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1 Introduction
Fractional calculus has evolved into an interesting and popular field of research due to
its theoretical development and extensive applications in the mathematical modeling of
many real world phenomena occurring in several branches of the physical, biological, and
technical sciences [–].
Fractional q-difference (q-fractional) equations are regarded as fractional analogs of

q-difference equations and have been investigated by many researchers [–]. For some
earlier work on the topic, we refer to [, ], whereas the preliminary concepts on
q-fractional calculus can be found in a recent text [].
Fractional hybrid differential equations have also received a considerable attention; for

instance, see [–] and the references cited therein. In [], the authors studied the ex-
istence of solutions for a boundary value problem of Riemann-Liouville fractional hybrid
differential equations.
In this paper, motivated by [], we study the existence of solutions for Dirichlet bound-

ary value problems of fractional q-difference hybrid equations and inclusions. As a first
problem, we consider

{
Dα

q (
x(t)

f (t,x(t)) ) = g(t,x(t)),  ≤ t ≤ ,  < α ≤ ,  < q < ,
x() = , x() = ,

(.)

where Dα
q denotes the Caputo fractional q-derivative of order α, f ∈ C([, ]×R,R \ {})

and g : C([, ]×R,R).
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Next, we study a boundary value problem of fractional q-difference hybrid inclusions
given by

{
Dα

q (
x(t)

f (t,x(t)) ) ∈ F(t,x(t)),  < t < ,  < α ≤ ,  < q < ,
x() = x() = ,

(.)

where F : [, ] × R → P(R) is a multi-valued map, P(R) is the family of all nonempty
subsets of R.
The paper is organized as follows: in Section  we recall some preliminary facts. The

existence of solutions for the problem (.) is shown in Section  while the multi-valued
problem (.) is investigated in Section . The main tool of our study are fixed point the-
orems due to Dhage for single-valued [] and multi-valued [] maps.

2 Preliminaries
First of all, we recall the notations and terminology for q-fractional calculus [, ].
For a real parameter q ∈R

+ \ {}, a q-real number denoted by [a]q is defined by

[a]q =
 – qa

 – q
, a ∈R.

The q-analog of the Pochhammer symbol (q-shifted factorial) is defined as

(a;q) = , (a;q)k =
k–∏
i=

(
 – aqi

)
, k ∈N∪ {∞}.

The q-analog of the exponent (x – y)k is

(x – y)() = , (x – y)(k) =
k–∏
j=

(
x – yqj

)
, k ∈N,x, y ∈R.

The q-gamma function �q(y) is defined as

�q(y) =
( – q)(y–)

( – q)y–
,

where y ∈ R \ {,–,–, . . .}. Observe that �q(y + ) = [y]q�q(y).

Definition . ([]) Let f be a function defined on [, ]. The fractional q-integral of the
Riemann-Liouville type of order β ≥  is (Iq f )(t) = f (t) and

Iβq f (t) :=
∫ t



(t – qs)(β–)

�q(β)
f (s)dqs = tβ ( – q)β

∞∑
k=

qk
(qβ ;q)n
(q;q)n

f
(
tqk

)
, β > , t ∈ [, ].

Observe that β =  in Definition . yields the q-integral

Iqf (t) :=
∫ t


f (s)dqs = t( – q)

∞∑
k=

qkf
(
tqk

)
.
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For more details on q-integral and fractional q-integral, see Section . and Section .,
respectively, in [].

Remark . The q-fractional integration possesses the semigroup property ([], Propo-
sition .):

Iγq I
β
q f (t) = Iβ+γ

q f (t); γ ,β ∈R
+.

Further, it has been shown in Lemma  of [] that

Iβq (x)
(σ ) =

�q(σ + )
�q(β + σ + )

(x)(β+σ ),  < x < a,β ∈ R
+,σ ∈ (–,∞).

Before giving the definition of fractional q-derivative, we recall the concept of q-deriv-
ative.
The q-derivative of a function f (t) is defined as

(Dqf )(t) =
f (t) – f (qt)

t – qt
, t �= , (Dqf )() = lim

t→
(Dqf )(t).

Furthermore,

D
qf = f , Dn

qf =Dq
(
Dn–

q f
)
, n = , , , . . . . (.)

Definition . ([]) The Caputo fractional q-derivative of order β >  is defined by

cDβ
q f (t) = I	β
–β

q D	β

q f (t),

where 	β
 is the smallest integer greater than or equal to β .

Next we recall some properties involving Riemann-Liouville q-fractional integral and
Caputo fractional q-derivative ([], Theorem .).

Iβq
cDβ

q f (t) = f (t) –
	β
–∑
k=

tk

�q(k + )
(
Dk

qf
)(
+

)
, ∀t ∈ (,a],β > ; (.)

cDβ
q I

β
q f (t) = f (t), ∀t ∈ (,a],β > . (.)

3 An existence result for the single-valued problem
This section begins with a basic result, which plays a pivotal role in the forthcoming anal-
ysis. Let C([, ],R) denote a Banach space of continuous functions from [, ] intoRwith
the norm ‖x‖ = supt∈[,] |x(t)|.

Lemma . For y ∈ C([, ],R), the unique solution of the problem

{
Dα

q (
x(t)

f (t,x(t)) ) = y(t),  < t < ,
x() = x() = ,

(.)
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is given by

x(t) = f
(
t,x(t)

)(∫ t



(t – qs)(α–)

�q(α)
y(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
y(s)dqs

)
, t ∈ [, ].

Proof It is well known that the general solution of the q-fractional differential equation in
(.) can be written as

x(t) = f
(
t,x(t)

)(∫ t



(t – qs)(α–)

�q(α)
y(s)dqs + ct + c

)
, t ∈ [, ], (.)

where c, c ∈ R are arbitrary unknown constants. Using the boundary conditions given
in (.), we have

c = , c = –
∫ 



( – qs)(α–)

�q(α)
y(s)dqs.

Substituting the values of c and c in (.), we get

x(t) = f
(
t,x(t)

)(∫ t



(t – qs)(α–)

�q(α)
y(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
y(s)dqs

)
, t ∈ [, ]. �

We use the nonlinear alternative of Schaefer’s type due to Dhage [].

Lemma . ([]) Let Br() and Br() respectively denote an open and closed ball in a
Banach algebra X centered at origin of radius r, for some real number r > . Let A : X → X
and B : Br() → X be two operators such that:
(a) A is Lipschitzian with a Lipschitz constant k,
(b) B is completely continuous,
(c) kM < , where M = ‖B(Br())‖ = sup{‖Bx‖ : x ∈ Br()}.

Then either
(i) the equation AxBx = x has a solution in Br(), or
(ii) there exists an u ∈ X with ‖u‖ = r such that λAuBu = u for some  < λ < .

Now we are in a position to present the first main result of our paper.

Theorem . Assume that:

(H) the function f : [, ]×R →R \ {} is continuous and there exists a bounded function
φ, with bound ‖φ‖, such that φ(t) >  for t ∈ [, ] and

∣∣f (t,x) – f (t, y)
∣∣ ≤ φ(t)

∣∣x(t) – y(t)
∣∣ for t ∈ [, ] and for all x, y ∈R;

(H) there exist a continuous nondecreasing function 	 : [,∞) → (,∞) and a function
γ ∈ C([, ],R+) such that

∣∣g(t,x)∣∣ ≤ γ (t)	
(‖x‖), t ∈ [, ] and for all x ∈R;

(H) there exists a real number r >  such that

r >
F

�q(α+)‖γ ‖	(r)

 – ‖φ‖
�q(α+)‖γ ‖	(r)

, (.)

http://www.advancesindifferenceequations.com/content/2014/1/199
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where

‖φ‖
�q(α + )

‖γ ‖	(r) < , F = sup
t∈[,]

∣∣f (t, )∣∣.
Then the problem (.) has at least one solution on [, ].

Proof Let us set X = C([, ],R) and consider a closed ball Br() in X, where r satisfies the
inequality (.). By Lemma ., the problem (.) is equivalent to the integral equation

x(t) = f
(
t,x(t)

)(∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

– t
∫ 



( – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

)
, t ∈ [, ]. (.)

Define two operatorsA,B : Br() → X by

Ax(t) = f
(
t,x(t)

)
, t ∈ [, ] (.)

and

Bx(t) =
∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs – t

∫ 



( – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs. (.)

Observe that x =AxBx.We shall show that the operatorsA andB satisfy all the conditions
of Lemma .. The proof is constructed in several steps.
Step .A is Lipschitz on X, that is, the assumption (a) of Lemma . holds.
Let x, y ∈ X. Then by (H), we have

∣∣Ax(t) –Ay(t)
∣∣ = ∣∣f (t,x(t)) – f

(
t, y(t)

)∣∣
≤ φ(t)

∣∣x(t) – y(t)
∣∣

≤ ‖φ‖‖x – y‖

for all t ∈ [, ]. Taking the supremum over the interval [, ], we get

‖Ax –Ay‖ ≤ ‖φ‖‖x – y‖

for all x, y ∈ Br(). So A is Lipschitz on Br() with Lipschitz constant ‖φ‖.
Step . The operator B is completely continuous on Br(), that is, (b) of Lemma . holds.
First we show that B is continuous on Br(). Let {xn} be a sequence in Br() converging

to a point x ∈ Br(). Then, by Lebesgue’s dominated convergence theorem, we have

lim
n→∞Bxn(t)

= lim
n→∞

∫ t



(t – qs)(α–)

�q(α)
g
(
s,xn(s)

)
dqs – lim

n→∞ t
∫ 



( – qs)(α–)

�q(α)
g
(
s,xn(s)

)
dqs

=
∫ t



(t – qs)(α–)

�q(α)
lim
n→∞ g

(
s,xn(s)

)
dqs – t

∫ 



( – qs)(α–)

�q(α)
lim
n→∞ g

(
s,xn(s)

)
dqs
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Ahmad and Ntouyas Advances in Difference Equations 2014, 2014:199 Page 6 of 14
http://www.advancesindifferenceequations.com/content/2014/1/199

=
∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs – t

∫ 



( – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

= Bx(t)

for all t ∈ [, ]. This shows thatB is continuous onBr(). It is enough to show thatB(Br())
is a uniformly bounded and equicontinuous set in X. First we note that

∣∣Bx(t)∣∣ = ∣∣∣∣
∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs – t

∫ 



( – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

∣∣∣∣
≤

∫ t



(t – qs)(α–)

�q(α)
∣∣g(s,x(s))∣∣dqs +

∫ 



( – qs)(α–)

�q(α)
∣∣g(s,x(s))∣∣dqs

≤ 
∫ 



( – qs)(α–)

�q(α)
γ (s)	

(‖x‖)dqs
=


�q(α + )

‖γ ‖	(r)

for all t ∈ [, ]. Taking supremum over the interval [, ] yields

‖Bx‖ ≤ 
�q(α + )

‖γ ‖	(r)

for all x ∈ Br(). This shows that B is uniformly bounded on Br().
Next we show that B is an equicontinuous set in X. Let t, t ∈ [, ] with t < t. Then

we have

∣∣Bx(t) –Bx(t)
∣∣

≤
∣∣∣∣
∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs –

∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

∣∣∣∣
+ (t – t)

∫ 



( – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

≤ ‖γ ‖	(r)
∫ t



[
(t – qs)(α–)

�q(α)
–
(t – qs)(α–)

�q(α)

]
dqs

+ ‖γ ‖	(r)
∫ t

t

(t – qs)(α–)

�q(α)
dqs + ‖γ ‖	(r)(t – t)

∫ 



( – qs)(α–)

�q(α)
dqs.

Obviously the right-hand side of the above inequality tends to zero independently of
x ∈ Br() as t – t → . Therefore, it follows by the Arzelá-Ascoli theorem that B is a
completely continuous operator on Br().
Step .Mk < , that is, (c) of Lemma . holds.
This is obvious by (H) since we have M = ‖B(Br())‖ = sup{‖Bx‖ : x ∈ Br()} =


�q(α+)‖γ ‖	(r) and k = ‖φ‖.
Thus the conditions (a), (b), and (c) of Lemma . are satisfied. Hence, either the con-

clusion (i) or the conclusion (ii) of Lemma . holds. We show that the conclusion (ii) is
not possible. Let x be a solution of the operator equation x =AxBx with ‖x‖ = r for some

http://www.advancesindifferenceequations.com/content/2014/1/199
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λ,  < λ < . Then we have

∣∣x(t)∣∣ = ∣∣Ax(t)
∣∣∣∣Bx(t)∣∣

=
∣∣f (t,x(t))∣∣∣∣∣∣

∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs – t

∫ 



( – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

∣∣∣∣
≤ [∣∣f (t,x(t)) – f (t, )

∣∣ + ∣∣f (t, )∣∣]
×

∣∣∣∣
∫ t



(t – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs – t

∫ 



( – qs)(α–)

�q(α)
g
(
s,x(s)

)
dqs

∣∣∣∣
≤ [

φ(t)
∣∣x(t)∣∣ + F

]
	

(‖x‖)∫ 



( – qs)(α–)

�q(α)
γ (s)dqs

≤ [‖φ‖‖x‖ + F
] 
�q(α + )

‖γ ‖	(‖x‖).
Thus

r ≤
F

�q(α+)‖γ ‖	(r)

 – ‖φ‖
�q(α+)‖γ ‖	(r)

,

which is a contradiction to (.), and hence the conclusion (ii) is not valid. Consequently,
the conclusion (i) is valid, and hence the problem (.) has a solution on Br(). This com-
pletes the proof. �

Example . Consider the boundary value problem

{
D/

/ (
x(t)

sinx+ ) =

 cosx(t),  < t < ,

x() = x() = .
(.)

Here f (t,x) = sinx+, g(t,x) = 
 cosx. Observe that (H) and (H) hold with φ(t) =  and

γ (t) = 
 , 	(r) = , respectively. With the given data,

‖φ‖
�q(α + )

‖γ ‖	(r) =


�q(/)
 . < 

and we can choose r such that r > .. Hence the conclusion of Theorem . applies
to the problem (.).

4 Multi-valued case
Let L([, ],R) be the Banach space of measurable functions x : [, ] → R which are
Lebesgue integrable and normed by ‖x‖L =

∫ 
 |x(t)|dt.

Now, we recall some basic concepts for multi-valued maps [, ].
For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈

P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,cv(X) = {Y ∈ P(X) :
Y is compact and convex}. A multi-valued map G : X → P(X) is convex (closed) val-
ued if G(x) is convex (closed) for all x ∈ X. The map G is bounded on bounded sets if
G(B) =

⋃
x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞).

G is called upper semicontinuous (u.s.c.) on X if for each x ∈ X, the set G(x) is a

http://www.advancesindifferenceequations.com/content/2014/1/199
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nonempty closed subset of X, and if for each open set N of X containing G(x), there
exists an open neighborhood N of x such that G(N) ⊆ N . G is said to be completely
continuous if G(B) is relatively compact for every B ∈ Pb(X). If the multi-valued map G
is completely continuous with nonempty compact values, then G is u.s.c. if and only if G
has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈G(xn) imply y∗ ∈G(x∗). G has a fixed point
if there is x ∈ X such that x ∈G(x). The fixed point set of the multi-valued operator G will
be denoted by FixG. A multi-valued mapG : [; ] →Pcl(R) is said to be measurable if for
every y ∈R, the function

t �→ d
(
y,G(t)

)
= inf

{|y – z| : z ∈G(t)
}

is measurable.

Definition . A multi-valued map F : [, ]×R → P(R) is said to be Carathéodory if
(i) t �→ F(t,x) is measurable for each x ∈R;
(ii) x �→ F(t,x) is upper semicontinuous for almost all t ∈ [, ].

Further a Carathéodory function F is called L-Carathéodory if
(iii) there exists a function g ∈ L([, ],R+) such that

∥∥F(t,x)∥∥ = sup
{|v| : v ∈ F(t,x)

} ≤ g(t)

for all x ∈R and for a.e. t ∈ [, ].

For each y ∈ C([, ],R), define the set of selections of F by

SF ,y :=
{
v ∈ L

(
[, ],R

)
: v(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ [, ]

}
.

The following lemma is used in the sequel.

Lemma . ([]) Let X be a Banach space. Let F : [, ] × R → Pcp,cv(X) be an
L-Carathéodory multi-valued map and let 
 be a linear continuous mapping from
L([, ],X) to C([,T],X). Then the operator


 ◦ SF : C
(
[, ],X

) →Pcp,cv
(
C

(
[, ],X

))
, x �→ (
 ◦ SF )(x) =
(SF ,x)

is a closed graph operator in C([, ],X)×C([, ],X).

Our second main result for the multi-valued problem (.) is based on the following
fixed point theorem due to Dhage [].

Lemma . Let X be a Banach algebra and let A : X → X be a single-valued and B : X →
Pcp,cv(X) be a multi-valued operator satisfying:
(a) A is a single-valued Lipschitz operator with a Lipschitz constant k,
(b) B is compact and upper semicontinuous,
(c) Mk < , where M = ‖B(X)‖.

Then either
(i) the operator inclusion x ∈ AxBx has a solution, or
(ii) the set E = {u ∈ X|μu ∈ AuBu,μ > } is unbounded.

http://www.advancesindifferenceequations.com/content/2014/1/199
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Definition . A function x ∈ AC([, ],R) is called a solution of the problem (.)
if there exists a function v ∈ L([, ],R) with v(t) ∈ F(t,x(t)), a.e. on [, ] such that
Dα

q (
x(t)

f (t,x(t)) ) = v(t), a.e. on [, ] and x() = x() = .

Theorem . Assume that (H) holds. In addition we suppose that:

(A) F : [, ] × R → P(R) is L-Carathéodory and has nonempty compact and convex
values;

(A) there exists a positive real number r̃ such that

r̃ >
F

�q(α)‖g‖Lq
 – ‖φ‖

�q(α)‖g‖Lq
, (.)

where
‖g‖Lq
�q(α) ‖φ‖ < 

 , F = supt∈[,] |f (t, )|, ‖g‖Lq =
∫ 
 |g(t)|dqt.

Then the boundary value problem (.) has at least one solution on [, ].

Proof To transform the problem (.) into a fixed point problem, we define an operator
N : X →P(X) as

B(x) =
{
h ∈ X :

h(t) = f
(
t,x(t)

)(∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs

)
, v ∈ SF ,x

}
,

where X = C([, ],R). Next we introduce two operatorsA : X → X by

Ax(t) = f
(
t,x(t)

)
, t ∈ [, ], (.)

and B : X →P(X) by

B(x) =
{
h ∈ X :

h(t) =
∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs, v ∈ SF ,x

}
. (.)

ObviouslyN (x) =AxBx. We shall show that the operatorsA and B satisfy all the con-
ditions of Lemma .. The proof is structured into a sequence of steps.
Step .We first show that A is Lipschitz on X , i.e., (a) of Lemma . holds.
The proof is similar to the one for the operatorA in Step  of Theorem ..
Step . Now we show that the multi-valued operator B is compact and upper semicon-

tinuous on X, i.e. (b) of Lemma . holds.
Let us first show that B has convex values.
Let u,u ∈ Bx. Then there are v, v ∈ SF ,x such that

ui(t) =
∫ t



(t – qs)(α–)

�q(α)
vi(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
vi(s)dqs, t ∈ [, ], i = , .

http://www.advancesindifferenceequations.com/content/2014/1/199


Ahmad and Ntouyas Advances in Difference Equations 2014, 2014:199 Page 10 of 14
http://www.advancesindifferenceequations.com/content/2014/1/199

For any θ ∈ [, ], we have

θu(t) + ( – θ )u(t) =
∫ t



(t – qs)(α–)

�q(α)
[
θu(s) + ( – θ )u(s)

]
dqs

– t
∫ 



( – qs)(α–)

�q(α)
[
θu(s) + ( – θ )u(s)

]
dqs

=
∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs,

where v(t) = θv(t) + ( – θ )v(t) ∈ F(t,x(t)) for all t ∈ [, ]. Hence θu(t) + ( – θ )u(t) ∈
Bx and consequently Bx is convex for each x ∈ X. As a result B defines a multi-valued
operator B : X →Pcv(X).
Next we show that B maps bounded sets into bounded sets in X. To do this, let Q be a

bounded set in X. Then there exists a real number σ >  such that ‖x‖ ≤ σ , ∀x ∈ Q.
Now for each h ∈ Bx, there exists a v ∈ SF ,x such that

h(t) =
∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs.

Then for each t ∈ [, ],

∣∣h(t)∣∣ = ∣∣∣∣
∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs

∣∣∣∣
≤

∫ t



(t – qs)(α–)

�q(α)
g(s)dqs +

∫ 



( – qs)(α–)

�q(α)
g(s)dqs

≤ 
∫ 



( – qs)(α–)

�q(α)
g(s)dqs

=


�q(α)
‖g‖Lq .

This further implies that

‖h‖ ≤ 
�q(α)

‖g‖Lq ,

and so B(X) is uniformly bounded.
Next we show that B maps bounded sets into equicontinuous sets. Let Q be, as above,

a bounded set and h ∈ Bx for some x ∈ Q. Then there exists a v ∈ SF ,x such that

h(t) =
∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs.

Then for any t, t ∈ [, ] with t ≤ t we have

∣∣h(t) – h(t)
∣∣ ≤

∣∣∣∣
∫ t



(t – qs)(α–)

�q(α)
v(s)dqs –

∫ t



(t – qs)(α–)

�q(α)
v(s)dqs

∣∣∣∣
+ (t – t)

∫ 



( – qs)(α–)

�q(α)
v(s)dqs
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≤
∫ t



[
(t – qs)(α–)

�q(α)
–
(t – qs)(α–)

�q(α)

]
g(s)dqs

+
∫ t

t

(t – qs)(α–)

�q(α)
g(s)dqs

+ (t – t)
∫ 



( – qs)(α–)

�q(α)
g(s)dqs,

which tends to zero independently of x ∈Q as t – t → .
Therefore it follows by the Arzelá-Ascoli theorem that B : C([, ],R)→P(C([, ],R))

is completely continuous.
In our next step, we show that B has a closed graph. Let xn → x∗, hn ∈ B(xn) and

hn → h∗. Then we need to show that h∗ ∈ B. Associated with hn ∈ B(xn), there exists
vn ∈ SF ,xn such that, for each t ∈ [, ],

hn(t) =
∫ t



(t – qs)(α–)

�q(α)
vn(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
vn(s)dqs.

Thus it suffices to show that there exists v∗ ∈ SF ,x∗ such that, for each t ∈ [, ],

h∗(t) =
∫ t



(t – qs)(α–)

�q(α)
v∗(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v∗(s)dqs.

Let us consider the linear operator 
 : L([, ],R)→ C([, ],R) given by

f �→ 
(v)(t) =
∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs.

Notice that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥
∫ t



(t – qs)(α–)

�q(α)
(
vn(s) – v∗(s)

)
dqs

– t
∫ 



( – qs)(α–)

�q(α)
(
vn(s) – v∗(s)

)
dqs

∥∥∥∥ → , as n → ∞.

Thus, it follows by Lemma . that 
 ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ 
(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) =
∫ t



(t – qs)(α–)

�q(α)
v∗(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v∗(s)dqs

for some v∗ ∈ SF ,x∗ .
As a result we find that the operatorB is a compact and upper semicontinuous operator

on X.
Step . Now we show that Mk < , i.e. (c) of Lemma . holds.
It is obvious in view of (H) with M = ‖B(X)‖ = sup{|Bx| : x ∈ X} ≤ 

�q(α)‖g‖Lq and
k = ‖φ‖.
Thus all the conditions of Lemma . are satisfied and, in consequence, it follows that

either the conclusion (i) or the conclusion (ii) holds. We show that the conclusion (ii) is
not possible.
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Let u ∈ E be arbitrary. Then we have λu(t) ∈ Au(t)Bu(t) for λ >  and there exists
v ∈ SF ,x such that, for any λ > ,

u(t) = λ–[f (t,u(t))](∫ t



(t – qs)(α–)

�q(α)
v(s)dqs – t

∫ 



( – qs)(α–)

�q(α)
v(s)dqs

)

for all t ∈ [, ]. Thus we have

∣∣u(t)∣∣ ≤ λ–∣∣f (t,u(t))∣∣(∫ t



(t – qs)(α–)

�q(α)
∣∣v(s)∣∣dqs +

∫ 



( – qs)(α–)

�q(α)
∣∣v(s)∣∣dqs

)

≤ [∣∣f (t,u(t)) – f (t, )
∣∣ + ∣∣f (t, )∣∣]

×
(∫ t



(t – qs)(α–)

�q(α)
∣∣v(s)∣∣dqs +

∫ 



( – qs)(α–)

�q(α)
∣∣v(s)∣∣dqs

)

≤ 
[‖φ‖‖u‖ + F

] ∫ 



( – qs)(α–)

�q(α)
g(s)dqs

≤ [‖φ‖‖u‖ + F
] 
�q(α)

‖g‖Lq ,

where F = supt∈[,] |f (t, )|.
Consequently, with ‖u‖ = r̃, we have

r̃ ≤
F

�q(α)‖g‖Lq
 – ‖φ‖

�q(α)‖g‖Lq
.

Thus the condition (ii) of Theorem . does not hold in view of the condition (.).
Therefore, the operator inclusion x ∈ AxBx has a solution, and, in turn, the problem
(.) has a solution on [, ]. This completes the proof. �

Example . Consider the problem

{
D/

/ [
x(t)

t sinx/+ ] ∈ F(t,x(t)),  < t < ,
x() = x() = ,

(.)

where F : [, ]×R→P(R) is a multi-valued map given by

t → F(t,x) =
[ |x|
(|x| + )

,
| sinx|

(| sinx| + )
+



]
.

For f ∈ F we have

|f | ≤max

( |x|
(|x| + )

,
| sinx|

(| sinx| + )
+



)
≤ , x ∈ R.

Thus

∥∥F(t,x)∥∥ = sup
{|y| : y ∈ F(t,x)

} ≤  = g(t), x ∈R.
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Further, ‖φ‖ = /, � 

(/) ., r̃ > /[ 

 (/) – ] and

‖φ‖‖g‖Lq
�q(α)

=


� 

(/)

 . <


.

Thus all the conditions of Theorem . are satisfied and consequently, the problem (.)
has a solution on [, ].
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