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Abstract
In this paper, we study the existence of impulsive semilinear nonlocal problems with
random effects. Random perturbations are taken into consideration in abstract
spaces. By applying the measure of noncompactness and a random fixed point
theorem with stochastic domain, we get some existence results which improve and
generalize many known results. Some weaker assumptions are established. Besides,
we do not claim the semigroup to be compact.
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1 Introduction
During the past few decades impulsive differential equations have beenwidely studied and
significant progress has been made in [–] and references therein. Since many real world
phenomena exhibit the presence of sudden state changes, the study of impulsive differen-
tial equations is becomingmore important nowadays. The theory of impulsive differential
equations nownot only is being recognized richer than the corresponding theory of differ-
ential equations but also represents amore natural framework formathematical modeling
of many real world phenomena.
On the other hand, due to a combination of uncertainties and complexities, determin-

istic equations can hardly describe a real system precisely. In order to take random fac-
tors into account, many stochastic models were proposed and various achievements were
obtained; see [, –] and references therein. Between them differential equations with
randomcoefficients (see, e.g., [–] ) offer a natural and rational approach (see [, Chap-
ter ]), since sometimes we can get the random distributions of some main disturbances
by historical experiences and data rather than take all random disturbances into account
and assume the noise to be white noises.
The main purpose of this paper is to discuss the existence of mild solutions for the non-

local initial value problem with impulses and random effects of the form

⎧⎪⎨
⎪⎩
x′(t,ω) = Ax(t,ω) + f (t,x(t,ω),ω), t �= tk ,k = , , . . . ,m,
x(t+k ,ω) – x(t–k ,ω) = Ik(x(tk ,ω),ω), k = , , . . . ,m,
x(,ω) = g(x,ω)

()
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(with some notations to be given later), where (�,F ,P) is a complete probability space,
ω ∈ �, A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators (i.e., C-semigroup) T(t) in a Banach space X, f : I × X × � → X, g :
PC(I,X) × � → X, Ik : X × � → X, k = , , . . . ,m, are given random functions which
represent random nonlinear effects of the system.
The investigation of nonlocal initial value problems was initiated by Byszewski in [].

Later on, Byszewski’s work was followed by many others and a lot of work was presented
in [, , –], since in some physicsmodels the nonlocal problems play a better role than
the classical ones. The corresponding deterministic case of problem (), with or without
impulses, has been studied by many authors. For instance, Ntouyas and Tsamatos in []
investigated the case of compactness conditions of f and T(t). Xue in [] studied the
problem when f is compact. For impulsive semilinear nonlocal problems, in [], Liang
et al. obtained existence and uniqueness results by various assumptions of compactness
or Lipschitz on T(t), f , g or Ik . Very recently, in [, ] the authors put forward sufficient
conditions on the existence of nonlocal impulsive differential equations by supposing the
semigroup T(t) to be equicontinuous, but in their papers impulsive functions are always
assumed to be compact or Lipschitzian. The goal of this paper is to continue the study of
these authors by making full use of the Hausdorff measure of noncompactness and take
random effects into consideration. The nonlocal problem with impulses and differential
equations with random effects were studied in, e.g., [, ], respectively. In this paper, we
study the nonlocal problem with impulses combined with random effects. Though the
nonlocal problem with impulses and random effects was studied in, e.g., [] and refer-
ences therein, in this paper we study impulsive semilinear nonlocal problem with ran-
dom effects of another type. We prove existence results without compactness on T(t)
or f and the Lipschitz condition on f , and we weaken assumptions on impulsive func-
tions Ik .
The rest of this paper is organized as follows. In Section , we recall some notations and

important lemmas. In Section , we give sufficient conditions on the existence of mild
solutions of problem (). Finally, the conclusion is draw in Section .

2 Notations and preliminaries
In this section, we introduce some basic definitions and results which will be used in the
paper.
Let (X,‖ · ‖) be a real separable Banach space, let (�,F ,P) be a complete probability

space, and let I = [,T] be a bounded closed interval in R,  = t < t < · · · < tm < tm+ = T .
By C(I,X) we denote the Banach space of all continuous mappings from I into X with
the norm ‖f ‖C = sup{‖f (t)‖ : t ∈ I}. Let PC(I,X) = {y : I → X : y is continuous for t �=
tk , y(t–k ) and y(t+k ) exist with y(t–k ) = y(tk),k = , . . . ,m}. It is easy to verify that PC(I,X) is
a separable Banach space with the norm ‖f ‖PC = sup{‖f (t)‖ : t ∈ I}. We denote by L(I,X)
the space of X-valued Bochner functions on I with the norm ‖x‖ =

∫ T
 ‖x(s)‖ds. Thus

C(I,X) ⊆ PC(I,X) ⊆ L(I,X).
A C-semigroup T(t) is said to be compact if T(t) is compact for any t > . If t → T(t)x

is equicontinuous at all t >  with respect to x in all bounded subsets of X, then the semi-
group T(t) is called equicontinuous. Note that if the semigroup T(t) is compact, then it
must be equicontinuous (cf. []).
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Let Y be a separable Banach space with the Borel σ -algebra BY . A mapping y: � → Y
is said to be a random variable with values in Y if for each B ∈ BY , y–(B) ∈F . A mapping
T : � × Y → Y is called a random operator if T(·, y) is measurable for each y ∈ Y and is
generally expressed as T(ω, y) := T(ω)y; we will use these two expressions alternatively.
Next, we will give a very useful random fixed point theorem with stochastic domain.

Definition  (see []) Let C be a mapping from � into Y . A mapping T : {(ω, y)|ω ∈
� ∧ y ∈ C(ω)} → Y is called ‘random operator with stochastic domain C’ iff C is measur-
able (i.e., for all closed A ⊆ Y , {ω ∈ �|C(ω) ∩ A �= ∅} ∈ F ) and for all open D ⊆ Y and all
y ∈ Y , {ω ∈ �|y ∈ C(ω) ∧ T(ω, y) ∈ D} ∈ F . T will be called ‘continuous’ if every T(ω) is
continuous. For a random operator T , a mapping y : � → Y is called ‘random (stochastic)
fixed point of T ’ iff for P-almost all ω ∈ �, y(ω) ∈ C(ω) and T(ω)y(ω) = y(ω) and for all
open D ⊆ Y , {ω ∈ �|y(ω) ∈D} ∈F (‘y is measurable’).

Remark  If C(ω) ≡ Y , then the definition of random operator with stochastic domain
coincides with the definition of random operator.

Lemma  (see []) Let C : � → Y be measurable with C(ω) closed, convex and solid
(i.e., int C(ω) �= ∅) for all ω ∈ �.We assume that there exists measurable y : � → Y with
y ∈ int C(ω) for all ω ∈ �. Let T be a continuous random operator with stochastic domain
C such that for every ω ∈ �, {y ∈ C(ω)|T(ω)y = y} �= ∅. Then T has a stochastic fixed point.

Let ξ be a mapping of I × � into X. ξ is said to be a stochastic process if for each t ∈ I ,
ξ (t, ·) is measurable and if, in addition, for each ω ∈ �, ξ (·,ω) ∈ PC(I,X), ξ is said to satisfy
condition (PC,�). If ξ satisfies condition (PC,�), then ξ is considered to be a mapping of
� into PC(I,X).
By some similar techniques in [], without proof we state the following proposition.

Proposition  ξ satisfies condition (PC,�) if and only if ξ is measurable as a mapping of
� into PC(I,X).

Definition  A stochastic process x is said to be a mild random solution of problem () if
it satisfies condition (PC,�) and for ω ∈ �,

x(t,ω) = T(t)g
(
x(·,ω)) + ∫ t


T(t – s)f

(
s,x(s,ω),ω

)
ds +

∑
<tk<t

T(t – tk)Ik
(
x(tk ,ω),ω

)

for all t ∈ I .

Let α denote the Hausdorff measure of noncompactness both on X and PC(I,X), then
we have the following fixed point theorem.

Lemma  ([]) Let F be a closed and convex subset of a real Banach space, let A : F → F
be a continuous operator and A(F) be bounded. For each bounded subset B⊆ F , set

A(B) = A(B), An(B) = A
(
conv

(
An–(B)

))
, n = , , . . . .
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If there exist a constant  ≤ k <  and a positive integer n such that for each bounded subset
B ⊆ F ,

α
(
An (B)

) ≤ kα(B),

then A has a fixed point in F .

For specific properties of measures of noncompactness, we refer the readers to [].
To prove the existence results in this paper, we need the following lemmas concerning

the relationship in measures of noncompactness.

Lemma  ([]) If Y is a bounded subset of Banach space X , then for each ε > , there is a
sequence {yk}∞k= ⊆ Y such that

α(Y )≤ α
({yk}∞k=) + ε.

Lemma  ([]) If {uk}∞k= ⊆ L(I,X) is uniformly integrable, then α({uk(t)}∞k=) is measur-
able and

α

({∫ t


uk(s)ds

}∞

k=

)
≤ 

∫ t


α
({
uk(s)

}∞
k=

)
ds for t ∈ [,T].

Lemma  ([]) If the semigroup T(t) is equicontinuous and η ∈ L(I,R+), then the set
{t → ∫ t

 T(t – s)x(s)ds;‖x(s)‖ ≤ η(s), for a.e. s ∈ [,T]} is equicontinuous on [,T].

Lemma  ([]) If W ⊆ PC(I,X) is bounded, then α(W (t)) ≤ α(W ) for all t ∈ I , where
W (t) = {u(t);u ∈ W } ⊆ X. Furthermore, suppose that the following conditions are satis-
fied:
() W is equicontinuous on J = [, t] and each Ji = (ti, ti+], i = , . . . ,m;
() W is equicontinuous at t = t+i , i = , . . . ,m.

Then supt∈I α(W (t)) = α(W ).

3 Main results
In this section, we give existence results for the nonlocal problem (). First we list the
following conditions.
(HA) The C-semigroup T(t) generated by A is equicontinuous and we denote N =

sup{‖T(t)‖ : t ∈ I}.
(Hg) g : PC(I,X)× � → X. For each ω ∈ �, g(·,ω) is continuous and compact.
(Hf)
(i) f : I ×X × � → X . For each ω ∈ �, f (·, ·,ω) : I ×X → X satisfies the Caratheodory

condition, i.e., f (·,x,ω) is measurable for all x ∈ X , and f (t, ·,ω) is continuous for
a.e. t ∈ I .

(ii) There exist functions φ :R+ × � →R
+ andm : I × � →R

+ such that for each
ω ∈ �, φ(·,ω) is nondecreasing and continuous and m(·,ω) integrable with

∥∥f (t,x,ω)∥∥ ≤m(t,ω)φ
(‖x‖,ω)

for all x ∈ X and a.e. t ∈ I .
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(iii) There exists a function L : I × � → R
+ with L(·,ω) ∈ L(I,R+) for each ω ∈ � such

that for any bounded B ⊆ X ,

α
(
f (t,B,ω)

) ≤ L(t,ω)α(B) ()

for a.e. t ∈ I .
(HI) Ik : X × � → X is sample path continuous and there exists Lk : � → R

+ such that
for ω ∈ � and all bounded subset B⊆ X,

α
(
Ik(B,ω)

) ≤Lk(ω)α(B) ()

for k = , , . . . ,m.
(Hm) For each t ∈ I , x ∈ X, f (t,x, ·) and Ik(x, ·), k = , , . . . ,m, are measurable; for each

x ∈ PC(I,X), g(x, ·) is measurable.
(HR) There exists a random function R : � →R

+ \ {} such that

sup
x∈BR(ω)

∥∥g(x,ω)∥∥ + φ
(
R(ω),ω

)∫ T


m(s,ω)ds +

m∑
k=

sup
x∈BR(ω)

∥∥Ik(x(tk),ω)∥∥ ≤ R(ω)
N

for each ω ∈ �, where Br denotes the closed ball in PC(I,X) centered at zero and with
radius r.
(H∗)

N
m∑
k=

Lk(ω) < , ∀ω ∈ �.

Remark  Conditions () or () can be derived by the Lipschitz conditions on f or Ik ,
k = , , . . . ,m, see [].

Theorem Suppose that hypotheses (HA), (Hf), (Hg), (HI), (Hm), (HR) and (H∗) are valid,
then the nonlocal random impulsive problem () has at least one mild random solution.

Proof Consider the random operator P :� × PC(I,X) → PC(I,X) defined by

(
P(ω)x

)
(t) = T(t)g(x,ω) +

∫ t


T(t – s)f

(
s,x(s),ω

)
ds

+
∑
<tk<t

T(t – tk)Ik
(
x(tk),ω

)
, t ∈ I, ()

and we can divide P into three parts,

F(ω)x(t) = T(t)g(x,ω),

G(ω)x(t) =
∫ t


T(t – s)f

(
s,x(s),ω

)
ds,

H(ω)x(t) =
∑
<tk<t

T(t – tk)Ik
(
x(tk),ω

)
.

For each ω ∈ � and each x ∈ PC(I,X), by the definition of P , clearly P(ω)(x) ∈ PC(I,X).
Thus the mapping is well defined.

http://www.advancesindifferenceequations.com/content/2014/1/194


Zhang and Sun Advances in Difference Equations 2014, 2014:194 Page 6 of 11
http://www.advancesindifferenceequations.com/content/2014/1/194

Then we show that themapping defined by () is a random operator. To do this, we need
to prove that for any x ∈ PC(I,X) given, P(·)(x) : � → PC(I,X) is a random variable. By
Proposition , P(·)(x) :� → PC(I,X) is measurable if and only if P(·,x), as a mapping of
I × � into X, satisfies condition (PC,�), i.e.,
(a) for any ω ∈ �, P(ω,x)(t) ∈ PC(I,X);
(b) for any t ∈ I , P(·,x)(t) : � → X is measurable;

(a) is satisfied since the mapping is well defined, (b) can be fulfilled by assumption (Hm).
By some usual techniques (see, e.g., []), it is easy to show that the random operator P

is continuous.
Let W : � → PC(I,X) be defined by W (ω) = {x ∈ PC(I,X) : ‖x‖PC ≤ R(ω)} with W (ω)

bounded, closed, convex and solid for all ω ∈ �. Then W is measurable by Lemma  in
[].
Let ω ∈ � be fixed, then for any x ∈W (ω), we have

∥∥(
P(ω)x

)
(t)

∥∥ ≤ ∥∥T(t)g(x,ω)∥∥ +
∥∥∥∥
∫ t


T(t – s)f

(
s,x(s),ω

)
ds

∥∥∥∥
+

∑
<tk<t

∥∥T(t – tk)Ik
(
x(tk),ω

)∥∥

≤N sup
x∈W (ω)

∥∥g(x,ω)∥∥ +Nφ
(
R(ω),ω

)∫ T


m(s,ω)ds

+N
m∑
k=

sup
x∈W (ω)

∥∥Ik(x(tk),ω)∥∥
≤R(ω).

This implies thatP is a random operator with stochastic domainW andP(ω) :W (ω) →
W (ω) for each ω ∈ �.
Next, let ω ∈ � be fixed (therefore we do not write ‘ω’ in the sequel) but arbitrary.
For any B ⊆W , ∀t ∈ I ,

α
(
FB(t)

)
= α

(
T(t)g(B)

)
= .

From Lemma  and Lemma , for any ε > , there is a sequence {xn}∞n= ⊆ B such that

α
(
GB(t)

)
= α

({∫ t


T(t – s)f

(
s,x(s)

)
ds,x ∈ B

})

≤ α
({∫ t


T(t – s)f

(
s,xn(s)

)
ds

}∞

n=

)
+ ε

≤ 
∫ t


α
({
T(t – s)f

(
s,xn(s)

)}∞
n=

)
ds + ε

≤ N
∫ t


L(s)α

({
xn(s)

}∞
n=

)
ds + ε

≤ N
∫ t


L(s)ds · α({xn}∞n=) + ε

≤ N
∫ t


L(s)ds · α(B) + ε,

http://www.advancesindifferenceequations.com/content/2014/1/194


Zhang and Sun Advances in Difference Equations 2014, 2014:194 Page 7 of 11
http://www.advancesindifferenceequations.com/content/2014/1/194

α
(
HB(t)

)
= α

({ ∑
<tk<t

T(t – tk)Ik
(
x(tk)

)
,x ∈ B

})

≤Nα

({ m∑
k=

Ik
(
x(tk)

)
,x ∈ B

})

≤N
m∑
k=

Lk · α(B).

Thus, since ε >  is arbitrary,

α
(
PB(t)

) ≤
(
N

m∑
k=

Lk + N
∫ t


L(s)ds

)
· α(B).

We know that there is a continuous function p : I →R
+ (M =max{|p(t)| : t ∈ I}) such that

for any γ >  (γ < –N
∑m

k=Lk
N ),

∫ T



∣∣L(s) – p(s)
∣∣ds < γ .

So

α
(
PB(t)

) ≤
(
N

m∑
k=

Lk + N
(∫ t



∣∣L(s) – p(s)
∣∣ds + ∫ t



∣∣p(s)∣∣ds)
)

· α(B)

≤
(
N

m∑
k=

Lk + N(γ +Mt)

)
· α(B)

= (a + bt)α(B),

where a =N
∑m

k=Lk + Nγ , b = NM.
From Lemma  and Lemma , it is easy to verify the equicontinuity of PB, thus

α(PB)≤ (a + bT)α(B). ()

Again, in view of (), Lemma  and Lemma , by some similar argument, for any ε > ,
there is a sequence {yn}∞n= ⊆ conv(PB) such that

α
(
PB(t)

)
= α

(
P

(
conv

(
PB

))
(t)

)
≤ α

({∫ t


T(t – s)f

(
s, yn(s)

)
ds

}∞

n=

)
+ ε +N

m∑
k=

Lkα(PB)

≤N
m∑
k=

Lk(a + bT)α(B) + N
∫ t


L(s)α

(
PB(s)

)
ds + ε

≤N
m∑
k=

Lk(a + bT)α(B) + N
∫ t



(∣∣L(s) – p(s)
∣∣ + ∣∣p(s)∣∣)(a + bs)α(B)ds + ε

http://www.advancesindifferenceequations.com/content/2014/1/194
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≤N
m∑
k=

Lk(a + bT)α(B) + N
[
(a + bT)γ +M

(
aT +

b

T

)]
α(B) + ε

=

[(
N

m∑
k=

Lk + Nγ

)
a +

(
N

m∑
k=

Lk + Nγ

)
bT + NM

(
aT +

b

T

)]
α(B) + ε

=
(
a + abT +

(bT)



)
α(B) + ε.

Since ε is arbitrary,

α
(
PB(t)

) ≤
(
a + abT +

(bT)

!

)
α(B).

Hence, by mathematical induction, for any positive integer n and t ∈ [,T], we obtain

α
(
PnB(t)

) ≤
(
an +C

na
n–bT +C

na
n– (bT)

!
+ · · · + (bT)n

n!

)
α(B).

Since PnB is equicontinuous on I , consequently we have

α
(
PnB

) ≤
(
an +C

na
n–bT +C

na
n– (bT)

!
+ · · · + (bT)n

n!

)
α(B).

Since a < , from Lemma . in [], there exists a positive integer n such that

an +C
na

n–bT +C
na

n– (bT)


!
+ · · · + (bT)n

n!
= r < .

Then

α
(
PnB

) ≤ rα(B).

It follows from Lemma  that for each ω ∈ �, P has at least one fixed point in W . Since⋂
ω∈� intW (ω) �= ∅, the hypothesis that a measurable selector of intW exists holds. By

Lemma , P has a stochastic fixed point, i.e., the nonlocal initial value problem has at
least one mild solution which completes the proof. �

Remark  If Ik is sample path continuous and compact, then Lk =  for k = , , . . . ,m.
Thus hypotheses (HI) and (H∗) hold naturally.

Actually, (HR) is a very rough condition. If we specify some features on Ik and g , k =
, , . . . ,m, we have the following corollary.
(Hg′) g : PC(I,X) × � → X. For each ω ∈ �, g(·,ω) is continuous and compact, there

exists c :R+ × � →R
+ such that ‖g(x,ω)‖ ≤ c(‖x‖PC ,ω), ∀x ∈ PC(I,X).

(HI′) Ik : X × � → X is sample path continuous and there exist ck : R+ × � → R
+ and

Lk :� →R
+ such that ‖Ik(x,ω)‖ ≤ ck(‖x‖,ω), ∀x ∈ X, and for all bounded subset B⊆ X,

α
(
Ik(B,ω)

) ≤Lk(ω)α(B)

for k = , , . . . ,m.

http://www.advancesindifferenceequations.com/content/2014/1/194
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(HR′) There exists a random function R′ :� →R
+ \ {} such that

c
(
R′(ω),ω

)
+ φ

(
R′(ω),ω

)∫ T


m(s,ω)ds +

m∑
k=

ck
(
R′(ω),ω

) ≤ R′(ω)
N

for each ω ∈ �.

Corollary  Suppose that hypotheses (HA), (Hf), (Hg′), (HI′), (Hm), (HR′) and (H∗) are
valid, then the nonlocal random impulsive problem () has at least one mild random solu-
tion.

Theorem  Suppose that hypotheses (HA), (Hf), (Hg′), (HI′), (Hm) and (H∗) are valid,
then the nonlocal random impulsive problem () has at least one mild random solution
provided that

∫ T


m(s,ω)ds≤ lim inf

r→+∞
r –N

∑m
k= ck(r,ω)

φ(r,ω)
. ()

Furthermore, if Ik is compact for k = , , . . . ,m, then (H∗) is not essential.

Proof Since the proof is similar to Theorem , we omit it. �

Remark  If we do not consider the random effects, i.e., taking � = {ω} as a single point
set, since hypotheses on f and Ik are weaker, we generalize the results in []. Furthermore,
if let the impulsive functions Ik be , for k = , , . . . ,m, then since we relax restrictions
on g , our results generalize the results in []. Besides, since there are no compactness as-
sumptions on the semigroup T(t) or f , our work extends and improves many main results
such as those in [–].

4 An example
Consider the impulsive partial differential system with nonlocal conditions and random
effects of the form

∂

∂t
x(t, ξ ,ω) =

∂

∂ξ
x(t, ξ ,ω) +m(ξ )u(t, ξ ,ω) + F

(
t,x(t, ξ ,ω),ω

)
for ξ ∈ [,π ], t ∈ [,T], t �= tk ,k = , . . . ,m,

x(t, ,ω) = x(t,π ,ω) = , t ∈ [,T],

x
(
t+k , ξ ,ω

)
– x

(
t–k , ξ ,ω

)
= Ik

(
x
(
t–k , ξ ,ω

)
,ω

)
, k = , , . . . ,m,

x(, ξ ,ω) =
∫ T


h(s,ω) log

(
 +

∣∣x(s, ξ ,ω)∣∣)ds.

()

Suppose that X = L[,π ], (�,F ,P) is a complete probability space. Let A : X → X be
defined byAy = y′ with the domainD(A) = {y ∈ X : y is absolutely continuous y′ ∈ X, y() =
y(π ) = }. It is well known that A is an infinitesimal generator of a semigroup T(t) defined
by T(t)y(s) = y(t + s) for each y ∈ X. T(t) is not a compact semigroup on X and α(T(t)D)≤
α(D), where α is the Hausdorff MNC. We assume the following.

http://www.advancesindifferenceequations.com/content/2014/1/194
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(H) f : [,T]×X × � → X is a continuous random function defined by

f (t,x,ω)(ξ ) = F
(
t,x(ξ ),ω

)
, t ∈ [,T], ξ ∈ [,π ].

We take F(t,x(ξ ),ω) = c(ω) sin(x(ξ )), c is a real-valued random variable. F is Lipschitz
continuous for the second variable. Then f satisfies hypothesis (Hf).
(H) Ik : X × � → X is a continuous random function for k = , , . . . ,m, defined by

Ik(x,ω)(ξ ) = Ik
(
x(ξ ),ω

)
.

We take Ik(x(ξ ),ω) =
∫ π

 d(ω)ρk(ξ , y) cos(x(y))dy, x ∈ X, ρk ∈ C([,π ]× [,π ],R) for k =
, , . . . ,m, d is a real-valued random variable. Then Ik is compact thus satisfies hypothesis
(HI).
(H) g : PC([,T];X)× � → X is a continuous random function defined by

g(ϕ,ω)(ξ ) =
∫ T


h(s,ω) log

(
 +

∣∣ϕ(s)(ξ )∣∣)ds, ϕ ∈ PC
(
[,T];X

)

with ϕ(s)(ξ ) = x(s, ξ ). Then g is a compact operator and satisfies hypothesis (Hg). Under
these assumptions, the partial differential system () can be reformulated as the abstract
problem (). By Theorem  we conclude that there exists at least one random solution for
this system.

5 Conclusion
In this paper, we have studied existence results for impulsive semilinear nonlocal problems
with randomeffects. Randomperturbations have been taken into consideration in abstract
spaces. By applying the measure of noncompactness and a random fixed point theorem
with stochastic domain, we have obtained some existence results for impulsive semilinear
nonlocal problems with random effects. Our results have improved and generalized many
known results. Some weaker assumptions have been established.
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