–μ(ζ ) = φ(–ζ ). ()

Remark
() One can use the uniqueness property of limits to obtain the result of Theorem . by

combining with the relationship between these three functions

http://www.advancesindifferenceequations.com/content/2014/1/191
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φ(–q) – f (q) = f (q) + ψ(–q) = b(q). ()

() In this note, we prove Theorem . by using the result related with the generating
functions of convex compositions given by Andrews [] and the online
Encyclopedia of Integer Sequences [] as well as Appell-Lerch sums, we get the
desired results.

3 Proof of the theorem
Before we give the proof of the theorem, we would like to first introduce the recent work
given by Andrews [], which is about the theory of concave and convex compositions that
linked the related generating functions to combinations of classical, false, or mock theta
functions and other Appell-Lerch sums.
Following Andrews, the strictly convex composition of n is defined by

R∑
i=

ai + c +
S∑
i=

bi = n, ()

where a < a < · · · < aR < c > b > b > · · · > bS , and c is called the central part and is
≥ . We denote the number of strictly convex compositions of n by Xd(n). For example,
Xd() = .
The related generating functions of Xd(n) are defined as

xd(q) :=
∞∑
n=

Xd(n)qn =
∞∑
n=

qn+(–q;q)n. ()

In this work, Andrews related the above generating functions to the classical and mock
theta functions as follows (Theorem  of []):

xd(q) = ψ(–q) + (–q;q)∞α(–q), ()

where ψ(q) is defined in (), and α(q) is defined by

α(q) :=
∞∑
n=

qn+(–q;q)n
(q;q)n+

=
∞∑
n=

q(n+) (–q;q)n
(q;q)n+

. ()

It has been termed a second-order mock theta function by McIntosh [].
In his deathbed letter, Ramanujan defined four third-order mock theta functions, three

of them are as follows:

f (q) =
∞∑
n=

qn

(–q;q)n
, φ(q) =

∞∑
n=

qn

(–q;q)n
, ψ(q) =

∞∑
n=

qn

(q;q)n
. ()

Folsom, Ono and Rhoades used the relation between these three functions in () and the
basic hypergeometric series

F(a,b; t) = F(a,b; t,q) :=
∞∑
n=

(aq;q)n
(bq;q)n

tn ()

http://www.advancesindifferenceequations.com/content/2014/1/191
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to prove Theorem . and to show the new forms for ψ(q) and φ(q) in (), (), respec-
tively.
Following Andrews, we find that

xd(q) =
∞∑
n=

qn+(–q;q)n = μ(q), ()

where μ(q) is defined in () of Theorem ..
By combining with formula (), we can deduce that

μ(q) = ψ(–q) + (–q;q)∞α(–q). ()

For the even k, let ζk = e
π i
k be any root of unity, we have the fact that pre-factor (–q;q)∞ of

α(–q) vanishes at any even root of unity, while the α(–q) has finite limits. As q approaches
an even order root of unity ζk , then

lim
q→ζk

μ(q) = lim
q→ζk

(
ψ(–q) + (–q;q)∞α(–q)

)
, ()

namely,

lim
q→ζk

μ(q) = μ(ζk) = lim
q→ζk

ψ(–q) = ψ(–ζk). ()

For the above fixed even k, we denote the primitive even order k root of unity by ζk . As
q approaches ζk radially within the unit disk, we have

lim
q→ζk

(
f (q) – (–)kb(q)

)
= – lim

q→ζk
μ(q) = –μ(ζk)

= – lim
q→ζk

ψ(–q) = –ψ(–ζk). ()

The first claim in Theorem . is proved.
Folsom et al. in [] found that a search in theOnline Encyclopedia of Integer Sequences

[] shows that the values of the function G(e–t) have some relations with the coefficients
of the expansion of f (–e–t) + b(–e–t) while t → +, where G(q) is defined by

G(q) :=  +
∞∑
n=

(–)n
(
q;q

)
n. ()

This function exists only for q, a root of unity. By studying the asymptotic relationship
between U(–;–e–t) and G(e–t), Folsom, Ono and Rhoades guessed that there might be
a relation at the other roots of unity, and then they computed the first fifth odd roots of
unity ζk , here ζk = e

π i
k , k is odd positive integer. Surprisingly, the results of the computa-

tion clearly showed that for odd roots of unity ζk ,

–U(–;–ζk) =G(ζk). ()

Combining with the Online Encyclopedia of Integer Sequences research, we can reach
the conclusion that for any odd order k root of unity ζk , we still have the formula of ().

http://www.advancesindifferenceequations.com/content/2014/1/191
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By the way, one can find that the function G(q) converges in the domain |q| < , because it
is obvious that we can rewrite it as follows:

G(q) :=  +
∞∑
n=

(–)n+
(
q;q

)
n+

=  +
∞∑
n=

(–)n+
(
q;q

)
n –

∞∑
n=

(–)n+qn+
(
q;q

)
n

= –
∞∑
n=

(–)n
(
q;q

)
n +

∞∑
n=

(–)nqn+
(
q;q

)
n. ()

Applying formula (), we then get

G(q) =  +
∞∑
n=

(–)nqn+
(
q;q

)
n

=  + q – q + q + q + · · · – q – q + q + q + · · · . ()

The search in [] shows that this q-series matches the mock theta function φ(q). In fact,
in the proof of Theorem ., Folsom, Ono and Rhoades obtained the same form for the
mock theta function φ(q) in formula (). In this case, if q is a root of unity, we have

G(q) = φ(q). ()

On the other hand, for any odd order k root of unity ζk , from the property of U(ω;q), we
have

–U(–; ζk) =G(–ζk) ()

and

–U(–;q) = –μ(q). ()

Finally, for odd integer k, if ζk is any primitive odd order k root of unity, as q approaches ζk ,
we have

lim
q→ζk

–μ(q) = –μ(ζk) = lim
q→ζk

–U(–;q) = –U(–; ζk) = G(–ζk).

Namely,

lim
q→ζk

–μ(q) = –μ(ζk) = G(–ζk) = φ(–ζk). ()

For the above fixed odd k, we denote the primitive even order k root of unity by ζk . As
q approaches ζk radially within the unit disk, we have

lim
q→ζk

(
f (q) – (–)kb(q)

)
= – lim

q→ζk
μ(q) = –μ(ζk). ()

http://www.advancesindifferenceequations.com/content/2014/1/191
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Since ζ 
k = ζk , ζk is the root of ζk . Then we get

lim
q→ζk

(
f (q) + b(q)

)
= –μ(ζk) = φ(–ζk). ()

We have proved the second claim in Theorem ..
On the other hand, we can prove the second claim in Theorem . in a new way which

is related to the properties of Appell-Lerch sums.
The definition of an Appell-Lerch sum is given by

m(x,q, z) :=


j(z;q)

∞∑
r=–∞

(–)rq
r(r–)
 zr

 – qr–xz
, ()

where

j(x;q) := (x)∞(q/x)∞(q)∞ =
∞∑

n=–∞
(–)nq

n(n–)
 xn. ()

For the integers a and positive integers m, we define

Ja,m := j
(
qa;qm

)
()

and

Jm := Jm,m =
∞∏
i=

(
 – qmi). ()

Thenm(x,q, z) can be expressed as a bilateral sum []:

∞∑
n=

a–n–b–n

(–/a;q)n+(–q/b;q)n
qn


+

∞∑
n=

(–aq;q)n–(–b;q)nqn

=
(–aq)∞

b(q)∞(–q/b)∞
j(–b;q)m(a/b,q, –b), ()

then we get

R(ω;q) + ( –ω)
(
 –ω–)U(ω;q) = ( –ω)

j(ω;q)
J

m
(
ω,q,ω–). ()

Let ω = –, we have

R(–;q) + U(–;q) = 
j(–;q)

J
m(,q, –). ()

Recall Proposition . in [] that

∞∑
n=

(–)nqn (q;q)n
(–x;q)n+(–q/x;q)n

=m(x,q, –) +
J,

j(–x;q)
. ()

http://www.advancesindifferenceequations.com/content/2014/1/191
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For the odd integer k and x = , we can eliminate m(,q, –) by using the result above as
follows:

R(–;q) + U(–;q) = 
j(–;q)

J
m(,q, –)

=
j(–;q)

J

∞∑
n=

(–)nqn (q;q)n
(–q;q)n

–
J,
J

. ()

Then we have

R(–;q) +
J,
J

= –U(–;q) +
j(–;q)

J

∞∑
n=

(–)nqn (q;q)n
(–q;q)n

. ()

For odd integer k, if ζ is a root of unity of order k, as q → ζ , we see that the factor
j(–;q)
J

= (–q;q)∞ vanishes while the summation is finite at unity, then we have

lim
q→ζ

(
R(–;q) +

J,
J

)
= –U(–; ζ ), ()

where J,
J

= b(q).
Finally, we get

lim
q→ζ

(
f (q) + b(q)

)
= –μ(ζ ) = φ(–ζ ). ()

The second claim in Theorem . is also completed.
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