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Abstract
The aim of this paper is to study the asymptotic stability of positive periodic solution
for semilinear evolution equation in an ordered Banach space E: u′(t) + Au(t) = f (t,u(t)),
t ∈ R

+ = [0, +∞), where A : D(A)⊂ E → E is a closed linear operator, and
f :R+ × E → E is a continuous mapping which is ω-periodic in t. Under order
conditions on the nonlinearity f , the asymptotic stability results of positive ω-periodic
mild solution are obtained on R

+ by using operator semigroup theory and a
monotone iterative technique.
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1 Introduction
The problems concerning periodic solutions of partial differential equations are an im-
portant area of investigation in recent years. Especially, the existence of periodic solutions
for the evolution equations has been considered by several authors; see [–] and the
references therein. In [], Xiang and Ahmad proved an existence result of the periodic so-
lution to the delay evolution equations in Banach spaces under the assumption that the
corresponding initial value problem has an a priori estimate. In [, ], Liu derived periodic
solutions from bounded solutions or ultimate bounded solutions for finite or infinite delay
evolution equations in Banach spaces. In [], Liang et al. proved that if the solutions of the
corresponding initial value problem are ultimately bounded, then the delay impulsive evo-
lution equation has a periodic solution. In all these works, the key assumption of a priori
boundedness of solutions is employed. In [], Li studied the existence and uniqueness of
positive periodic solutions for semilinear evolution equations in ordered Banach spaces
by using a monotone iterative technique. In [], under the spectral separation conditions
of a selfadjoint operator, Li studied the existence and uniqueness of periodic solutions
for semilinear evolution equations in Hilbert spaces by using the method of fixed point
theorems.
Recently, Li in [] investigated the existence and asymptotic stability of time ω-periodic

solutions for the delay parabolic boundary value problem (DPBVP),⎧⎪⎨⎪⎩
∂u(x,t)

∂t +A(x,D)u(x, t)
= g(x, t,u(x, t),u(x, t – τ), . . . ,u(x, t – τn)), (x, t) ∈ � ×R,

u|∂� = ,
()
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where � ⊂R
N is a bounded domain with sufficiently smooth boundary ∂�,

A(x,D) = –
N∑
i,j=

∂

∂xi

(
aij(x)

∂

∂xj

)
+ a(x)

is a uniformly elliptic differential operator of divergence form in � with the coefficients
aij ∈ C+μ(�) (i, j = , , . . . ,N ) and a ∈ Cμ(�) for some μ ∈ (, ). That is, [aij(x)]N×N is a
positive define symmetric matrix for every x ∈ �, and τ, τ, . . . , τn are positive constants
which denote the time delays. Let a(x) ≥  on �, g : � ×R×R

n+ → R be a continuous
function which is ω-periodic in t. Assume we work under the following assumptions:

(A) There exist positive constants β, . . . ,βn such that

∣∣g(x, t,η, . . . ,ηn) – g(x, t, ζ, . . . , ζn)
∣∣ ≤

n∑
i=

βi|ηi – ζi|,

for any (x, t,η, . . . ,ηn), (x, t, ζ, . . . , ζn) ∈ � ×R×R
n+.

(A)
∑n

i= eλτiβi < λ.

The authors obtained the existence and asymptotic stability of time ω-periodic solutions
for the DPBVP ().
If we have the case without delays, in R

+, the DPBVP () degenerates into the following
problem:{

∂u(x,t)
∂t +A(x,D)u(x, t) = g(x, t,u(x, t)), (x, t) ∈ � ×R

+,
u|∂� = .

()

In this case, the assumptions (A) and (A) degenerate into the following.

(A) There exists a constant β ∈ (,λ) such that∣∣g(x, t,η) – g(x, t, ζ )
∣∣ ≤ β|η – ζ |,

for any (x, t,η), (x, t, ζ ) ∈ � ×R
+ ×R.

Sometimes the condition (A) is not easy to verify in applications. Tomake thework better
applicable, in this paper, we obtain the following result.

Theorem A Let g(x, t, ) ≥  and g(x, t, ) 	≡ . Assume that the following conditions are
satisfied.

(C) For any R≥ , there exists a constantM =M(R) >  such that

g(x, t, ξ) – g(x, t, ξ)≥ –M(ξ – ξ), t ∈R
+,

for ξ, ξ ∈ R with  ≤ ξ ≤ ξ, |ξi| ≤ R (i = , ).
(C) There exists a constant L < λ such that

g(x, t, ξ) – g(x, t, ξ)≤ L(ξ – ξ), t ∈R
+,

for ξ, ξ ∈ R with  ≤ ξ ≤ ξ.
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Then the problem () has a unique positive time ω-periodic solution and it exponentially
attracts every solution of the corresponding initial value problem in L(�).

Our discussion will be made in the framework of ordered Banach spaces. Let E be an
ordered Banach space with norm ‖ · ‖, whose positive cone K is normal with normal con-
stant N = , A : D(A) ⊂ E → E be a closed linear operator, –A generate a C-semigroup
T(t) (t ≥ ) in E, and let f :R+ ×E → E be a continuous mapping which is ω-periodic in t.
It is well known (see []) that for a C-semigroup T(t) (t ≥ ) that there exist C >  and
δ ∈R such that

∥∥T(t)∥∥ ≤ Ceδt , t ≥ .

Let ν = inf{δ ∈ R, there exists C >  such that ‖T(t)‖ ≤ Ceδt , t ≥ }. Then ν is called the
growth exponent of the semigroup T(t) (t ≥ ). Furthermore, ν can also be obtained by
the following formula:

ν = lim sup
t→+∞

ln‖T(t)‖
t

.

More generally, we consider the existence and asymptotic stability of time ω-periodic
solution for the abstract evolution equation in E

u′(t) +Au(t) = f
(
t,u(t)

)
, t ∈ R

+. ()

For the abstract evolution equation (), we obtain the following results.

Theorem  Let E be an ordered Banach space, whose positive cone K is normal. Assume
that –A generates a positive C-semigroup T(t) (t ≥ ) in E, f :R+ ×E → E is a continuous
mapping which is ω-periodic in t, and f (t, θ ) ≥ θ , f (t, θ ) 	≡ θ for t ∈ R+, where θ is the zero
element in E. Assume f (t,u) satisfies the following conditions.

(H) For any R ≥ , there exists a constantM =M(R) >  such that

f (t, y) – f (t,x)≥ –M(y – x), t ∈ R
+,

for x, y ∈ E with θ ≤ x≤ y, ‖x‖ ≤ R, ‖y‖ ≤ R.
(H) There exists a constant L < –ν such that

f (t, y) – f (t,x)≤ L(y – x), t ∈R
+,

for x, y ∈ E with θ ≤ x≤ y.

Then the positive ω-periodic mild solution of Eq. () is globally asymptotically stable.

If C-semigroup T(t) is continuous in uniform operator topology for every t >  in E, it
is well known (see []) that ν can also be determined by σ (A) and

ν = – inf
{
Reλ : λ ∈ σ (A)

}
,
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where σ (A) is the spectrum of A. We know (see []) that compact semigroup is continu-
ous in uniform operator topology for t > . Let K be a regeneration cone, T(t) (t ≥ ) be
a compact and positive C-semigroup. By the characteristic of positive semigroups (see
[]) and the Krein-Rutmann theorem, A has the first eigenvalue λ >  and

λ = inf
{
Reλ : λ ∈ σ (A)

}
.

That is, ν = –λ. Hence by Theorem , we have the following.

Corollary  Let E be an ordered Banach space, whose positive cone K is a normal regen-
eration cone. Assume that –A generates a compact and positive C-semigroup T(t) (t ≥ )
in E, f : R+ × E → E is a continuous mapping which is ω-periodic in t and f (t, θ ) ≥ θ ,
f (t, θ ) 	≡ θ for t ∈R

+. If f (t,u) satisfies the assumptions (H) and

(H)∗ there exists a constant L < λ such that

f (t, y) – f (t,x)≤ L(y – x), t ∈R
+,

for x, y ∈ E with θ ≤ x ≤ y.

Then the positive ω-periodic mild solution of Eq. () is globally asymptotically stable.

Remark  Under the assumptions of Theorem  or Corollary , the existence and unique-
ness of positive ω-periodic mild solutions for Eq. () were obtained by Li in []. So, in this
paper, we mainly focus on the asymptotic stability of the positive ω-periodic mild solu-
tions.

We apply the above abstract results to the problem (). Let E = L(�), K = {u ∈ L(�) :
u(x) ≥ , a.e. x ∈ �}. Then K is a normal regeneration cone in E. Define an operator A :
D(A) ⊂ E → E by

D(A) =H(�)∩H
(�), Au = A(x,D)u.

It is well known (see []) that –A generates a compact C-semigroup in E which is also
positive. Define a mapping f :R+ × E → E by

f (t,u) = g
(·, t,u(·)), u ∈ L(�), t ∈R

+. ()

It is clear that f :R+ ×E → E is continuous and it is ω-periodic in t. Thus, the problem ()
is rewritten into the form of abstract evolution equation ().When the conditions (C) and
(C) of Theorem A are satisfied, the mapping f : R+ × E → E defined by () satisfies the
conditions (H) and (H)∗. Hence, by Corollary , we obtain the conclusion of TheoremA.
The abstract result of Theorem  will be proved in Section . In Section , some prelim-

inary conclusions are given.

2 Preliminaries
Let E be an ordered Banach space, whose positive cone K is normal, A : D(A) → E be
a closed linear operator in E. Denote by C([,ω],E) the continuous function space from

http://www.advancesindifferenceequations.com/content/2014/1/197
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[,ω] to E. Let Cω(R+,E) be the Banach space {u ∈ C(R+,E) : u(t) = u(t + ω), t ∈ R
+} en-

dowed with the maximum norm ‖u‖C =maxt∈[,ω] ‖u(t)‖. We first consider the existence
of the initial value problem (IVP) of the evolution equation in E{

u′(t) +Au(t) = f (t,u(t)), t > ,
u() = x.

()

For IVP (), we obtain the following existence result.

Lemma  Let E be an ordered Banach space,whose positive cone K is normal.Assume that
–A generates a positive C-semigroup T(t) (t ≥ ) in E, f :R+ × K → E is continuous and
f (t, θ )≥ θ , f (t, θ ) 	≡ θ for t ∈R

+. If x ∈ K and f (t,u) satisfies the conditions (H) and (H),
then IVP () has a unique mild solution.

Proof Let h(t) = f (t, θ ). Then h ∈ C(R+,E), h(t)≥ θ and h(t) 	≡ θ . We first consider the
initial value problem of linear evolution equation (LIVP){

u′(t) + (A – LI)u(t) = h(t), t > ,
u() = x.

()

It is well known (see []) that the LIVP () has a unique mild solution u ∈ C(R+,E)
expressed by

u(t) = S(t)x +
∫ t


S(t – s)h(s)ds, t ≥ ,

where S(t) = eLtT(t) (t ≥ ) is a positive C-semigroup generated by –(A – LI), whose
norm satisfies ‖S(t)‖ ≤ Ce(L+ν)t ≤ C for t ≥ . Hence, we have

∥∥u(t)∥∥ ≤ C‖x‖ +C
∫ t


e(L+ν)(t–s) ds · ‖h‖C ≤ C‖x‖ + C‖h‖C

–(L + ν)
� R.

Let v ≡ θ , w = u. By h(t) ≥ θ , h(t) 	≡ θ , x ∈ K and the positive property of semi-
group S(t) (t ≥ ), we see that v ≤ w. Let M =M(R) >  be the constant in assumption
(H). We consider the following IVP of the evolution equation:

{
u′(t) + (A +MI)u(t) = f (t,u(t)) +Mu(t), t > ,
u() = x.

()

Without loss of generality, we assumeM > –L (otherwise, replacingM byM + |L|, the as-
sumption (H) still holds). Then the operator –(A+MI) generates a positiveC-semigroup
S(t) = e–MtT(t) (t ≥ ), whose norm satisfies ‖S(t)‖ ≤ Ce–(M–ν)t ≤ C for t ≥ .
Define the operator Q by

(Qu)(t) = S(t)x +
∫ t


S(t – s)

[
f
(
s,u(s)

)
+Mu(s)

]
ds, t ≥ . ()

It is clear that the mild solution of IVP () is equivalent to the fixed point of operator Q.

http://www.advancesindifferenceequations.com/content/2014/1/197
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LetD = [v,w]. It follows from assumption (H) thatQ :D → C(R+,E) is a continuously
increasing operator. Let

vn =Qvn–, wn =Qwn–, n = , , . . . . ()

Then

θ = v ≤ v ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w. ()

Therefore, for any t ≥ , we have

θ ≤ wn(t) – vn(t)

=
∫ t


S(t – s)

[
f
(
s,wn–(s)

)
– f

(
s, vn–(s)

)
+M

(
wn–(s) – vn–(s)

)]
ds

≤ (M + L)
∫ t


S(t – s)

(
wn–(s) – vn–(s)

)
ds.

By the normality of cone K in E, we have

∥∥wn(t) – vn(t)
∥∥ ≤ C(M + L)

∫ t



∥∥wn–(s) – vn–(s)
∥∥ds.

Continuing such a procedure, we have

∥∥wn(t) – vn(t)
∥∥ ≤ [C(M + L)]n

n!
tn · ‖w‖C →  (n→ ∞).

This implies that there is a unique u∗ ∈ C(R+,E) such that

u∗(t) = lim
n→∞wn(t) = lim

n→∞ vn(t), t ≥ .

Combining this with (), since the convergence is uniform in each compact interval and
the operatorQ is continuous, we obtain u∗ =Qu∗. Therefore, u(t;x) := u∗(t) is the unique
mild solution of IVP () on R

+. This proof is completed. �

To prove our main result, we also need the following lemma.

Lemma  Let y, y ∈ E with θ ≤ y ≤ y. Then u(t; y) ≤ u(t; y).

Proof Consider the following two initial value problems:

{
u′(t) +Au(t) = f (t,u(t)), t > ,
u() = y

()

and {
u′(t) +Au(t) = f (t,u(t)), t > ,
u() = y.

()

http://www.advancesindifferenceequations.com/content/2014/1/197
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Let x = y + y. Then the solution of LIVP () is the w corresponding to IVP () and IVP
(). Let v = θ . A similar argument as in Lemma  shows that

vi,n =Qvi,n–, wi,n =Qwi,n–, i = , ,n = , , . . .

and

u(t; y) = lim
n→∞ v,n(t) = lim

n→∞w,n(t), u(t; y) = lim
n→∞ v,n(t) = lim

n→∞w,n(t), t ≥ .

For any t ≥ , noticing that v,(t) = v,(t) ≡ θ and θ ≤ y ≤ y, it follows from the positiv-
ity of the operators S(t) and

v,(t) = (Qv,)(t) = S(t)y +
∫ t


S(t – s)h(s)ds,

v,(t) = (Qv,)(t) = S(t)y +
∫ t


S(t – s)h(s)ds

that v,(t)≤ v,(t). Inductively, when v,n–(t) ≤ v,n–(t), it follows from

v,n(t) = (Qv,n–)(t) = S(t)y +
∫ t


S(t – s)

[
f
(
s, v,n–(s)

)
+Mv,n–(s)

]
ds,

v,n(t) = (Qv,n–)(t) = S(t)y +
∫ t


S(t – s)

[
f
(
s, v,n–(s)

)
+Mv,n–(s)

]
ds

that

v,n(t) ≤ v,n(t), t ≥ . ()

Taking the limits on both sides of inequality () as n→ ∞, we obtain

u(t; y)≤ u(t; y).

This proof is completed. �

For the existence and uniqueness of ω-periodic mild solutions of Eq. (), we have the
following result.

Lemma  (see []) Let E be an ordered Banach space, whose positive cone K is normal.
Assume that –A generates a positive C-semigroup T(t) (t ≥ ) in E, f : R+ × K → E is a
continuous mapping which is ω-periodic in t and f (t, θ ) ≥ θ , f (t, θ ) 	≡ θ for t ≥ . If f (t,u)
satisfies the conditions (H) and (H), then Eq. () has a unique positive ω-periodic mild
solution on R

+.

3 The proof of Theorem 1
Proof of Theorem  Define an equivalent norm | · |E in E by

|x|E = sup
t≥

∥∥e(M–ν)tS(t)x
∥∥.

http://www.advancesindifferenceequations.com/content/2014/1/197
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Then ‖x‖ ≤ |x|E ≤ C‖x‖ and

∣∣S(t)x∣∣E = sup
s≥

∥∥e(M–ν)sS(s) · S(t)x
∥∥ = sup

s≥

∥∥e(M–ν)sS(t + s)x
∥∥

= e–(M–ν)t · sup
s≥

∥∥e(M–ν)(t+s)S(t + s)x
∥∥

≤ e–(M–ν)t · |x|E ,

which implies that |S(t)|E ≤ e–(M–ν)t .
From Lemma , Eq. () has a unique positive ω-periodic mild solution ũ on R

+. By
Lemma , IVP () has a unique positivemild solution u = u(t;x) ∈ C(R+,K ). Let y = ũ().
Then ũ(t) = u(t; y). Setting x := y + x, then x ≥ y, x ≥ x. By Lemma , we see that
θ ≤ ũ(t) ≤ u(t;x), θ ≤ u(t;x) ≤ u(t;x). Setting u(t) = u(t;x), u∗(t) = u(t;x), by the
semigroup representation of the solutions, we have

θ ≤ u(t) – ũ(t) = (Qu)(t) – (Qũ)(t)

= S(t)x +
∫ t


S(t – s)

(
f
(
s,u(s)

)
+Mu(s)

)
ds

– S(t)y –
∫ t


S(t – s)

(
f
(
s, ũ(s)

)
+Mũ(s)

)
ds

≤ S(t)(x – y) +
∫ t


S(t – s)

[
f
(
s,u(s)

)
– f

(
s, ũ(s)

)
+M

(
u(s) – ũ(s)

)]
ds

≤ S(t)(x – y) + (M + L)
∫ t


S(t – s)

(
u(s) – ũ(s)

)
ds.

By the normality of cone K in E, we have

∣∣u(t) – ũ(t)
∣∣
E ≤ ∣∣S(t)(x – y)

∣∣
E + (M + L)

∣∣∣∣∫ t


S(t – s)

(
u(s) – ũ(s)

)
ds

∣∣∣∣
E

≤ e–(M–ν)t|x – y|E + (M + L)
∫ t


e–(M–ν)(t–s)

∣∣u(s) – ũ(s)
∣∣
E ds,

that is,

e(M–ν)t
∣∣u(t) – ũ(t)

∣∣
E ≤ |x – y|E + (M + L)

∫ t


e(M–ν)s

∣∣u(s) – ũ(s)
∣∣
E ds.

By the Gronwall-Bellman inequality, we have

∣∣u(t) – ũ(t)
∣∣
E ≤ |x – y|E · e(L+ν)t →  (t → ∞).

Similarly, |u(t) – u∗(t)|E →  (t → ∞). Therefore, we obtain

∣∣̃u(t) – u∗(t)
∣∣
E ≤ ∣∣̃u(t) – u(t)

∣∣
E +

∣∣u(t) – u∗(t)
∣∣
E →  (t → ∞).

This proof is completed. �
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4 Application
To illustrate our results, we consider the semilinear partial differential equations in R

 of
the form{

∂u(x,t)
∂t + ∂u(x,t)

∂x = g(x, t,u(x, t)), (x, t) ∈R
,

u(x + π , t) = u(x, t + π ) = u(x, t), (x, t) ∈R
,

()

where g ∈ C(R) is π-periodic both in x and t.
Let E = Cπ (R). Define an operator A in E by

D(A) = C
π (R), Au =

∂u(x, t)
∂x

.

By [], –A generates a contraction C-semigroup T(t) (t ≥ ) in E, which is also a positive
C-semigroup. By the contraction property of T(t) (t ≥ ), we know that ν ≤ .
Let f (t,u(t))(·) = g(·, t,u(·, t)). Then f :R× E → E is continuous and is π-periodic in t.

From Theorem , we can obtain the following.

Theorem  Let g ∈ C(R) which is π -periodic both in x and t, and g(x, t, ) ≥ ,
g(x, t, ) 	≡ . Assume that the following conditions are satisfied:

(P) For any R ≥ , there exists a constantM =M(R) >  such that

g(x, t, ξ) – g(x, t, ξ) ≥ –M(ξ – ξ), t ∈R
+,

for ξ, ξ ∈R with  ≤ ξ ≤ ξ, |ξi| ≤ R (i = , ).
(P) There exists a constant L < –ν such that

g(x, t, ξ) – g(x, t, ξ) ≤ L(ξ – ξ), t ∈ R
+,

for ξ, ξ ∈R with  ≤ ξ ≤ ξ.

Then the problem () has a unique double π -periodic mild solution in Cπ (R,E) which
is globally asymptotic stable.

Remark  It is clear that if sup gu(x, t,u) < , then the assumptions (P) and (P) hold
automatically.
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