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Abstract
By introducing two sets of Lenard recursion equations, the second-order
Benjamin-Ono hierarchy is proposed. In view of the characteristic polynomial of Lax
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of Abel differentials.
MSC: 35Q51; 37K10; 14H70; 35C99

Keywords: second-order Benjamin-Ono hierarchy; algebro-geometric solutions;
trigonal curve

1 Introduction
The principal aim of the present paper concerns the algebro-geometric solutions of the
second-order Benjamin-Ono hierarchy with the aid of the theory of trigonal curves [–
]. To the best of the authors’ knowledge, there have been no results about the algebro-
geometric solutions of the second-order Benjamin-Ono equation [, ]

utt = α
(
u

)
xx + βuxxxx, (.)

which is used in the analysis of long waves in shallowwater andmany other physical appli-
cations, where α is a constant controlling nonlinearity and the characteristic speed of the
long waves, and β is the depth of the fluid, although there are some results about the exact
solutions of (.), such as the pulse-type and kink-type solutions, periodic solitary wave
and double periodic solutions, soliton solutions etc., by using the following methods: the
Jacobi elliptic function expansion method, the bilinear method, the extended homoclinic
test approach, the homogeneous balance method and the lattice Boltzmann method etc.
[–].
Before turning to the contents of each section, it seems appropriate to review the exist-

ing literature on algebro-geometric solutions, which are of great importance for revealing
inherent structure mechanism of solutions and describing the quasi-periodic behavior of
nonlinear phenomena. During the last few years, there have been fairly mature techniques
to construct algebro-geometric solutions of soliton equations associated with ×matrix
spectral problems, such as the KdV, nonlinear Schrödinger, sine-Gordon, Toda equations
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and so on [–]. Unfortunately, the situation is not so good for soliton equations associ-
ated with ×  matrix spectral problems, which are more complicated and more difficult.
In [], a unified framework was proposed to yield all algebro-geometric solutions of the
entire Boussinesq hierarchy. Recently, based on the characteristic polynomial of Lax ma-
trix associated with the  ×  matrix spectral problems, we have developed the method
in [] to deal with some important soliton equations by introducing the trigonal curves
of arithmetic genus m –  and deriving the explicit Riemann theta function representa-
tions of the entire hierarchies, such as the modified Boussinesq, the Kaup-Kupershmidt
hierarchies and others [–].
The present paper is organized as follows. In Section , based on two kinds of different

Lenard recursion equations, we derive the second-order Benjamin-Ono hierarchy, which
relates to a ×  matrix spectral problem. In Section , we introduce the Baker-Akhiezer
function and the associated meromorphic function. Then the second-order Benjamin-
Ono hierarchy is decomposed into the system of Dubrovin-type ordinary differential
equations. In Section , the explicit Riemann theta function representations of the Baker-
Akhiezer function and the meromorphic function, and especially of the solutions to the
entire second-order Benjamin-Ono hierarchy are displayed by resorting to the Riemann
theta functions, the holomorphic differentials, and the Abel map.

2 The zero-curvature representation to the second-order Benjamin-Ono
hierarchy

In this section, we shall derive the second-order Benjamin-Ono hierarchy associated with
the ×  matrix spectral problem

ψx =Uψ , ψ =

⎛⎜⎝ψ

ψ

ψ

⎞⎟⎠ , U =

⎛⎜⎝   
u  

v + λ u 

⎞⎟⎠ , (.)

where u and v are two potentials, and λ is a constant spectral parameter. To this end, we
introduce two sets of Lenard recursion equations

Kgj– = Jgj, gj|(u,v)= = , j ≥ , (.)

Kĝj– = J ĝj, ĝj|(u,v)= = , j ≥  (.)

with two starting points

g– = (, )T , ĝ– = (, )T ,

where the initial conditions mean to identify constants of integration as zero, and two
operators are defined as follows:

K =

(
∂u + u∂ – ∂ ∂v + 

v∂
v∂ + ∂v 

∂ – 
 (∂

u + u∂) – 
 (∂

u∂ + ∂u∂) + u∂ + ∂u + 
u∂u

)
,

J =

(
 –

∂

–∂ 

)
.
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Hence gj and ĝj are uniquely determined, for example, the first two members read as

g = –



(
v
u

)
, ĝ =




(
uxx – u

–v

)
.

In order to generate a hierarchy of evolution equations associatedwith the spectral prob-
lem (.), we solve the stationary zero-curvature equation

Vx – [U ,V ] = , V = (Vij)×, (.)

which is equivalent to

V,x + uV + (v + λ)V –V = ,

V,x + uV +V –V = ,

V,x –V +V = ,

V,x + u(V –V) + (v + λ)V –V = ,

V,x + u(V –V) +V –V = ,

V,x – uV +V –V = ,

V,x + u(V –V) + (v + λ)(V –V) = ,

V,x + u(V –V) – (v + λ)V +V = ,

V,x – uV – (v + λ)V +V = ,

(.)

where each entry Vij = Vij(a,b) is a Laurent expansion in λ:

V =



(


∂ – u

)
b – ∂a, V = a –



∂b, V = b,

V =
(



∂ –


∂u –



u∂ + v + λ

)
b +

(
u – ∂)a, V =



(
–∂ + u

)
b,

V = a +


∂b, V =

(



∂ –


∂u –



∂u∂ –



u∂ + u

)
b + (v + λ)a, (.)

V =
(
–



∂ +


∂u +



u∂ + v + λ

)
b +

(
u – ∂)a,

V =



(


∂ – u

)
b + ∂a,

a =
∑
j≥

aj–λ–j, b =
∑
j≥

bj–λ–j. (.)

A direct calculation shows that (.) and (.) imply the Lenard equation

KG = λJG, G = (a,b)T . (.)
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Substituting (.) into (.) and collecting terms with the same powers of λ, we arrive at
the following recursion relation:

KGj– = JGj, JG– = , j ≥ , (.)

where Gj = (aj,bj)T . Since the equation JG– =  has the general solution

G– = αg– + βĝ–, (.)

then Gj can be expressed as

Gj = αgj + βĝj + · · · + αjg + βjĝ + αj+g– + βj+ĝ–, j ≥ , (.)

where αj and βj are arbitrary constants.
Let ψ satisfy the spectral problem (.) and its auxiliary problem

ψtr = Ṽ (r)ψ , Ṽ (r) =
(
Ṽ (r)
ij

)
×, (.)

where each entry Ṽ (r)
ij = Ṽij(ã(r), b̃(r)),

ã(r) =
r∑

j=

ãj–λr–j, b̃(r) =
r∑

j=

ãj–λr–j

with

G̃j = (ãj, b̃j)T = α̃gj + β̃ĝj + · · · + α̃jg + β̃jĝ + α̃j+g– + β̃j+ĝ–, j ≥ –.

Then the compatibility condition of (.) and (.) yields the zero-curvature equation,
Utr – Ṽ (r)

x + [U , Ṽ (r)] = , which is equivalent to the hierarchy of nonlinear evolution equa-
tions

(utr , vtr )
T = X̃r , r ≥ , (.)

where the vector fields X̃j = X̃j(u, v; α̃(j), β̃ (j)) = KG̃j– = JG̃j, and α̃(j) = (α̃, . . . , α̃j), β̃ (j) =
(β̃, . . . , β̃j). The first nontrivial member in the hierarchy (.) is as follows:

ut = α̃ux + β̃vx,

vt = α̃vx –


β̃(uxxx – uux).

(.)

For α̃ = , β̃ =  (t = t), equation (.) is reduced to the second-order Benjamin-Ono
equation by canceling the variable v

utt =


(
u

)
xx –



uxxxx. (.)
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The second one in the hierarchy (.) (as α̃ = , β̃ = ) can be written as

ut =


α̃(vxx – uv)x –




β̃
(
uxxxx – uuxx – ux + u + v

)
x,

vt = –



α̃
(
uxxxx – uuxx – ux + u + v

)
x (.)

–


β̃

(
vxxxx – uxxv – uvxx – uxvx + uv

)
x.

For α̃ = , β̃ = – (t = t), equation (.) is reduced to a -order coupled equation

ut = uxxxxx –
(
uuxx + ux – v –



u

)
x
,

vt = vxxxxx –
(
uxxv + uvxx + uxvx – uv

)
x.

(.)

3 Themeromorphic function and Dubrovin-type equations
In this section, we shall consider the Baker-Akhiezer function and the associated mero-
morphic function. By introducing the elliptic kind coordinates, we decompose the second-
order Benjamin-Ono equation into the system of Dubrovin-type differential equations.
We first introduce the Baker-Akhiezer function ψ(P,x,x, tr , t,r) by

ψx(P,x,x, tr , t,r) =U
(
u(x, tr), v(x, tr);λ(P)

)
ψ(P,x,x, tr , t,r),

ψtr (P,x,x, tr , t,r) = Ṽ (r)(u(x, tr), v(x, tr);λ(P))ψ(P,x,x, tr , t,r),

V (n)(u(x, tr), v(x, tr);λ(P))ψ(P,x,x, tr , t,r) = y(P)ψ(P,x,x, tr , t,r),

ψ(P,x,x, t,r , t,r) = ,

(.)

where V (n) = (λnV )+ = (V (n)
ij )× and V (n)

ij = Vij(a(n),b(n)),

a(n) =
n∑
j=

aj–λn–j, b(n) =
n∑
j=

bj–λn–j

with aj, bj determined by (.). The compatibility conditions of the first three expressions
in (.) yield that

Utr – Ṽ (r)
x +

[
U , Ṽ (r)] = , (.)

–V (n)
x +

[
U ,V (n)] = , (.)

–V (n)
tr +

[
Ṽ (r),V (n)] = . (.)

Through a direct calculation we can show that yI –V (n) satisfies equations (.) and (.).
SoFm(λ, y) = det(yI–V (n)) is an independent constant of the variables x and tr , fromwhich
we can define a trigonal curve Km– :Fm(λ, y) =  with the expansion

det
(
yI –V (n)) = y + ySm(λ) – Tm(λ) = , (.)
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where

Sm =
∑

≤i<j≤

∣∣∣∣∣V (n)
ii V (n)

ij

V (n)
ji V (n)

jj

∣∣∣∣∣ , Tm =

∣∣∣∣∣∣∣
V (n)
 V (n)

 V (n)


V (n)
 V (n)

 V (n)


V (n)
 V (n)

 V (n)


∣∣∣∣∣∣∣ .
Immediately, from (.) if we choose β = , α an arbitrary constant or β = , α = , we
shall know that the corresponding values of m in (.) are n +  or n + , respectively.
For the convenience, the compactification of the curve Km– is denoted by the same sym-
bolKm–. ThusKm– becomes a three-sheeted Riemann surface of arithmetic genusm– 
when it is nonsingular or smooth.
Next we shall introduce the meromorphic function φ(P,x, tr), which is closely related

to ψ(P,x,x, tr , t,r), by

φ(P,x, tr) =
∂xψ(P,x,x, tr , t,r)
ψ(P,x,x, tr , t,r)

, P ∈Km–,x ∈C, (.)

which implies from (.) that

φ(P,x, tr) =
ε(m)Fm(λ,x, tr)

yV (n)
 (λ,x, tr) – yCm(λ,x, tr) +Dm(λ,x, tr)

=
yV (n)

 (λ,x, tr) – yAm(λ,x, tr) + Bm(λ,x, tr)
–ε(m)Em–(λ,x, tr)

=
yV (n)

 (λ,x, tr) +Cm(λ,x, tr)
yV (n)

 (λ,x, tr) +Am(λ,x, tr)
, (.)

where P = (λ, y) ∈Km–, (x, tr) ∈C
,

Am = V (n)
 V (n)

 –V (n)
 V (n)

 ,

Bm = V (n)


(
V (n)
 V (n)

 –V (n)
 V (n)


)
+V (n)


(
V (n)
 V (n)

 –V (n)
 V (n)


)
,

Cm = V (n)
 V (n)

 –V (n)
 V (n)

 ,

Dm = V (n)


(
V (n)
 V

(n)
 –V (n)

 V
(n)


)
+V (n)


(
V (n)
 V (n)

 –V (n)
 V (n)


)
,

(.)

Em– = –ε(m)
[
V (n)


(
V (n)
 V (n)

 –V (n)
 V (n)


)
+V (n)


(
V (n)
 V (n)

 –V (n)
 V (n)


)]
,

Fm = ε(m)
[
V (n)


(
V (n)
 V

(n)
 –V (n)

 V
(n)


)
+V (n)


(
V (n)
 V (n)

 –V (n)
 V (n)


)]
,

(.)

and

ε(m) =

⎧⎨⎩– ifm = n + ,

 ifm = n + ,

which is introduced to ensure that Em–, Fm are both monic polynomials. It is easy to see
that there exist various interrelationships between polynomials Am, Bm, Cm, Dm, Em–, Fm

http://www.advancesindifferenceequations.com/content/2014/1/195
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and Sm, Tm, some of which are summarized as follows:

ε(m)V (n)
 Fm = V (n)

 Dm – Sm
(
V (n)


) –C
m,

ε(m)AmFm = Tm
(
V (n)


) +CmDm,

ε(m)V (n)
 Em– = Sm

(
V (n)


) –V (n)
 Bm +A

m,

–ε(m)CmEm– = Tm
(
V (n)


) +AmBm,

(.)

V (n)
 Bm +V (n)

 Dm –V (n)
 V (n)

 Sm +AmCm = ,

V (n)
 V (n)

 Tm +V (n)
 AmSm +V (n)

 CmSm – BmCm –AmDm = ,

V (n)
 AmTm +V (n)

 CmTm – Em–Fm – BmDm = ,

(.)

ε(m)Em–,x = SmV (n)
 – Bm,

V (n)
 Fm,x = –V (n)

 Fm + ε(m)
(
V (n)
 – uV (n)


)(
V (n)

 Sm – Dm
)
.

(.)

For displaying the properties of φ(P,x, tr) exactly, we introduce the holomorphicmap ∗,
changing sheets, as

∗ :

⎧⎨⎩Km– →Km–,

P = (λ, yi(λ))→ P∗ = (λ, yi+(mod)(λ)), i = , , ,

P∗∗ :=
(
P∗)∗, etc.,

where yi(λ), i = , , , denote the three branches of y(P) satisfying Fm(λ, y) = . Then it is
easy to show the properties of φ(P,x, tr) immediately:

φ,xx(P,x, tr) + φ(P,x, tr)φ,x(P,x, tr) + φ
 (P,x, tr) – u(x, tr)φ(P,x, tr)

= ux(x, tr) + v(x, tr) + λ, (.)

φ,tr (P,x, tr) = ∂x
[
Ṽ (r)
 (λ,x, tr) + Ṽ (r)

 (λ,x, tr)φ(P,x, tr)

+ Ṽ (r)
 (λ,x, tr)

(
φ,x(P,x, tr) + φ

 (P,x, tr) – u(x, tr)
)]
, (.)

φ(P,x, tr)φ
(
P∗,x, tr

)
φ

(
P∗∗,x, tr

)
=

Fm(λ,x, tr)
Em–(λ,x, tr)

, (.)

φ(P,x, tr) + φ
(
P∗,x, tr

)
+ φ

(
P∗∗,x, tr

)
=
Em–,x(λ,x, tr)
Em–(λ,x, tr)

, (.)

y(P)φ(P,x, tr) + y
(
P∗)φ

(
P∗,x, tr

)
+ y

(
P∗∗)φ

(
P∗∗,x, tr

)
=
Tm(λ)V (n)

 (λ,x, tr) + Sm(λ)Am(λ,x, tr)
–ε(m)Em–(λ,x, tr)

, (.)


φ(P,x, tr)

+


φ(P∗,x, tr)
+


φ(P∗∗,x, tr)

=
–V (n)

 (λ,x, tr)
V (n)
 (λ,x, tr) – u(x, tr)V (n)

 (λ,x, tr)

–
V (n)
 (λ,x, tr)

V (n)
 (λ,x, tr) – u(x, tr)V (n)

 (λ,x, tr)
Fm,x(λ,x, tr)
Fm(λ,x, tr)

. (.)
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After tedious calculations, we have the following lemma.

Lemma . Assume (.), (.), and let (λ,x,x, tr , t,r) ∈ C
. Then

Em–,tr (λ,x, tr) = Em–,x

(
Ṽ (r)
 –

Ṽ (r)


V (n)


V (n)


)
+ Em–

(
Ṽ (r)
 –

Ṽ (r)


V (n)


V (n)


)
,

Fm,tr (λ,x, tr) = Fm,x

(
Ṽ (r)
 –

Ṽ (r)
 – uṼ (r)



V (n)
 – uV (n)



V (n)


)
(.)

+ Fm
(
Ṽ (r)
 –

Ṽ (r)
 – uṼ (r)



V (n)
 – uV (n)


V (n)


)
.

Moreover, by institute of (.), (.), (.), and (.), we arrive at the properties of
ψ(P,x,x, tr , t,r) immediately.

Lemma . Assume (.), (.), P = (λ, y(P)) ∈ Km– \ {P∞}, and let (λ,x,x, tr , t,r) ∈ C.
Then

ψ,tr (P,x,x, tr , t,r)
ψ(P,x,x, tr , t,r)

= Ṽ (r)
 (λ,x, tr)

[
φ,x(P,x, tr) + φ

 (P,x, tr) – u(x, tr)
]

+ Ṽ (r)
 (λ,x, tr)φ(P,x, tr) + Ṽ (r)

 (λ,x, tr), (.)

ψ(P,x,x, tr , t,r)ψ
(
P∗,x,x, tr , t,r

)
ψ

(
P∗∗,x,x, tr , t,r

)
=

Em–(λ,x, tr)
Em–(λ,x, t,r)

, (.)

ψ,x(P,x,x, tr , t,r)ψ,x
(
P∗,x,x, tr , t,r

)
ψ,x

(
P∗∗,x,x, tr , t,r

)
=

Fm(λ,x, tr)
Em–(λ,x, t,r)

, (.)

ψ(P,x,x, tr , t,r)

= exp

(∫ x

x
φ

(
P,x′, tr

)
dx′

+
∫ tr

t,r

[
Ṽ (r)


(
λ,x, t′

)(y(P) –V (n)
 (λ,x, t′)

V (n)
 (λ,x, t′)

–
V (n)
 (λ,x, t′)

V (n)
 (λ,x, t′)

φ
(
P,x, t′

))

+ Ṽ (r)


(
λ,x, t′

)
φ

(
P,x, t′

)
+ Ṽ (r)


(
λ,x, t′

)]
dt′

)
, (.)

ψ(P,x,x, tr , t,r)

=
[

Em–(λ,x, tr)
Em–(λ,x, t,r)

]/

× exp

(∫ x

x

y(P)V (n)
 (λ,x′, tr) – y(P)Am(λ,x′, tr) + 

Sm(λ)V
(n)
 (λ,x′, tr)

–ε(m)Em–(λ,x′, tr)
dx′

+
∫ tr

t,r

[y(P)V (n)
 (λ,x, t′) – y(P)Am(λ,x, t′) + 

Sm(λ)V
(n)
 (λ,x, t′)

–ε(m)Em–(λ,x, t′)

×
(
Ṽ (r)


(
λ,x, t′

)
–
Ṽ (r)
 (λ,x, t′)

V (n)
 (λ,x, t′)

V (n)


(
λ,x, t′

))

+ y(P)
Ṽ (r)
 (λ,x, t′)

V (n)
 (λ,x, t′)

]
dt′

)
. (.)
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By inspection of (.), one shall know that Em– and Fm are bothmonic polynomials with
respect to λ of degreem –  and m, respectively. Hence we may decompose them into

Em–(λ,x, tr) =
m–∏
j=

(
λ –μj(x, tr)

)
, (.)

Fm(λ,x, tr) =
m–∏
l=

(
λ – νl(x, tr)

)
. (.)

Define

μ̂j(x, tr) =
(
μj(x, tr), y

(
μ̂j(x, tr)

))
=

(
μj(x, tr), –

Am(μj(x, tr),x, tr)
V (n)
 (μj(x, tr),x, tr)

)
∈Km–,

≤ j ≤m – , (x, tr) ∈ C
, (.)

ν̂l(x, tr) =
(
νl(x, tr), y

(
ν̂l(x, tr)

))
=

(
νl(x, tr), –

Cm(νl(x, tr),x, tr)
V (n)
 (νl(x, tr),x, tr)

)
∈Km–,

 ≤ l ≤m – , (x, tr) ∈C
. (.)

The dynamics of the zeros μj(x, tr) and νl(x, tr) of Em–(λ,x, tr) and Fm(λ,x, tr) are then
described in terms of Dubrovin-type equations as follows.

Lemma . (i) Suppose that the zeros μj(x, tr)j=,...,m– of Em–(P,x, tr) remain distinct for
(x, tr) ∈ 
μ, where 
μ ⊆C

 is open and connected. Then μj(x, tr)j=,...,m– satisfy the system
of differential equations

μj,x(x, tr) =
ε(m)V (n)

 (μj(x, tr),x, tr)[y(μ̂j(x, tr)) + Sm(μj(x, tr))]∏m–
k=
k 
=j

(μj(x, tr) –μk(x, tr))
,

≤ j ≤m – , (.)

μj,tr (x, tr) =
[
V (n)


(
μj(x, tr),x, tr

)
Ṽ (r)


(
μj(x, tr),x, tr

)
– Ṽ (r)


(
μj(x, tr),x, tr

)
V (n)


(
μj(x, tr),x, tr

)]
× ε(m)[y(μ̂j(x, tr)) + Sm(μj(x, tr))]∏m–

k=
k 
=j

(μj(x, tr) –μk(x, tr))
, ≤ j ≤m – . (.)

(ii) Suppose that the zeros νl(x, tr)l=,...,m– of Fm(P,x, tr) remain distinct for (x, tr) ∈ 
ν ,
where
ν ⊆C

 is open and connected.Then νl(x, tr)l=,...,m– satisfy the system of differential
equations

νl,x(x, tr)

=
ε(m)[V (n)

 (νl(x, tr),x, tr) – uV (n)
 (νl(x, tr),x, tr)][y(ν̂l(x, tr)) + Sm(νl(x, tr))]∏m–

k=
k 
=l

(νl(x, tr) – νk(x, tr))
,

 ≤ l ≤m – , (.)
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νl,tr (x, tr) =
[(
V (n)


(
νl(x, tr),x, tr

)
– uV (n)


(
νl(x, tr),x, tr

))
Ṽ (r)


(
νl(x, tr),x, tr

)
–

(
Ṽ (r)


(
νl(x, tr),x, tr

)
– uṼ (r)


(
νl(x, tr),x, tr

))
V (n)


(
νl(x, tr),x, tr

)]
× ε(m)[y(ν̂l(x, tr)) + Sm(νl(x, tr))]∏m–

k=
k 
=l

(νl(x, tr) – νk(x, tr))
,  ≤ l ≤m – . (.)

Proof Using (.), we have (λ = μj(x, tr))

Sm
(
μj(x, tr)

)(
V (n)


(
μj(x, tr),x, tr

)) – Bm
(
μj(x, tr),x, tr

)
V (n)


(
μj(x, tr),x, tr

)
+A

m
(
μj(x, tr),x, tr

)
= , (.)

that is,

Bm
(
μj(x, tr),x, tr

)
= Sm

(
μj(x, tr)

)
V (n)


(
μj(x, tr),x, tr

)
+

A
m(μj(x, tr),x, tr)

V (n)
 (μj(x, tr),x, tr)

=
[
Sm

(
μj(x, tr)

)
+ y

(
μ̂j(x, tr)

)]
V (n)


(
μj(x, tr),x, tr

)
.

After substituting Bm into (.), we get

ε(m)Em–,x
(
μj(x, tr),x, tr

)
= –V (n)


(
μj(x, tr),x, tr

)[
y

(
μ̂j(x, tr)

)
+ Sm

(
μj(x, tr)

)]
. (.)

On the other hand, derivatives of the expression in (.) with respect to x and tr respec-
tively, are

Em–,x
(
μj(x, tr),x, tr

)
= –μj,x(x, tr)

m–∏
k=
k 
=j

(
μj(x, tr) –μk(x, tr)

)
, (.)

Em–,tr
(
μj(x, tr),x, tr

)
= –μj,tr (x, tr)

m–∏
k=
k 
=j

(
μj(x, tr) –μk(x, tr)

)
. (.)

Comparing (.) and (.), we can obtain (.). From (.), one can know

Em–,tr
(
μj(x, tr),x, tr

)
= Em–,x

(
μj(x, tr),x, tr

)V (n)
 Ṽ (r)

 – Ṽ (r)
 V

(n)


V (n)


= –μj,x(x, tr)
m–∏
k=
k 
=j

(
μj(x, tr) –μk(x, tr)

)V (n)
 Ṽ (r)

 – Ṽ (r)
 V

(n)


V (n)


= –ε(m)
[
y

(
μ̂j(x, tr)

)
+ Sm

(
μj(x, tr)

)](
V (n)
 Ṽ (r)

 – Ṽ (r)
 V

(n)


)
, (.)

then we have (.). Similarly, we can prove (.) and (.). �

4 Algebro-geometric solutions to the second-order Benjamin-Ono hierarchy
In our final and principal section, we obtain Riemann theta function representations for
the Baker-Akhiezer function and the meromorphic function; especially, the theta func-
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tion representations for general algebro-geometric solutions u, v of the second-order
Benjamin-Ono hierarchy. For the convenience, we assume that the curve Km– is non-
singular.
For investigating the asymptotic expansion of φ(P,x, tr) near P∞, we choose the local

coordinate ζ = λ– 
 , then we get the following lemma.

Lemma . Let (x, tr) ∈ C
, near P∞ ∈Km–, we have

φ(P,x, tr) =
ζ→


ζ

∞∑
j=

κj(x, tr)ζ j as P → P∞, (.)

where

κ = , κ = , κ =


u, κ =



(v – ux),

κ =


uxx –



vx, κ =



(vxx – uux – uv), (.)

κj = –



[
κj–,xx + 

j–∑
i=

κj––iκi,x +
j–∑
i=

κiκj–i +
j–∑
i=

j–i∑
l=

κiκlκj–i–l – uκj–

]
(j ≥ ).

Proof In terms of the local coordinate ζ = λ– 
 , (.) reads

φ,xx + φφ,x + φ
 – uφ = ux + v + ζ –. (.)

Then, by inserting the power series ansatz of φ(P,x, tr) in ζ as follows:

φ(P,x, tr) =
ζ→


ζ

∞∑
j=

κj(x, tr)ζ j (.)

into (.)

ζ –
∞∑
j=

κj,xxζ
j + ζ –

∞∑
j=

∞∑
i=

κjκi,xζ
(j+i) + ζ –

∞∑
j=

∞∑
i=

∞∑
l=

κjκiκlζ
(j+i+l) – uζ –

∞∑
j=

κjζ
j

= ux + v + ζ –, (.)

and comparing the same powers of ζ in (.), we arrive at (.). �

One infers, from (.), (.), (.), and (.), that the divisor (φ(P,x, tr)) of φ(P,x, tr)
is given by

(
φ(P,x, tr)

)
=Dν̂(x,tr),...,ν̂m–(x,tr)(P) –DP∞ ,μ̂(x,tr),...,μ̂m–(x,tr)(P). (.)

That is, ν̂(x, tr), . . . , ν̂m–(x, tr) are them zeros of φ(P,x, tr) and P∞, μ̂(x, tr), . . . , μ̂m–(x, tr)
are itsm poles.

http://www.advancesindifferenceequations.com/content/2014/1/195
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A straightforward calculation reveals that the asymptotic behaviors of y(P) and Sm(λ)
near P∞ are

y(P) =
ζ→

⎧⎨⎩ζ –n–[ + αζ + βζ
 + αζ

 +O(ζ )] as P → P∞,m = n + ,

ζ –n–[ + βζ
 + αζ

 +O(ζ )] as P → P∞,m = n + ,
(.)

Sm(λ) =
ζ→

⎧⎨⎩–ζ –n–[α + (α + βα)ζ  +O(ζ )] as P → P∞,m = n + ,

–ζ –n[β +O(ζ )] as P → P∞,m = n + .
(.)

Nextwewill introduce the three kinds of holomorphic differentials and show someprop-
erties of them. The holomorphic differentials ηl(P) on Km– are defined by

ηl(P) =


y(P) + Sm

⎧⎨⎩λl– dλ,  ≤ l ≤m – n – ,

y(P)λl+n–m dλ, m – n≤ l ≤m – .
(.)

To construct the theta function and normalize the holomorphic differentials, we choose a
homology basis {aj,bj}m–

j= on Km– so that they satisfy

aj ◦ bk = δj,k , aj ◦ ak = , bj ◦ bk = , j,k = , . . . ,m – .

Introducing an invertible matrix E = (Ej,k)(m–)×(m–) and e(k) = (e(k), . . . , em–(k)), where

Ej,k =
∫
ak

ηj, ej(k) =
(
E–)

j,k ,

and the normalized holomorphic differentials ωj for j = , . . . ,m – ,

ωj =
m–∑
l=

ej(l)ηl,
∫
ak

ωj = δj,k ,

∫
bk

ωj = τj,k (τj,k = τk,j), j,k = , . . . ,m – .

(.)

Let ω
()
P∞ ,(P) denote the normalized second Abel differential defined by

ω
()
P∞ ,(P) = –

m–∑
j=

zjηj(P) –


y(P) + Sm

⎧⎨⎩λn dλ, m = n + ,

y(P)λn dλ, m = n + ,
(.)

which is holomorphic on Km– \ {P∞} with a pole of order  at P∞, and the constants
{zj}j=,...,m– are determined by the normalization condition∫

aj

ω
()
P∞ ,(P) = , j = , . . . ,m – .

The b-periods of the differential ω()
P∞ , are denoted by

U ()
 =

(
U ()

, , . . . ,U
()
,m–

)
, U ()

,j =


π i

∫
bj

ω
()
P∞ ,(P), j = , . . . ,m – . (.)

http://www.advancesindifferenceequations.com/content/2014/1/195
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On the other hand, ω()
P∞ ,(P) denotes the normalized third Abel differential which is holo-

morphic on Km– \ {P∞} with a pole of order  at P∞

ω
()
P∞ ,(P) =

ζ→

(
ζ – +O()

)
dζ as P → P∞, (.)

and the b-periods of it are defined by

U ()
 =

(
U ()

, , . . . ,U
()
,m–

)
, U ()

,j =


π i

∫
bj

ω
()
P∞ ,, j = , . . . ,m – .

Furthermore, the normalized third Abel differential ω()
P∞ ,ν̂(x)(P) is holomorphic onKm– \

{P∞, ν̂(x)} with simple poles at P∞ and ν̂(x) with residues ±, respectively, that is,

ω
()
P∞ ,ν̂(x)

(P) =
ζ→

(
ζ – +O()

)
dζ as P → P∞,

ω
()
P∞ ,ν̂(x)(P) =

ζ→

(
–ζ – +O()

)
dζ as P → ν̂(x).

(.)

Then∫ P

P
ω
()
P∞ ,ν̂(x)

(P) = ln ζ + e()(P) +O(ζ ) as P → P∞,

∫ P

P
ω
()
P∞ ,ν̂(x)(P) = – ln ζ + e()(P) +O(ζ ) as P → ν̂(x)

(.)

with e()(P) being an integration constant.
A straightforward Laurent expansion of (.), (.), and (.) near P∞ yields the fol-

lowing results.

Lemma . Near P∞ in the local coordinate ζ = λ– 
 , the differentials ω and ω

()
P∞ , have

the Laurent series

ω = (ω, . . . ,ωm–) =
ζ→

(
ρ + ρζ + ρζ

 +O
(
ζ ))dζ , (.)

with

ρ =

⎧⎨⎩–e(m – n – ), m = n + ,

–e(m – ), m = n + ,

ρ =

⎧⎨⎩–e(m – ) + αe(m – n – ), m = n + ,

–e(m – n – ), m = n + ,

ρ =

⎧⎨⎩(β – α
)e(m – n – ) + α

e(m – ) – e(m – n – ), m = n + ,

αe(m – ) + βe(m – n – ) – e(m – ), m = n + ,

ω
()
P∞ ,(P) =

ζ→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ζ – + zm–n– – α
 + (–β + α

 – αzm–n– + zm–)ζ +O(ζ ))dζ ,

m = n + ,

(ζ – + zm– – β + (zm–n– – α)ζ +O(ζ ))dζ ,

m = n + .

(.)
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From Lemma . we infer∫ P

P
ω
()
P∞ ,(P) =

ζ→
–ζ – + e() (P) – qζ + qζ  +O

(
ζ ) as P → P∞, (.)

where e() (P) is an appropriate constant, and

q =

⎧⎨⎩–zm–n– + α
, m = n + ,

–zm– + β, m = n + ,

q =

⎧⎨⎩ 
 (–β + α

 – αzm–n– + zm–), m = n + ,

zm–n– – α, m = n + .

(.)

Let θ (λ) denote the Riemann theta function [–] associated with Km– and the
appropriately fixed homology basis {aj,bj}m–

j= . Next we choose a convenient base point
P ∈Km– \ {P∞}. For brevity, define the function λ :Km– × σm–Km– →C by

λ(P,Q) = �P –AP (P) + αP (DQ), P ∈Km–,

Q = (Q, . . . ,Qm–) ∈ σm–Km–,

where �P is the vector of Riemann constants, and the Abel maps AP (P) and αP (P) are
defined by (period lattice Lm– = {z ∈C

m–|z =N + τM,N ,M ∈ Z
m–})

AP :Km– → J (Km–) =C
m–/Lm–,

P �→ AP (P) =
(
AP,(P), . . . ,AP,m–(P)

)
=

(∫ P

P
ω, . . . ,

∫ P

P
ωm–

)
(modLm–),

and

αP : Div(Km–) → J (Km–),

D �→ αP (D) =
∑

P∈Km–

D(P)AP (P).

In view of these preparations, we give the theta function representation of our funda-
mental object φ(P,x, tr).

Theorem . Let P = (λ, y) ∈ Km– \ {P∞}, and let (x, tr), (x, t,r) ∈ 
μ, where 
μ ⊆ C


is open and connected. Suppose also that Dμ̂(x,tr), or equivalently, Dν̂(x,tr) is nonspecial for
(x, tr) ∈ 
μ. Then

φ(P,x, tr) =
θ (λ(P, ν̂(x, tr)))θ (λ(P∞, μ̂(x, tr)))
θ (λ(P∞, ν̂(x, tr)))θ (λ(P, μ̂(x, tr)))

exp

(
e()(P) –

∫ P

P
ω
()
P∞ ,ν̂(x,tr)

)
. (.)

Proof Let � denote the right-hand side of (.). From (.) it follows that

exp

(
e()(P) –

∫ P

P
ω
()
P∞ ,ν̂(x,tr)

)
=

ζ→
ζ – +O(). (.)
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Using (.) we immediately know that φ has simple poles at μ̂(x, tr) and P∞, and simple
zeros at ν̂(x, tr), ν̂(x, tr). By (.) and the Riemann vanishing theorem, we see that �

has the same properties. Using the Riemann-Roch theorem [, ], we conclude that the
holomorphic function �

φ
= γ , where γ is a constant. Using (.) and Lemma ., we have

�

φ
=

ζ→

( +O(ζ ))(ζ – +O())
ζ – +O(ζ )

=
ζ→

 +O(ζ ) as P → P∞, (.)

from which we conclude γ = . �

Let ω
()
P∞ ,s, s = r +  (or r + ), r ∈N, be the normalized differential of the second kind

holomorphic on Km– \ {P∞}, with a pole of order s at P∞,

ω
()
P∞ ,s(P) =

ζ→

(
ζ –s +O()

)
dζ as P → P∞.

Then we define the normalized differentials as


̃
()
P∞ ,s+ =

r∑
l=

β̃r–l(l + )ω̃()
P∞ ,l+ +

r∑
l=

α̃r–l(l + )ω̃()
P∞ ,l+,

s = r +  (or r + ), r ∈N, (.)

where

(α̃, β̃) =

⎧⎨⎩(α̃, ), s = r + ,

(, ), s = r + ,
α̃ ∈C.

In addition, we define the vector of b-periods of them as

Ũ ()
s+ =

(
Ũ ()

s+,, . . . , Ũ
()
s+,m–

)
, Ũ ()

s+,j =


π i

∫
bj


̃
()
P∞ ,s+,

j = , . . . ,m – , s = r +  (or r + ), r ∈N. (.)

Motivated by the second integration in (.), one defines the function Is(P,x, tr), mero-
morphic on Km– ×C

, by

Is(P,x, tr) = Ṽ (r)
 (λ,x, tr) + Ṽ (r)

 (λ,x, tr)φ(P,x, tr) + Ṽ (r)
 (λ,x, tr)

(
φ,x(P,x, tr)

+ φ
 (P,x, tr) – u(x, tr)

)
. (.)

Denote by Īs(P,x, tr) the associated homogeneous one replacing Ṽ (r)
j by ¯̃V (r)

j , where

¯̃V (r)
j =

⎧⎨⎩Ṽ (r)
j |α̃=,α̃=···=α̃r=β̃=β̃=···=β̃r=, s = r + ,

Ṽ (r)
j |β̃=,α̃=α̃=···=α̃r=β̃=···=β̃r=, s = r + ,

j = , , .

Lemma. Let s = r+ (or r+), r ∈ N, (x, tr) ∈C
, and λ = ζ – be the local coordinate

near P∞. Then

Īs(P,x, tr) =
ζ→

–ζ –s +O(ζ ) as P → P∞. (.)
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Proof For the sake of convenience, we introduce the notation Ṽ (r,s)
j = Ṽ (r)

j , j = , , . From
(.) and (.), one easily gets

Īs(P,x, tr) = ¯̃V (r,s)
 (λ,x, tr) + ¯̃V (r,s)

 (λ,x, tr)φ(P,x, tr)

+ ¯̃V (r,s)
 (λ,x, tr)

(
φ,x(P,x, tr) + φ

 (P,x, tr) – u
)

=



¯̃b(r,s)xx (λ,x, tr) –


u ¯̃b(r,s)(λ,x, tr) – ¯̃a(r,s)x (λ,x, tr)

–
[
¯̃a(r,s)(λ,x, tr) – 


¯̃b(r,s)x (λ,x, tr)

]
φ(P,x, tr)

+ ¯̃b(r,s)[φ,x(P,x, tr) + φ
 (P,x, tr) – u(x, tr)

]
.

From (.), we can see

Ī = φ(P,x, tr) = ζ – +O(ζ ),

Ī = –


u(x, tr) + φ,x(P,x, tr) – φ

 (P,x, tr) – u(x, tr) = ζ – +O(ζ ).

So (.) is correct for s =  and s = . Then one may rewrite (.) as

Īs(P,x, tr) =
ζ→

ζ –s +
∞∑
j=

δj(x, tr)ζ j as P → P∞ (.)

for some coefficients {δj(x, tr)}j∈N. From (.) and (.), we can see

∂xĪs(P,x, tr)

= ∂x
( ¯̃V (r,s)

 (λ,x, tr)φ(P,x, tr) + ¯̃V (r,s)
 (λ,x, tr)

(
φ,x(P,x, tr) + φ

 (P,x, tr) – u
)

+ ¯̃V (r,s)
 (λ,x, tr)

)
= φ,tr (P,x, tr),

that is,

∂x

(
–ζ –s +

∞∑
j=

δj(x, tr)ζ j

)
=

(
ζ – +

∞∑
j=

κj(x, tr)ζ j–

)
tr

=

( ∞∑
j=

κj+(x, tr)ζ j

)
tr

. (.)

Using (.), (.), and comparing coefficients of ζ in (.), we should obtain

δj,x(x, tr) = κj+,tr (x, tr), j = , , . . .

δ,x(x, tr) = κ,tr (x, tr) =


utr (x, tr) = – ¯̃b(r,s)r,x (x, tr),

δ,x(x, tr) = κ,tr (x, tr) =


(
–u(x, tr) + v(x, tr)

)
tr
=



¯̃b(r,s)r,xx(x, tr) – ¯̃a(r,s)r,x (x, tr),

δ,x(x, tr) = κ,tr (x, tr) =
(


uxx(x, tr) –



vx(x, tr)

)
tr
= –




¯̃b(r,s)r,xxx(x, tr) + ¯̃a(r,s)r,xx(x, tr).

(.)
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That is,

δ(x, tr) = γ(tr) – ¯̃b(r,s)r (x, tr),

δ(x, tr) = γ(tr) +



¯̃b(r,s)r,x (x, tr) – ¯̃a(r,s)r (x, tr), (.)

δ(x, tr) = γ(tr) –



¯̃b(r,s)r,xx(x, tr) + ¯̃a(r,s)r,x (x, tr),

with γ(tr), γ(tr), γ(tr) being integration constants. From the definition of Īs, the power
series for φ(P,x, tr) and the coefficients of ¯̃a(ζ ,x, tr), ¯̃b(ζ ,x, tr), we deduce that γ(tr) =
γ(tr) = γ(tr) = . Hence one concludes

Īs(P,x, tr) = ζ –s – ¯̃b(r,s)r ζ +
(



¯̃b(r,s)r,x – ¯̃a(r,s)r

)
ζ  +

(
–



¯̃b(r,s)r,xx + ¯̃a(r,s)r,x

)
ζ 

+O
(
ζ ) as P → P∞. (.)

On the other hand, we will get

Īs+(P,x, tr) = ζ –Īs +
(

¯̃a(r+,s+)r –



¯̃b(r+,s+)r,x

)
φ + ¯̃b(r+,s+)r

(
φ,x + φ

 – u
)

+



¯̃b(r+,s+)r,xx –


u ¯̃b(r+,s+)r – ¯̃a(r+,s+)r,x

= ζ –s– +O(ζ ). (.)
�

By (.) one knows that

Is(P,x, tr) =
r∑

l=

β̃r–l Īl+(P,x, tr)

+
r∑

l=

α̃r–l Īl+(P,x, tr), s = r +  (or s = r + ). (.)

Thus

∫ tr

t,r
Is(P,x, τ )dτ =

ζ→
(tr – t,r)

r∑
l=

(
β̃r–l


ζ l+ + α̃r–l


ζ l+

)
+O(ζ ) as P → P∞. (.)

Furthermore, integrating (.) yields

∫ P

P

̃

()
P∞ ,s+

=
r∑

l=

β̃r–l(l + )
∫ ζ

ζ

ω̃
()
P∞ ,l+ +

r∑
l=

α̃r–l(l + )
∫ ζ

ζ

ω̃
()
P∞ ,l+
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=
ζ→

r∑
l=

β̃r–l(l + )
∫ ζ

ζ


ζ l+ dζ +

r∑
l=

α̃r–l(l + )
∫ ζ

ζ


ζ l+ dζ +O(ζ )

=
ζ→

–
r∑

l=

β̃r–l


ζ l+ –
r∑

l=

α̃r–l


ζ l+ + e()s+(P) +O(ζ ) as P → P∞, (.)

where e()s+(P) is a constant. Combing (.) and (.) indicates

∫ tr

t,r
Is(P,x, τ )dτ =

ζ→
(tr – t,r)

(
e()s+(P) –

∫ P

P

̃

()
P∞ ,s+

)
+O(ζ ) as P → P∞. (.)

Given these preparations, the theta function representation of ψ(P,x,x, tr , t,r) reads as
follows.

Theorem . Let P = (λ, y) ∈ Km– \ {P∞} and let (x, tr), (x, t,r) ∈ 
μ, where 
μ ⊆ C

is open and connected. Suppose that Dμ̂(x,tr), or equivalently, Dν̂(x,tr) is nonspecial for
(x, tr) ∈ 
μ. Then

ψ(P,x,x, tr , t,r) =
θ (λ(P, μ̂(x, tr)))θ (λ(P∞, μ̂(x, t,r)))
θ (λ(P∞, μ̂(x, tr)))θ (λ(P, μ̂(x, t,r)))

× exp

(
(x – x)

(
e() (P) –

∫ P

P
ω
()
P∞ ,

)

+ (tr – t,r)
(
e()s+(P) –

∫ P

P

̃

()
P∞ ,s+

))
. (.)

Proof Letψ(P,x,x, tr , t,r) be defined as in (.) and denote the right-hand side of (.)
by �(P,x,x, tr , t,r). In order to prove that ψ =� , one uses (.), (.), (.), (.) and

V (n)
 φ +V (n)


(
φ,x + φ

 – u
)
+V (n)

 = y,

to compute

φ(P,x, tr) =
yV (n)

 – yAm + Bm

–ε(m)Em–

=
yV (n)

 – yAm + 
V

(n)
 Sm – 

ε(m)Em–,x

–ε(m)Em–

=


V (n)


y + Sm
–ε(m)Em–

+


∂x lnEm– +

V (n)
 y(y + Am

V (n)

)

ε(m)Em–

=
λ→μj(x,tr)

–
μj,x

λ –μj
+O() =

λ→μj(x,tr)
∂x ln

(
λ –μj(x, tr)

)
+O(),

Is(P,x, tr) = Ṽ (r)
 φ + Ṽ (r)


(
φ,x + φ

 – u
)
+ Ṽ (r)



=
(
Ṽ (r)
 – Ṽ (r)


V (n)


V (n)


)
φ + Ṽ (r)

 – Ṽ (r)


V (n)


V (n)


+ y
Ṽ (r)


V (n)


+ Ṽ (r)
 – Ṽ (r)


V (n)


V (n)


+ y
Ṽ (r)


V (n)
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=


Em–,tr
Em–

+
(
Ṽ (r)
 – Ṽ (r)


V (n)


V (n)


)yV (n)
 – yAm + 

SmV
(n)


–ε(m)Em–
+ y

Ṽ (r)


V (n)


=
λ→μj(x,tr)

–
μj,tr

λ –μj
+O()

=
λ→μj(x,tr)

∂tr ln
(
λ –μj(x, tr)

)
+O() as P → μ̂j(x, tr).

Hence

ψ(P,x,x, tr , t,r)

=
λ –μj(x, tr)
λ –μj(x, tr)

λ –μj(x, tr)
λ –μj(x, t,r)

O()

=

⎧⎪⎪⎨⎪⎪⎩
(λ –μj(x, tr))O() for P near μ̂j(x, tr) 
= μ̂j(x, t,r),

O() for P near μ̂j(x, tr) = μ̂j(x, t,r),

(λ –μj(x, t,r))–O() for P near μ̂j(x, t,r) 
= μ̂j(x, tr),

(.)

where O() 
=  in (.). Consequently, all zeros and poles of ψ and � on Km– \ {P∞}
are simple and coincide. It remains to identify the essential singularity of ψ and � at P∞.
By (.) we see that the singularities in the exponential terms of ψ and � coincide. The
uniqueness result for Baker-Akhiezer functions completes the proof that ψ = � on 
μ.

�

The straightening out of the second-order Benjiamin-Ono flows by the Abel map is
showed in our next result.

Theorem . Let (x, tr), (x, t,r) ∈C
. Then

αP (Dμ̂(x,tr)) = αP (Dμ̂(x,t,r )) +U ()
 (x – x) + Ũ ()

s+(tr – t,r),

αP (Dν̂(x,tr)ν̂(x,tr)) = αP (Dν̂(x,t,r)ν̂(x,t,r )) +U ()
 (x – x) + Ũ ()

s+(tr – t,r).
(.)

Our main result, the theta function representation of the algebro-geometric solutions
of the second-order Benjamin-Ono hierarchy, now quickly follows.

Theorem . Let (x, tr) ∈ 
μ, where 
μ ⊆ C
 is open and connected. Suppose also that

Dμ̂(x,tr), or equivalently, Dν̂(x,tr) is nonspecial for (x, tr) ∈ 
μ. Then

u(x, tr) = –


∂
x ln

(
θ
(
λ
(
P∞, μ̂(x, tr)

)))
+


q,

v(x, tr) = –∂x∂U()

ln

(
θ
(
λ
(
P∞, μ̂(x, tr)

)))
– q,

(.)

with q and q defined in (.), and ∂U()


denotes the directional derivative ∂U()


=∑m–
j= U ()

,j
∂

∂λj
.
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Proof Using Theorem ., one can write ψ near P∞ in the coordinate ζ as

ψ(P,x,x, tr , t,r)

=
ζ→

(
 + σ(x, tr)ζ + σ(x, tr)ζ  +O

(
ζ )) exp[(x – x)

(
ζ – + qζ

– qζ  +O
(
ζ )) + (tr – t,r)

r∑
l=

(
β̃r–l


ζ l+ + α̃r–l


ζ l+

)
+O(ζ )

]
, (.)

where the terms σ(x, tr) and σ(x, tr) in (.) come from the Taylor expansion about P∞
of the ratios of the theta functions in (.). That is,

θ (λ(P, μ̂(x, tr)))
θ (λ(P∞, μ̂(x, tr)))

=
ζ→

θ (�P –AP (P) + αP (Dμ̂(x,tr)))
θ (�P –AP (P∞) + αP (Dμ̂(x,tr)))

=
ζ→

θ (. . . ,�P,j –AP,j(P∞) + αP,j(Dμ̂(x,tr)) – ρ,jζ – 
ρ,jζ

 – 
ρ,jζ

 +O(ζ ), . . .)
θ (�P –AP (P∞) + αP (Dμ̂(x,tr)))

=
ζ→

θ –
∑m–

j=
∂θ
∂λj

ρ,jζ – 

∑m–

j= ( ∂θ
∂λj

ρ,j –
∑m–

k=
∂θ

∂λj ∂λk
ρ,jρ,k)ζ  +O(ζ )

θ (�P –AP (P∞) + αP (Dμ̂(x,tr)))

=
ζ→

 – ∂x ln θζ +
(


∂
x ln θ +



(∂x ln θ) – ∂U()


ln θ

)
ζ  +O

(
ζ ),

P → P∞, (.)

where θ = θ (�P –AP (P∞) + αP (Dμ̂(x,tr))). Similarly, we can have

θ (λ(P, μ̂(x, t,r)))
θ (λ(P∞, μ̂(x, t,r)))

=
ζ→

O(), P → P∞. (.)

So, we give the Taylor expansion about ψ as follows:

ψ(P,x,x, tr , t,r)

=
ζ→

(
 – ∂x ln θζ +

(


∂
x ln θ +



(∂x ln θ) – ∂U()


ln θ

)
ζ  +O

(
ζ ))O()

× exp
[
(x – x)

(
ζ – + qζ – qζ  +O

(
ζ ))]

×
[
(tr – t,r)

r∑
l=

(
β̃r–l


ζ l+ + α̃r–l


ζ l+

)
+O(ζ )

]
, P → P∞. (.)

Then it is clear that

σ,x(x, tr) = –∂
x ln θ,



σ,xx(x, tr) – σ(x, tr)σ,x(x, tr) + σ,x(x, tr) = –∂x ∂U()


ln θ.

(.)
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If we set

ψ =
ζ→

(
 + σ(x, tr)ζ + σ(x, tr)ζ  +O

(
ζ )) exp(�), P → P∞

with� = (x–x)(ζ – +qζ –qζ  +O(ζ ))+ (tr – t,r)
∑r

l=(β̃r–l


ζl+
+ α̃r–l


ζl+

)+O(ζ ), then
we can show

ψ,x =
ζ→

(
σ,xζ + σ,xζ

 +O
(
ζ )) exp(�) +

(
ζ – + qζ – qζ  +O

(
ζ ))ψ,

=
ζ→

ζ –ψ +O(ζ )ψ,

ψ,xx =
ζ→

(
σ,x + (σ,x + σ,xx)ζ + (σ,xx + qσ,x)ζ  +O

(
ζ )) exp(�)

+
(
ζ – + qζ – qζ  +O

(
ζ ))ψ,x, (.)

ψ,xxx =
ζ→

(
σ,xx + σ,x + σ,xζ

–O(ζ )
)
exp(�) +

(
ζ – + q – qζ +O

(
ζ ))ψ,x,

=
ζ→

(σ,xx + σ,x – σσ,x – q)ψ + (σ,x + q)ψ,x + ζ –ψ +O(ζ )ψ,

P → P∞.

On the other hand, we know that

ψ,xxx =
(
ux(x, tr) + v(x, tr) + λ

)
ψ + u(x, tr)ψ,x.

Hence

u(x, tr) =


(σ,x + q),

v(x, tr) = (σ,xx + σ,x – σσ,x – q) – ux(x, tr).
(.)

That is just (.). �
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