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Abstract
In this article, we study the existence and uniqueness of solutions for multi-strip
fractional q-integral boundary value problems of nonlinear fractional q-difference
equations. By using the Banach contraction principle, Krasnoselskii’s fixed point
theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder degree theory
some interesting results are obtained. Some examples are presented to illustrate the
results.
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1 Introduction
In this article, we investigate the following nonlinear fractional q-difference equation for
multi-strip fractional q-integral boundary condition:

⎧⎨
⎩Dα

qu(t) = f (t,u(t)), t ∈ (,T),

u() = , u(T) =
∑m

i= γi(I
βi
qi u)|ξiηi =

∑m
i= γi(I

βi
qi u(ξi) – Iβiqi u(ηi)),

(.)

where  < α ≤ ,  < q,qi < , βi > ,  ≤ ηi < ξi ≤ T , γi ∈ R for all i = , , . . . ,m are given
constants, Dα

q is the fractional q-derivative of Riemann-Liouville type of order α, Iβiqi is the
fractional qi-integral of order βi and f : [,T]×R →R is a continuous function.
q-Difference calculus or quantum calculus was initiated by Jackson []. Basic defini-

tions and properties of quantum calculus can be found in the book []. The fractional q-
difference calculus had its origin in the works by Al-Salam [] and Agarwal []. For some
recent work on the subject, we refer to [–] and the references cited therein.
Strip conditions appear in the mathematical modeling of certain real world problems.

Formotivation, discussion onmulti-strip boundary conditions, examples and a consistent
bibliography on these problems, we refer to the papers [–] and the references therein.
As it is pointed out in [], the boundary condition in (.) can be interpreted in the sense
that a controller at the right-end of the considered interval is influenced by a discrete
distribution of finite many nonintersecting strips of arbitrary length expressed in terms of
fractional integral boundary conditions.
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The significance of investigating problem (.) is that themulti-strip fractional q-integral
boundary condition is very general and includes many conditions as special cases. In par-
ticular, if βi =  for i = , , . . . ,m, then the condition of (.) is reduced to the multi-strip
q-integral condition as follows:

u() = , u(T) = γ

∫ ξ

η

u(s)dqs + γ

∫ ξ

η

u(s)dqs + · · · + γm

∫ ξm

ηm

u(s)dqms.

Moreover, we emphasize that we have different quantum numbers and as far as we know
this is new in the literature.
The rest of the paper is organized as follows. In Section we briefly give some basic nota-

tions, definitions and lemmas. In Section  we collect some auxiliary results needed in the
proofs of our main results. Section  contains the main results concerning existence and
uniqueness results for problem (.), which are shown by applying the Banach contraction
principle, Krasnoselskii’s fixed point theorem, Leray-Schauder’s nonlinear alternative and
Leray-Schauder degree theory. Some examples are presented in Section  to illustrate the
results.

2 Preliminaries
To make this paper self-contained, below we recall some known facts on fractional q-
calculus. The presentation here can be found in, for example, [, ].
For q ∈ (, ), define

[a]q =
 – qa

 – q
, a ∈R. (.)

The q-analogue of the power function (a – b)k with k ∈N := {, , , . . .} is

(a – b)() = , (a – b)(k) =
k–∏
i=

(
a – bqi

)
, k ∈N,a,b ∈ R. (.)

More generally, if γ ∈R, then

(a – b)(γ ) = aγ

∞∏
i=

 – (b/a)qi

 – (b/a)qγ+i , a �= . (.)

Note if b = , then a(γ ) = aγ . We also use the notation (γ ) =  for γ > . The q-gamma
function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈R \ {,–,–, . . .}. (.)

Obviously, �q(x + ) = [x]q�q(x).
The q-derivative of a function h is defined by

(Dqh)(x) =
h(x) – h(qx)
( – q)x

for x �=  and (Dqh)() = lim
x→

(Dqh)(x), (.)
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and q-derivatives of higher order are given by

(
D

qh
)
(x) = h(x) and

(
Dk

qh
)
(x) =Dq

(
Dk–

q h
)
(x), k ∈N. (.)

The q-integral of a function h defined on the interval [,b] is given by

(Iqh)(x) =
∫ x


h(s)dqs = x( – q)

∞∑
i=

h
(
xqi

)
qi, x ∈ [,b]. (.)

If a ∈ [,b] and h is defined in the interval [,b], then its integral from a to b is defined by

∫ b

a
h(s)dqs =

∫ b


h(s)dqs –

∫ a


h(s)dqs. (.)

Similar to derivatives, an operator Ikq is given by

(
Iq h

)
(x) = h(x) and

(
Ikqh

)
(x) = Iq

(
Ik–q h

)
(x), k ∈N. (.)

The fundamental theorem of calculus applies to these operators Dq and Iq, i.e.,

(DqIqh)(x) = h(x), (.)

and if h is continuous at x = , then

(IqDqh)(x) = h(x) – h(). (.)

Definition . Let ν ≥  and h be a function defined on [,T]. The fractional q-integral
of Riemann-Liouville type is given by (Iq h)(x) = h(x) and

(
Iνqh

)
(x) =


�q(ν)

∫ x


(x – qs)(ν–)h(s)dqs, ν > ,x ∈ [,T]. (.)

Definition . The fractional q-derivative of Riemann-Liouville type of order ν ≥  is
defined by (D

qh)(x) = h(x) and

(
Dν

qh
)
(x) =

(
Dl

qI
l–ν
q h

)
(x), ν > , (.)

where l is the smallest integer greater than or equal to ν .

Definition . For any x, s > ,

Bq(x, s) =
∫ 


u(x–)( – qu)(s–) dqu (.)

is called the q-beta function.
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From [], the expression of q-beta function in terms of the q-gamma function can be writ-
ten as

Bq(x, s) =
�q(x)�q(s)
�q(x + s)

.

Lemma . [] Let α,β ≥  and f be a function defined in [,T]. Then the following for-
mulas hold:

() (Iβq Iαq f )(x) = (Iα+β
q f )(x),

() (Dα
q Iαq f )(x) = f (x).

Lemma . [] Let α >  and ν be a positive integer. Then the following equality holds:

(
Iαq D

ν
qf

)
(x) =

(
Dν

qI
α
q f

)
(x) –

ν–∑
k=

xα–ν+k

�q(α + k – ν + )
(
Dk

qf
)
(). (.)

3 Some auxiliary lemmas
Lemma . Let α,β >  and  < q < . Then we have

∫ η


(η – qs)(α–)s(β) dqs = ηα+βBq(α,β + ). (.)

Proof Using the definitions of q-analogue of power function and q-beta function, we have

∫ η


(η – qs)(α–)s(β) dqs = ( – q)η

∞∑
n=

qn
(
η – qηqn

)(α–)(
ηqn

)β

= ( – q)η
∞∑
n=

qnηα–( – qqn
)(α–)

ηβqnβ

= ( – q)ηα+β

∞∑
n=

qn
(
 – qqn

)(α–)qnβ

= ηα+β

∫ 


( – qs)(α–)s(β) dqs

= ηα+βBq(α,β + ).

The proof is complete. �

Lemma . Let α,β >  and  < p,q < . Then we have

∫ η



∫ x


(η – px)(α–)(x – qy)(β–) dqydpx =

ηα+β

[β]q
�p(α)�p(β + )
�p(α + β + )

. (.)

Proof Taking into account Lemma ., we have

∫ η



∫ x


(η – px)(α–)(x – qy)(β–) dqydpx

=
∫ η


(η – px)(α–)

∫ x


(x – qy)(β–) dqydpx

http://www.advancesindifferenceequations.com/content/2014/1/193
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=


[β]q

∫ η


(η – px)(α–)x(β) dpx

=


[β]q
ηα+βBp(α,β + )

=
ηα+β

[β]q
�p(α)�p(β + )
�p(α + β + )

.

This completes the proof. �

For convenience, we set a nonzero constant

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)
. (.)

Lemma . Let βi > ,  < q,qi < , γi ∈ R, ηi, ξi ∈ (,T) and ηi < ξi for all i = , , . . . ,m.
Then, for a given y ∈ C([, ],R), the unique solution of the linear q-difference equation

Dα
qu(t) = y(t), t ∈ (,T),  < α ≤ , (.)

subject to the multi-strip fractional q-integral condition

u() = , u(T) =
m∑
i=

γi
(
Iβiqi u

)|ξiηi =
m∑
i=

γi
(
Iβiqi u(ξi) – Iβiqi u(ηi)

)
, (.)

is given by

u(t) = –
tα–

	

{∫ T



(T – qs)(α–)

�q(α)
y(s)dqs

–
m∑
i=

γi

�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

)}

+
∫ t



(t – qs)(α–)

�q(α)
y(s)dqs, (.)

where 	 is defined by (.).

Proof Since  < α ≤ , we take n = . In view of Definition . and Lemma ., the linear
q-difference equation (.) can be written as

(
Iαq D


qI

–α
q u

)
(t) =

(
Iαq y

)
(t).

Using Lemma ., we obtain

u(t) = ctα– + ctα– +
∫ t



(t – qs)(α–)

�q(α)
y(s)dqs (.)

for some constants c, c ∈R. Since u() = , we get c = .
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Applying the Riemann-Liouville fractional qi-integral of order βi >  with c =  for (.)
and taking into account Lemma ., we have

Iβiqi u(ξi) =
∫ ξi



(ξi – qis)(βi–)

�qi (βi)

(
csα– +

∫ s



(s – qx)(α–)

�q(α)
y(x)dqx

)
dqi s

=


�qi (βi)�q(α)

∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

+
c

�qi (βi)

∫ ξi


(ξi – qis)(βi–)sα– dqi s

=


�qi (βi)�q(α)

∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

+ c
�qi (α)ξ

α+βi–
i

�qi (α + βi)
. (.)

Repeating the above process with t = ηi and using the second condition of (.), we get a
constant c as follows:

c =

	

{ m∑
i=

γi

�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

–
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)y(x)dqxdqi s

)

–
∫ T



(T – qs)(α–)

�q(α)
y(s)dqs

}
. (.)

Substituting the values of constants c and c in the linear solution (.), the desired result
in (.) is obtained. �

4 Main results
Let C = C([,T],R) denote the Banach space of all continuous functions from [,T] to R

endowedwith the supremumnormdefined by ‖u‖ = supt∈[,T] |u(t)|. In viewof Lemma.,
we define an operatorA : C → C by

(Au)(t) = –
tα–

	

{∫ T



(T – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs

–
m∑
i=

γi

�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s

)}

+
∫ t



(t – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs, (.)

with 	 �= . It should be noticed that problem (.) has solutions if and only if the operator
A has fixed points.

http://www.advancesindifferenceequations.com/content/2014/1/193
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For the sake of convenience, we put


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
Tα

�q(α + )
. (.)

The first existence and uniqueness result is based on the Banach contraction mapping
principle.

Theorem . Let f : [,T]×R →R be a continuous function satisfying the assumption

(H) there exists a constant L >  such that |f (t,u) – f (t, v)| ≤ L|u – v| for each t ∈ [,T]
and u, v ∈R.

If

L
 < , (.)

where a constant 
 is given by (.), then the multi-strip boundary value problem (.) has
a unique solution on [,T].

Proof We transform problem (.) into a fixed point problem, u =Au, where the operator
A is defined by (.). Applying the Banach contraction mapping principle, we will show
that the operatorA has a fixed point which is a unique solution of problem (.).
Setting supt∈[,T] |f (t, )| =M < ∞ and choosing

r ≥ M


 – L

,

with L
 satisfying (.), we will show that ABr ⊂ Br , where the set Br = {u ∈ C : ‖u‖ ≤ r}.
For any u ∈ Br , and taking into account Lemma ., we have

‖Au‖ ≤ sup
t∈[,T]

{
tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∫ t



(t – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

}

≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)dqs
+

m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

http://www.advancesindifferenceequations.com/content/2014/1/193
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× (∣∣f (x,u(x)) – f (x, )
∣∣ + ∣∣f (x, )∣∣)dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

× (∣∣f (x,u(x)) – f (x, )
∣∣ + ∣∣f (x, )∣∣)dqxdqi s

)}

+
∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)dqs
≤ (Lr +M)

{
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+

Tα

�q(α + )

}

= (Lr +M)
 ≤ r.

It follows thatABr ⊂ Br .
For u, v ∈ C and for each t ∈ [,T], we have

∣∣Au(t) –Av(t)
∣∣

≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣)dqs
+

m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

× (∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣)dqxdqi s
+

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

(∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣)dqxdqi s
)}

+
∫ T



(T – qs)(α–)

�q(α)
(∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣)dqs
≤ L‖u – v‖

{
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+

Tα

�q(α + )

}

= L
‖u – v‖.

The above result leads to ‖Au –Av‖ ≤ L
‖u – v‖. As L
 < , by (.), therefore A is a
contraction. Hence, by the Banach contraction mapping principle, we deduce that A has
a fixed point which is the unique solution of problem (.). �

Next, we prove the existence of at least one solution by using Krasnoselskii’s fixed point
theorem.
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Lemma . (Krasnoselskii’s fixed point theorem []) Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

Theorem . Assume that f : [,T]×R →R is a continuous function satisfying assump-
tion (H). In addition, we suppose that

(H) |f (t,u)| ≤ ψ(t), ∀(t,u) ∈ [,T]×R and ψ ∈ C([,T],R+).

If the following condition holds

L
�q(α + )

(
Tα–

|	| + Tα

)
< , (.)

then the multi-strip boundary value problem (.) has at least one solution on [,T].

Proof We define supt∈[,T] |ψ(t)| = ‖ψ‖ and choose a suitable constant R such that

R ≥ ‖ψ‖
,

where 
 is defined by (.). Furthermore, we define the operatorsA andA on BR = {u ∈
C : ‖u‖ ≤ R} by

(Au)(t)

=
tα–

	

m∑
i=

γi

�qi (βi)�q(α)

∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s

–
tα–

	

m∑
i=

γi

�qi (βi)�q(α)

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)f

(
x,u(x)

)
dqxdqi s,

and

(Au)(t) = –
tα–

	

∫ T



(T – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs +

∫ t



(t – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs.

It should be noticed thatA =A +A.
For any u, v ∈ BR, we have

‖Au +Av‖ ≤ ‖ψ‖
{

Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i Bqi (βi,α + )
�qi (βi)

+
m∑
i=

|γi|ηβi+α

i Bqi (βi,α + )
�qi (βi)

)
+

Tα

�q(α + )

}

= ‖ψ‖

≤ R.

Therefore (Au) + (Av) ∈ BR. Obviously, condition (.) implies that A is a contraction
mapping.

http://www.advancesindifferenceequations.com/content/2014/1/193
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Finally, we will show that A is compact and continuous. The continuity of f coupled
with assumption (H) implies that the operatorA is continuous and uniformly bounded
on BR. We define sup(t,u)∈[,T]×BR |f (t,u)| = M∗ < ∞. For t, t ∈ [,T], t < t and u ∈ BR,
we have

∣∣(Au)(t) – (Au)(t)
∣∣

≤ |tα– – tα– |
|	|

m∑
i=

|γi|
�qi (βi)�q(α)

×
∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
+

|tα– – tα– |
|	|

m∑
i=

|γi|
�qi (βi)�q(α)

×
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
≤M∗ |tα– – tα– |

|	|�q(α + )

{ m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

}
.

Actually, as |t – t| →  the right-hand side of the above inequality tends to zero indepen-
dently of u. SoA is relatively compact on BR. Therefore, by theArzelá-Ascoli theorem,A

is compact on BR. Thus all the assumptions of Lemma. are satisfied. Thus, the boundary
value problem (.) has at least one solution on [,T]. The proof is complete. �

Remark . In the above theorem we can interchange the roles of the operators A and
A to obtain the second result replacing (.) by the following condition:

LTα–

|	|�q(α + )

( m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
< .

Now, our third existence result is based on Leray-Schauder’s nonlinear alternative.

Lemma. (Nonlinear alternative for single-valuedmaps []) Let E be aBanach space,C
be a closed, convex subset of E,U be an open subset of C and  ∈U . Suppose that F :U → C
is a continuous, compact (that is, F(U) is a relatively compact subset of C)map.Then either

(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Assume that f : [,T] × R → R is a continuous function. In addition we
suppose that:

(H) there exist a continuous nondecreasing function φ : [,∞) → (,∞) and a function
p ∈ C([,T],R+) such that

∣∣f (t,u)∣∣ ≤ p(t)φ
(|u|) for each (t,u) ∈ [,T]×R;
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(H) there exists a constant N >  such that

N
‖p‖φ(N)


> ,

where 
 is defined by (.).

Then the multi-strip boundary value problem (.) has at least one solution on [,T].

Proof Firstly, we will show that the operatorA defined by (.)maps bounded sets (balls)
into bounded sets in C . For a positive number ρ , let Bρ = {u ∈ C : ‖u‖ ≤ ρ} be a bounded
ball in C . Then, for t ∈ [,T], we have

∣∣Au(t)
∣∣ ≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
+

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

≤ Tα–

|	|�q(α + )

(
‖p‖φ(‖u‖)Tα + ‖p‖φ(‖u‖) m∑

i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+ ‖p‖φ(‖u‖) m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+ ‖p‖φ(‖u‖) Tα

�q(α + )

≤ ‖p‖φ(ρ)Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+ ‖p‖φ(ρ) Tα

�q(α + )
:= K .

Therefore, we deduce that ‖Au‖ ≤ K .
Secondly, we will show that A maps bounded sets into equicontinuous sets of C . Let

sup(t,u)∈[,T]×Bρ
|f (t,u)| = K∗ <∞, τ, τ ∈ [,T] with τ < τ and u ∈ Bρ . Then we have

∣∣(Au)(τ) – (Au)(τ)
∣∣

≤ |τα–
 – τα–

 |
|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
+

∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∣∣∣∣
∫ τ



(τ – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs –

∫ τ



(τ – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

∣∣∣∣
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≤ |τα–
 – τα–

 |K∗

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
|τα–

 – τα–
 |K∗

�qi (α + )
.

Obviously, the right-hand side of the above inequality tends to zero independently of
x ∈ Bρ as τ → τ. Therefore it follows by the Arzelá-Ascoli theorem that A : C → C is
completely continuous.
Let u be a solution of problem (.). Then, for t ∈ [,T], and following similar compu-

tations as in the first step with (H), we have

‖u‖ ≤ Tα–

|	|�q(α + )

(
‖p‖φ(‖u‖)Tα + ‖p‖φ(‖u‖) m∑

i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+ ‖p‖φ(‖u‖) m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
+ ‖p‖φ(‖u‖) Tα

�q(α + )

= ‖p‖φ(‖u‖)
.

Consequently, we have

‖u‖
‖p‖φ(‖u‖)
 ≤ .

In view of (H), there exists a constant N >  such that ‖u‖ �=N . Let us set

U =
{
x ∈ C : ‖u‖ <N

}
.

Note that the operator A : U → C is continuous and completely continuous. From the
choice of U , there is no u ∈ ∂U such that u = λAu for some λ ∈ (, ). Consequently, by
nonlinear alternative of Leray-Schauder type (Lemma .), we deduce that A has a fixed
point in U , which is a solution of the boundary value problem (.). This completes the
proof. �

As the forth result, we prove the existence of solutions of (.) by using Leray-Schauder
degree theory.

Theorem . Let f : [,T]×R →R be a continuous function. Assume that

(H) there exist constants  ≤ ω < 
–, where 
 are given by (.), and � >  such that

∣∣f (t,u)∣∣ ≤ ω|u| +� for each (t,u) ∈ [,T]×R.

Then the multi-strip boundary value problem (.) has at least one solution on [,T].

Proof Let A be the operator defined by (.). We will prove that there exists at least one
solution u ∈ C of the operator equation u =Au.
Setting a ball Bρ∗ ⊂ C , where a constant radius ρ∗ > , by

Bρ∗ =
{
u ∈ C : sup

t∈[,T]

∣∣u(t)∣∣ < ρ∗
}
,
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it is sufficient to show that A : Bρ∗ → C satisfies

u �= θAu, ∀u ∈ ∂Bρ∗ ,∀θ ∈ [, ]. (.)

Now, we set

H(θ ,u) = θAu, u ∈ C, θ ∈ [, ].

As shown in Theorem ., we have that the operatorA is continuous, uniformly bounded
and equicontinuous. Then, by the Arzelá-Ascoli theorem, a continuous map hθ (u) =
u –H(θ ,u) = u – θAu is completely continuous. If (.) holds, then the following Leray-
Schauder degrees are well defined. From the homotopy invariance of topological degree,
it follows that

deg(hθ ,Bρ∗ , ) = deg(I – θA,Bρ∗ , ) = deg(h,Bρ∗ , )

= deg(h,Bρ∗ , ) = deg(I,Bρ∗ , ) =  �= ,  ∈ Bρ∗ ,

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, we
have h(u) = u – Au =  for at least one u ∈ Bρ∗ . Let us assume that u = θAu for some
θ ∈ [, ]. Then, for all t ∈ [,T], we have

∣∣u(t)∣∣ = ∣∣θ (Au)(t)
∣∣

≤ Tα–

|	|

{∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

+
m∑
i=

|γi|
�qi (βi)�q(α)

(∫ ξi



∫ s


(ξi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s

+
∫ ηi



∫ s


(ηi – qis)(βi–)(s – qx)(α–)

∣∣f (x,u(x))∣∣dqxdqi s
)}

+
∫ T



(T – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

≤ (
ω|u| +�

){ Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i Bqi (βi,α + )
�qi (βi)

+
m∑
i=

|γi|ηβi+α

i Bqi (βi,α + )
�qi (βi)

)
+

Tα

�q(α + )

}

=
(
ω|u| +�

)

.

Taking norm supt∈[,T] |u(t)| = ‖u‖ and solving for ‖u‖, we get

‖u‖ ≤ �


 –ω

.

Choosing ρ∗ = �

–ω


+ , then we deduce that (.) holds. This completes the proof. �
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5 Examples
In this section, we present some examples to illustrate our results.

Example . Consider the following multi-strip fractional q-integral boundary value
problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D





u(t) = |u(t)|

(+t)(+|u(t)|) , t ∈ (, ),

u() = ,

u() = (I




u)|





+ 

 (I




u)| 


+ (I





u)|


.

(.)

Here α = /, q = /, T = , m = , γ = , γ = /, γ = , β = /, β = /, β = /,
q = /, q = /, q = /, ξ = /, ξ = /, ξ = , η = /, η = /, η = / and f (t,u) =
(|u(t)|)/(( + t)( + |u(t)|)). Since

∣∣f (t,u) – f (t, v)
∣∣ ≤ 


|u – v|,

then (H) is satisfied with L = /. Using the Maple program, we find that

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)

≈ –.,


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
Tα

�q(α + )

≈ ..

Therefore, we get

L
 =



(.) ≈ . < .

Hence, by Theorem ., the boundary value problem (.) has a unique solution on [, ].

Example . Consider the following multi-strip fractional q-integral boundary value
problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D




u(t) = 

u+π sin(πu
 ) + 

π
( + sin(π t)), t ∈ (, ),

u() = ,

u() = (I




u)| 


+ 

 (I




u)| – (I





u)|


+ 

 (I




u)| 


.

(.)

Here α = /, q = /, T = , m = , γ = , γ = /, γ = –, γ = /, β = /, β = /,
β = /, β = /, q = /, q = /, q = /, q = /, ξ = /, ξ = , ξ = , ξ = /, η =
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/, η = , η = /, η = / and f (t,u) = ((sin(πu/))/(u + π)) + (( + sin(π t))/(π )).
By using the Maple program, we find that

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)

≈ .,


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)

+
Tα

�q(α + )

≈ ..

Clearly,

∣∣f (t,u)∣∣ = ∣∣∣∣ 
u + π sin

(
πu


)
+
 + sin(π t)

π

∣∣∣∣ ≤ (
 + sin(π t)

)(|u| + 
π

)
.

Choosing p(t) =  + sin(π t) and ψ(|u|) = (|u| + )/(π ), we can show that

N
()( N+

π
)(.)

> ,

which implies thatN > .. Hence, by Theorem., the boundary value problem
(.) has at least one solution on [, ].

Example . Consider the following multi-strip fractional q-integral boundary value
problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D




u(t) = 

π tan–(u) + |u(t)|
+|u(t)| , t ∈ (, ),

u() = ,

u() = –(I




u)| 


+ (I





u)| 


+ (  )(I





u)| 



+ (I




u)| 


+ (  )(I





u)|





.

(.)

Here α = /, q = /, T = , m = , γ = –, γ = , γ = /, γ = , γ = /, β = /,
β = /, β = /, β = /, β = /, q = /, q = /, q = /, q = /, q = /, ξ =
/, ξ = /, ξ = /, ξ = /, ξ = /, η = /, η = /, η = /, η = /, η = / and
f (t,u) = ((tan–(u))/(π )) + ((|u(t)|)/( + |u(t)|)). By using the Maple program, we find
that

	 = Tα– –
m∑
i=

γi�qi (α)
�qi (α + βi)

(
ξ

α+βi–
i – η

α+βi–
i

)

≈ –.,


 =
Tα–

|	|�q(α + )

(
Tα +

m∑
i=

|γi|ξβi+α

i �qi (α + )
�qi (α + βi + )

+
m∑
i=

|γi|ηβi+α

i �qi (α + )
�qi (α + βi + )

)
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+
Tα

�q(α + )

≈ ..

We observe that

∣∣f (t,u)∣∣ = ∣∣∣∣ 
π

tan–(u) +
|u(t)|
 + |u(t)|

∣∣∣∣ ≤ |u|
π

+ .

Therefore, we have � =  and

ω = /π < 
– = ..

Hence, by Theorem ., the boundary value problem (.) has at least one solution
on [, ].
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