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1 Introduction
The various shadowing theory (shadowing, orbital shadowing, inverse shadowing, orbital
inverse shadowing property) is close to the stability theory. In fact, Sakai has shown in
[] that if a diffeomorphism belongs to the C-interior of the set of all diffeomorphisms
having the shadowing property, then it is a structurally stable diffeomorphism. Pilyugin et
al. [] proved that if a diffeomorphism belongs to the set of all diffeomorphisms having the
orbital shadowing property, then it is a structurally stable diffeomorphism. It extends the
result of the shadowing property. For the orbital shadowing property, we can find many
results (see [–]).
The notion of the inverse shadowing property is a dual notion of the shadowing prop-

erty which was introduced by Corless and Pilyugin in []. Pilyugin [] and Lee [] proved
that if a diffeomorphism belongs to the set of all diffeomorphisms having the inverse shad-
owing property with respect to the class the continuous method then it is a structurally
stable diffeomorphism. The qualitative theory of dynamical systemswith the property was
developed by various researchers (see [–]). The inverse shadowing property is related
to topological stability. In fact, if a dynamical system is topologically stable then it has the
inverse shadowing property with respect to the continuousmethod, but the converse does
not hold in general. The following can be found in [].

Example . Let f be a diffeomorphism on a manifold M. Then we consider the equiv-
alence relation ‘∼’ defined by (x, ) ∼ (f (x), ) on M × [, ], for x ∈ M. Set M′ = M ×
[, ]/∼. We define a flow Kf onM′ by setting

Kf
(
(x, s), t

)
=

(
f [t+s](x), t + s – [t + s]

)

©2014 Lee; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/192
mailto:lmsds@mokwon.ac.kr
http://creativecommons.org/licenses/by/2.0


Lee Advances in Difference Equations 2014, 2014:192 Page 2 of 9
http://www.advancesindifferenceequations.com/content/2014/1/192

for (x, s) ∈M′ and t ∈R, where [t] denotes the greatest integer less than or equal to t. Then
the flow Kf onM′ is called the suspension flow of f .

Let f : S → S be a diffeomorphism such that f (x) = x + εx sin(π/x) for x �= , and
f (x) =  for x = , where ε >  is sufficiently small. Then we know that f has the shad-
owing property. By Lee and Park [], it has the inverse shadowing property with respect
to the continuous method. But the diffeomorphism is not topologically stable (see []).
By Thomas [], the suspension flow Kf of f is topologically stable if and only if f is topo-
logically stable. Thus the inverse shadowing is a general notion of topological stability. The
notion of the orbital inverse shadowing property was introduced by []. It was proved in
[] that if a diffeomorphism belongs to the C-interior of the set of all diffeomorphisms
having the orbital inverse shadowing property with respect to the continuous methods,
then it is a structurally stable diffeomorphism. For vector fields, Lee et al. [] proved that
if a vector field belongs to theC-interior of the set of all vector fields having the orbital in-
verse shadowing property with respect to the continuousmethods, then it is a structurally
stable vector field.
In this paper, we study orbital shadowing and the orbital inverse shadowing property for

a Hamiltonian system.

2 Hamiltonian systems
Let (M,ω) be a symplectic manifold, whereM is a n(≥ )-dimensional, compact, bound-
aryless, connected, and smooth Riemannian manifold, endowed with the symplectic
form ω. A Hamiltonian H : M → R is a real valued Cr (r ≥ ) function on M. Denote
by Cr(M,R) the set of Cr-Hamiltonian onM. In this paper, we consider the C-topology,
thus we set r = . Given a Hamiltonian H , we define the Hamiltonian vector field XH as
follows: for all v ∈ TpM

ω
(
XH (p), v

)
= dpH(v),

which generates the Hamiltonian flow Xt
H . Note that a Hamiltonian vector field XH is C

if and only if the Hamiltonian function H is C. There exists a formulation in terms of the
Hamiltonian equations, that is, the usual Hamiltonian equations are

q̇i =
∂H
∂pi

, ṗi = –
∂H
∂qi

,

where (qi,pi) ∈ M and i = , . . . ,n. Denote by Sing(XH ) the set of all singularities of XH .
Since H is smooth and M is compact, Sing(XH) �= ∅. A scalar e ∈ H(M) ⊂ R is called the
energy of H . An energy hypersurface EH,e is a connected component of H–({e}) called
an energy level set. The energy level set H–({e}) is said to be regular if any energy hy-
persurface of H–({e}) is regular, which means it does not contain singularities. Clearly a
regular energy hypersurface is a Xt

H-invariant, compact, and (n – )-dimensional mani-
fold. We say a Hamiltonian level (H , e) is regular if the energy level set H–({e}) is regular.
A Hamiltonian system is (H , e,EH,e), where H is the Hamiltonian, e is the energy, and EH,e

is a regular connected component of H–({e}). Then H–({e}) corresponds to the union of
a finite number of closed connected components, that is, H–({e}) = ⋃n

i= EH,e,i, for n ∈ N.
Note that Hamiltonian flows are symplectic and volume preserving, which is known as
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the Liouville theorem. Thus the n-form ωn = ω ∧ · · · ∧ ω (n-times) is a volume form and
induces a measure μ onM, which is called the Lebesgue measure associated to ωn. Then
the measure μ onM is invariant by the Hamiltonian flow. For a regular Hamiltonian level
(H , e), we define a volume form ωEH,e on each energy hypersurface EH,e ⊂H–({e}), where
for all x ∈ EH,e,

ωEH,e (u, v,w) = ωn(∇Hx,u, v,w),

where ωEH,e : TxEH,e ×TxEH,e ×TxEH,e →R. The volume form ωH,e is Xt
H-invariant. Since

any energy hypersurface is compact, it induces an invariant volumemeasure μEH,e on EH,e

which is a finite measure. Now we consider the transversal linear Poincaré flow. Given
a Hamiltonian vector field XH and a regular point x ∈ M, let e ∈ H(x). Define Nx = Nx ∩
TxH–({e}), whereTxH–({e}) =KerdH(x) is the tangent space to the energy level set. Then
Nx is a (dimM – )-dimensional bundle. The transversal linear Poincaré flow associated
toH , Pt

H (x) :Nx →NXt
H (x) given by Pt(x)(v) =�Xt

H (x) ◦DXHt
x (v), where �Xt

H (x) : TXt
H (x)M →

NXt
H (x), is the canonical projection. It is clear thatNx is Pt

H (x)-invariant. Let H ∈ C(M,R)
and let � ⊂M be a Xt

H -invariant, closed, and regular set ofM. We say that � is hyperbolic
for Pt

H if N� admits a Pt
H -invariant splitting �s

� ⊕ �u
� such that for any λ ∈ (, ) there is

l >  such that

∥∥Pl
h(x)|�s

x

∥∥ ≤ λ and
∥∥P–l

H
(
Xl(x)

)|�u
Xl (x)

∥∥ ≤ λ,

for any x ∈ �. We say that a Hamiltonian system (H , e,EH,e) is Anosov if EH,e is hyperbolic
for the Hamiltonian flow Xt

H associated to H .

3 Orbital shadowing
Let (H , e,EH,e) be a Hamiltonian system. For any δ > , a sequence {(xi, ti) : xi ∈ EH,e, ti ≥
, and –∞ ≤ a < i < b ≤ ∞} is a δ-pseudo-orbit of H if d(Xti

H (xi),xi+) < δ for any a ≤ i ≤
b – . For the sequence {ti}i∈Z, we denote

Si =

⎧⎪⎨
⎪⎩

t + t + · · · + ti–, if i > ,
, if i = ,
–t– – t– – · · · – ti, if i < .

We say that (H , e,EH,e) has the shadowing property if for any ε > , there is δ >  that
satisfies the following property: given any δ-pseudo-orbit {(xi, ti) : ti ≥ , i ∈ Z} for all i ∈ Z,
there is a point y ∈ EH,e and an increasing homeomorphism h :R →R with h() =  such
that

d
(
Xh(t)
H (y),Xt–Si

H (xi)
)
< ε

for any i ∈ Z and for any Si ≤ t < Si+.
Let A and B be closed sets ofM. Then we can define the Hausdorff distance as follows:

dH (A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(A, y)
}
.
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We introduce the notion of the orbital shadowing property. For x ∈ M, we denote
by OrbXH (x) the orbit of H through x; that is, OrbXH (x) = {Xt

H(x) : t ∈ R}. We say that
(H , e,EH,e) has the orbital shadowing property if for any ε >  there is δ >  such that for
any (δ, )-pseudo-orbit ξ = {(xi, ti) : ti ≥ , i ∈ Z} there is a point y ∈ EH,e such that

dH
(
OrbXH (x), ξ

)
< ε.

This means that

ξ ⊂ Bε

(
OrbXH (y)

)
, and OrbXH (y) ⊂ Bε(ξ ),

where Bε(A) is a neighborhood of A.
Note that the orbital shadowing property is a weak version of the shadowing property:

the difference is that we do not require a point xi of a pseudo-orbit ξ and the point Xti
H (y)

of an exact orbit OrbXH (y) to be close ‘at any time moment’; instead, the sets of the points
of ξ and OrbXH (y) are required to be close. We say that (H , e,EH,e) has the robustly or-
bitally shadowing property if there is a neighborhood U of (H , e,EH,e) such that every
(H, e,EH,e ) ∈ U has the orbital shadowing property.
In [], Bessa et al. proved that if a Hamiltonian system has the robustly shadowing

property then it is Anosov. From this fact, we have the following result, which is more
general than the result of [].

Theorem . Let (H , e,EH,e) be a Hamiltonian system. If (H , e,EH,e) has the robustly or-
bitally shadowing property, then it is Anosov.

4 Orbital inverse shadowing
LetH ∈ C(M,R), and let (H , e,EH,e) be aHamiltonian system. Amapping� :R×M →M
is called a (δ,T)-method for H if for any x ∈M, the map �x :R →M defined by

�x(t) = �(t,x), t ∈ R,

is a (δ,T)-pseudo-orbit of H . � is said to be complete if �(,x) = x for any x ∈ M. Then a
(δ,T)-method for H can be considered as a family of (δ,T)-pseudo-orbit of H . A method
� for H is said to be continuous if the map � ′ :M → MR given by � ′(x)(t) = �(t,x) for
x ∈ M and t ∈ R, is continuous under the compact open topology on MR, where MR

denotes the set of all functions from R to M. The set of all complete (δ, )-methods for
H ∈ C(M,R) will be denoted by Ta(δ,H). Let Td(δ,H) be the set of all complete continuous
(δ, )-methods for H which are induced by Hamiltonian systems H with dC (H ,H) < δ,
where dC is the C metric on C(M,R). We say that a Hamiltonian system (H , e,EH,e) has
the inverse shadowing property with respect to the class Td if for any ε >  there is δ > 
such that for any (δ,T)-method � ∈ Td(δ,H) and any point x ∈M, there are y ∈M and an
increasing homeomorphism h :R →R with h() =  such that

d
(
Xh(t)(x),�(t, y)

)
< ε, t ∈ R.

Now we introduce the notion of the orbital inverse shadowing property with respect to
the Td .
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We say that (H , e,EH,e) has the orbital inverse shadowing property with respect to the
class Td if for any ε >  there is δ >  such that for any (δ, )-method � ∈ Td(δ,H) and any
point x ∈M there is y ∈M such that

dH
(
OrbXH (x),Orb(y,�)

)
< ε,

whereOrb(y,�) = {�(t, y) : t ∈ R}. Note that ifH has the inverse shadowing property with
respect to the class Td , then H has the orbital shadowing property with respect to the
class Td . But the converse is not true. Indeed, an irrational rotation map does not have the
inverse shadowing property, and the map has the orbital shadowing property. We say that
(H , e,EH,e) has the robustly orbitally inverse shadowing property with respect to the class
Td if there is a neighborhood U of (H , e,EH,e) such that for any (H, e,EH,e ) ∈ U has the
orbital inverse shadowing property with respect to the class Td .
In [], Bessa et al. proved that if a Hamiltonian system is robustly topologically stable

then it is Anosov. Note that by the definition of topological stability, the inverse shadowing
property with respect to the class of the continuous method is a general notion of topo-
logical stability. It means that if a system is topologically stable, then it has the inverse
shadowing property with respect to the class of the continuous method, but the converse
is not true. From these facts, we have the generalization results as follows.

Theorem . Let (H , e,EH,e) be a Hamiltonian system. If H has the robustly orbitally in-
verse shadowing property with respect to Td , then it is Anosov.

5 Proof of Theorem 3.1 and Theorem 4.1
A Hamiltonian system (H , e,EH,e) is a Hamiltonian star system if there is a neighborhood
U of (H , e,EH,e) such that for any (H, e,EH,e ) ∈ U , the corresponding regular energy hy-
persurface EH,e has all hyperbolic closed orbits.
In [], Bessa et al. showed that if we have a Hamiltonian star system on a four dimen-

sional manifold, then it is Anosov. Afterwards, Bessa et al. proved the following.

Lemma . [, Theorem ] If (H , e,EH,e) is a Hamiltonian star system, then it is Anosov.

To prove Theorem . and Theorem ., it is enough to show that a Hamiltonian system
(H , e,EH,e) is a Hamiltonian star system. For this, we need the following proposition.

Proposition . Let (H , e,EH,e) be a Hamiltonian system. If the following hold:
(a) (H , e,EH,e) has the robustly orbitally shadowing property,
(b) (H , e,EH,e) has the robustly orbitally inverse shadowing property with respect to

the Td ,
then (H , e,EH,e) is a Hamiltonian star system.

The next lemma is called a pasting lemma; it was established in [].

Lemma. [, Theorem.] Let H ∈ Cr(M,R),  ≤ r ≤ ∞, and let K be a compact subset
of M, and U a small neighborhood of K . Given ε >  there exists δ >  such that if H ∈
Cl(M,R), for  ≤ l ≤ ∞ is δ –Cmin{r,l}-close to H on U , then there exist H ∈ Cl(M,R) and
a closed set V such that

http://www.advancesindifferenceequations.com/content/2014/1/192
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(a) K ⊂ V ⊂U ,
(b) H =H on V ,
(c) H =H on Uc,
(d) H is ε-Cmin{r,l}-close to H .

Let x ∈ M \ Sing(XH ). We define X[t,t]
H (x) = {Xt

H (x) : t ∈ [t, t]}. Let Nx be a transversal
section to the flow at x, a flow box associated toNx is defined byF (x) = X[–τ,τ]

H (Nx), where
τ, τ are taken small such that F (x) is a neighborhood of x foliated by regular orbits. The
following lemma is a version of Frank’s lemma for Hamiltonians.

Lemma . [, Theorem ] Let H ∈ Cr(M,R),  ≤ r ≤ ∞, ε > , τ >  and x ∈ M. Then
there is δ >  such that for any flowbox F (x) of an injective arc of orbit X[,t]

H (x) (t ≥ τ )
and a transversal symplectic δ-perturbation � of Pt

H (x), there is H ∈ Cl(M,R) with l =
max{,k – } such that
(a) H is ε-C-close to H ,
(b) Pt

H
(x) =� ,

(c) H =H on X[,t]
H (x)∪ (M \F (x)).

Let (H , e,EH,e) be a Hamiltonian system and let p be a periodic point in EH,e with pe-
riod π (p). For a point p ∈ EH,e, Np ⊂ M is transverse to the flow, that is, a local (n – )-
submanifold for which XH is nowhere tangency. Define the n– symplectic submanifold
Np = Np ∩ EH,e. For x ∈ Np, TxEH,e = TxNp ⊕ 〈XH (x)〉. Let U ⊂ M be an open neighbor-
hood of p and V = U ∩ M. Let f : V → Np be the Poincaré map of Xt

H to Np such that
f (x) = Xτ (x)

H (x) for all x ∈ V , where τ (x) is the return time to Np defined by the relation
Xτ (x)
H (x) ∈ Np and τ (p) = π (p). Then f is a C-symplectic diffeomorphism. The following

lemma was established in [, Theorem .].

Lemma . Let H ∈ C∞(M,R) be the Poincaré map f at a periodic point p. Then for any
ε >  there is δ >  such that for any symplectic diffeomorphism g δ-C-close to f there is a
Hamiltonian H ε-C-close with a Poincaré map g .

A point x ∈ EH,e is a non-wandering point of H if for any neighborhood U of x in EH,e

there is T >  such that XT
H (U) ∩ U �= ∅. Denote by �(H|EH,e ) the set of non-wandering

points of H on the energy hypersurface EH,e. We say that x ∈ EH,e is a periodic point of
H if there is T >  such that XT

H (x) = x. Denote by P(H|EH,e ) the set of all periodic points
of H . Given  ≤ k ≤ n – , we recall that a k-elliptic closed orbit has k simple non-real
eigenvalues of the transversal linear Poincaré flow at the period of norm , and the norm
of its remaining eigenvalues different from . If k = n –  the elliptic closed orbits have all
eigenvalues at the period of norm , simple and non-real.
By Abraham’s and Marsden’s [] result-the symplectic eigenvalue theorem-if λ is an

eigenvalue of Dpf π of multiplicity k, then /λ is an eigenvalue of Dpf π of multiplicity k.
Moreover, if the multiplicity of the eigenvalues  and –, then it is even.
Recall that if we let W be a small neighborhood of a regular energy hypersurface EH,e,

then there exist a small neighborhood U of the HamiltonianH and ε >  such that for any
H ∈ U and for any e ∈ (e–ε, e+ε), we haveH–

 ({e})∩W = EH,e . The energy hypersurface
EH,e is called the analytic continuation of EH,e.
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Remark. ByRobinson’s version of theKupka-Smale theorem [], aC-genericHamil-
tonian has all closed orbits of hyperbolic or elliptic type. Thus, we can see that there is a
H close toH such thatH has a k-elliptic periodic orbit p of period π (p). Therefore, there
is a splitting of the normal subbundle �c

p along the orbit p into k-subspaces such that
�c

p = �c
 ⊕ · · · ⊕ �c

k , where dim�c
i =  for i = , . . . ,k. Let λi = exp(θij) is an eigenvalue of

Pπ (p)
H

|�c
i
. If θi is an irrational, then, by Frank’s lemma, there is H C-close to H such that

each appropriate restriction of the Poincaré map fH |N c
i
is conjugate to a rational rotation,

for i = , . . . ,k.

The following is the proof of Proposition .(a).

Lemma. Let (H , e,EH,e) be aHamiltonian system. If (H , e,EH,e) has the robustly orbitally
shadowing property then (H , e,EH,e) is a Hamiltonian star system.

Proof Let p ∈ γ ∈ P(H|EH,e ) with Xπ (p)
H (p) = p (π (p) > ) associated to EH,e. Suppose that p

is not hyperbolic for H . Then there is an eigenvalue λ of Pπ (p)
H (p) such that |λ| = . Then

by Lemma . and Lemma ., we can find H C-close to H such that H has a non-
hyperbolic periodic point p close to p with period π (p) close to π (p). It is clear that p is
not the analytic continuation to p. Then as in the proof of the [, Theorem .], we can
make the Poincaré map f at p associated to the Hamiltonian flow Xt

H
a C∞ local sym-

plectic diffeomorphism, that is, f :Np,r → Np for some r > . For simplicity, we assume
that p is -elliptic. Then TpNp,r =�c

p ⊕ �s
p ⊕ �u

p , where �c
p is associated to λ, �c

p is
associated to an eigenvalues less than  and�u

p associated to an eigenvalue greater than .
By Lemma ., Lemma . and the Darboux theorem, there are ε >  and a linear map
A : Np → Np such that g(x) = ϕp ◦ A ◦ ϕ–

p (x) for x ∈ Bε (p) ∩ Np,r and g(x) = f (x) for
x /∈ Bε (p) ∩ Np,r , where ϕp : Bε (p) ∩ Np,r → TpNp with ϕp (p) =

–→ . It is clear that
g : Np,r → Np is the Poincaré map H. Using Lemma ., λ can be taken as a rational
rotation, that is, there is l >  such that for any x ∈ ϕ–

p (�
c
p ) ∩ Bε (p) ⊂ Np,r , we have

gl(x) = x. Put N c
p = ϕ–

p (�
c
p ) ∩ Bε (p). For simplicity, we may assume that gl = g . Then

x is a fixed point for g , and the orbit of x is periodic, that is, Xπ (x)
H

(x) = x, where π (x) is
the period of x. Let x = p. Take ε = min{ε/, r/}, and let  < δ < ε be the number of
the orbital shadowing property. Take y ∈ N c

p such that d(p, y) = ε. Now, we construct a
δ-pseudo-orbit {(xi, ti) : ti > , i ∈ Z} ⊂ N c

p as follows: (i) ti = π (p) for all i ∈ Z, and xn = y
for some n ∈ N, (ii) xi = p for i≤ , (iii) d(g(xi),xi+) < δ for  ≤ i≤ n– , and (iv) xi = y for
i≥ n. By the orbital shadowing property, there is z ∈ EH,e such that

dH
(
OrbXH (z),

{
(xi, ti) : ti = π (p), i ∈ Z

})
< ε.

If z ∈ EH,e \N c
p , then, by the hyperbolicity, there is k ∈ Z such that

d
(
Xkπ (p)
H

(z),
{
(xi, ti) : ti = π (p), i ∈ Z

})
> ε.

This is a contradiction. Thus the orbital shadowing point z ∈ N c
p . Since g(z) = z, we have

Xjπ (p)
H

(z) = z for all j ∈ Z. By the orbital shadowing property, if there is xk ∈ {(xi, ti) : ti =
π (p), i ∈ Z} such that d(xk , z) < ε, then we can see that there is xl ∈ {(xi, ti) : ti = π (p), i ∈

http://www.advancesindifferenceequations.com/content/2014/1/192
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Z} such that

d
(
xl,X

jπ (p)
H

(z)
)
= d(xl, z) > ε,

for some j ∈ Z. Thus {Xt
H
(z) : t ∈ R} �⊂ Bε({(xi, ti) : ti = π (p), i ∈ Z}), which is a contradic-

tion. �

Let p ∈H be a non-hyperbolic periodic point. Then there is a Hamiltonian H C-close
to H such that H has a continuation of periodic points close to p. For a Hamiltonian
system (H , e,EH,e) and a periodic point p ∈ EH,e with period π (p), letN c

p be a submanifold
Np associated to p. Then we have the following.

Lemma . [, Lemma .] Let (H , e,EH,e) be a Hamiltonian system, and let p ∈ EH,e be a
non-hyperbolic periodic point. Then there is a Hamiltonian system (H, e,EH,e ) C-close
to (H , e,EH,e) such that H has a non-hyperbolic periodic point q ∈ EH,e close to p and every
point in a small neighborhood of q ∈N c

p is a periodic point of H.

The following is the proof of Proposition .(b).

Lemma. Let (H , e,EH,e) be aHamiltonian system. If (H , e,EH,e) has the robustly orbitally
inverse shadowing property with respect to the class Td , then (H , e,EH,e) is a Hamiltonian
star system.

Proof Let U ⊂ C(H ,R) be a C-neighborhood of H . Suppose that p ∈ EH,e is not a hy-
perbolic periodic point. By Lemma ., there are H ∈ U and η >  such that (i) H has a
non-hyperbolic periodic point q ∈ EH,e , and (ii) every γ ∈ Bη(q)∩N c

q is a periodic point
of H. Take  < ε < η/, and let  < δ < ε be as in the definition of the orbital inverse
shadowing property of H. Let fH be the Poincaré map at q associated to Pt

H
. Since every

γ ∈ Bη(q)∩N c
q is a periodic point of H, we know that fH (γ ) = γ .

Take  < τ <  such that it is sufficiently small. Then we define the Poincaré map gH

near q by gH (x) = (τx,x′) for x ∈ Bη(q) ∩ N c
q such that dC (fH , gH ) < δ, where x is the

-component of x and x′ is the other component. By Lemma ., there is a Hamiltonian
H which is associated to the Poincaré map gH , and dC (H,H) < δ. Take y ∈ Bη(q) ∩N c

q
such that d(y,q) = ε. Then for any z ∈ EH,e ,

dH
(
OrbXH (y),OrbXH (z)

)
< ε.

If y = z then fH (y) = y and giH
(y) = (τ iy, y′) for all i ∈ Z. Then there is k ∈ Z such that for

gH |N c
q ,

gkH (y) =
(
τ ky, y′) /∈ Bε

({
f iH (y) : i ∈ Z

})
.

Then we know that dH (OrbXH (y),OrbXH (z)) > ε. This is a contradiction, since H has the
orbital inverse shadowing property.
Finally we consider y �= z. Set z′ = Xt′

H
(z) ∈ Bη(q) ∩ N c

q , where |t′| = min{|t| : Xt
H
(z) ∈

Bη(q)∩N c
q }. Since

dH
(
OrbXH (y),OrbXH (z)

)
< ε,

http://www.advancesindifferenceequations.com/content/2014/1/192
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we have d(Xt
H
(y), giH

(z′)) < ε for some t ∈ R. Since dC (H,H) < δ, we can choose a se-
quence {giH

(z′)} ⊂ Bε(q) ∩N c
q such that d(f iH

(y), giH
(z)) < ε for all i ∈ Z. By hyperbolicity,

there is k >  such that

gkH (z) /∈ Bε

({
f iH (y) : i ∈ Z

})
.

Thus Bε({giH
(z) : i ∈ Z}) �⊂ Bε(q)∩N c

q . This is a contradiction by the orbital inverse shad-
owing property. �
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