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Abstract
In this paper, we consider the following nonlinear boundary value problem:
(ϕ(u′(t)))′ + a(t)f (u(t)) = 0, 0 < t < 1, u(0) =

∑m–2
i=1 αiu(ξi), u′(1) = 0, where ϕ :R−→R is

an increasing homeomorphism and positive homomorphism with ϕ(0) = 0. By using
a fixed-point theorem on partially ordered sets, we obtain sufficient conditions for the
existence and uniqueness of positive and nondecreasing solutions to the above
boundary value problem.
MSC: 34B18; 34B27
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1 Introduction
In this paper, we consider the existence and uniqueness of a positive and nondecreasing
solution to the following boundary value problem:

(
ϕ
(
u′(t)

))′ + a(t)f
(
u(t)

)
= ,  < t < , (.)

u() =
m–∑
i=

αiu(ξi), u′() = , (.)

where ϕ : R → R is an increasing homeomorphism and positive homomorphism with
ϕ() = . Here ξi ∈ (, ) with  < ξ < ξ < · · · < ξm– <  and αi satisfy αi ∈ [, +∞),  <∑m–

i= αi < .
A projection ϕ :R →R is called an increasing homeomorphism and positive homomor-

phism, if the following conditions are satisfied:
() ϕ(x)≤ ϕ(y), for all x, y ∈ R with x ≤ y;
() ϕ is a continuous bijection and its inverse mapping is also continuous;
() ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈R+.
In the above definition, we can replace the condition () by the following stronger con-

dition:
() ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈R, where R = (–∞, +∞).

©2014Miao et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/20
mailto:songyueqiang@sohu.com
http://creativecommons.org/licenses/by/2.0


Miao et al. Advances in Difference Equations 2014, 2014:20 Page 2 of 6
http://www.advancesindifferenceequations.com/content/2014/1/20

Remark . If conditions (), (), and () hold, then it implies that ϕ is homogeneous
generating a p-Laplace operator, i.e. ϕ(x) = |x|p–x, for some p > .

Recently, the existence and multiplicity of positive solutions for the p-Laplacian oper-
ator, i.e., ϕ(x) = |x|p–x, for some p > , have received wide attention, see [–] and refer-
ences therein. We know that the oddness of a p-Laplacian operator is key to the proof.
However, in this paper we define a new operator, which improves and generates a p-
Laplacian operator for some p > , and ϕ is not necessarily odd. Moreover research of
increasing homeomorphisms and positive homomorphism operators has proceeded very
slowly, see [, ].
In [], Liu and Zhang studied the existence of positive solutions of quasilinear differen-

tial equation

(
ϕ
(
x′))′ + a(t)f

(
x(t)

)
= ,  < t < ,

x() – βx′() = , x() + δx′() = ,

where ϕ : R → R is an increasing homeomorphism and positive homomorphism and
ϕ() = . They obtain the existence of one or two positive solutions by using a fixed-point
index theorem in cones. But the uniqueness of the solution is not treated.
In [], the authors showed that there exist countablymany positive solutions by using the

fixed-point index theory and a new fixed-point theorem in cones. They also assumed that
the operator ϕ :R →R is an increasing homeomorphism and a positive homomorphism,
and ϕ() = .
In [], the authors established the existence and uniqueness of a positive and nonde-

creasing solution to a singular boundary value problem of a class of nonlinear fractional
differential equation. Their analysis relies on a fixed-point theorem in partially ordered
sets. The existence of a fixed point in partially ordered sets has been considered recently
in [–].
But whether or not we can obtain the existence and uniqueness of a positive and non-

decreasing solution to the boundary value problem (.)-(.) still remains unknown. So,
motivated by all the works above, we will prove the existence and uniqueness of a pos-
itive and nondecreasing solution for the boundary value problems (.)-(.) by using a
fixed-point theorem on partially ordered sets.

2 Some definitions and fixed-point theorems
Definition . Let (E,‖ · ‖) be a real Banach space. A nonempty, closed, convex set P ⊂ E
is said to be a cone provided the following are satisfied:
(a) if y ∈ P and λ ≥ , then λy ∈ P;
(b) if y ∈ P and –y ∈ P, then y = .
If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y if and only

if y – x ∈ P.

The following fixed-point theorems in partially ordered sets are fundamental and im-
portant to the proofs of our main results.

Theorem. ([]) Let (E,≤) be a partially ordered set and suppose that there exists amet-
ric d in E such that (E,d) is a complete metric space. Assume that E satisfies the following
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condition:

if {xn} is a nondecreasing sequence in E such that xn → x, then xn ≤ x,∀n ∈ N. (.)

Let T : E → E be a nondecreasing mapping such that

d(Tx,Ty) ≤ d(x, y) –ψ
(
d(x, y)

)
, for x≥ y,

where ψ : [, +∞) → [, +∞) is a continuous and nondecreasing function such that ψ is
positive in (, +∞), ψ() =  and limt→∞ ψ(t) = ∞. If there exists x ∈ E with x ≤ T(x),
then T has a fixed point.

If we consider that (E,≤) satisfies the following condition:

for x, y ∈ E there exists z ∈ E which is comparable to x and y, (.)

then we have the following result.

Theorem . ([]) Adding condition (.) to the hypotheses of Theorem ., we obtain
uniqueness of the fixed point.

3 Main results
The basic space used in this paper is E = C[, ]. Then E is a real Banach space with the
norm ‖u‖ =max≤t≤ |u(t)|. Note that this space can be equippedwith a partial order given
by

x, y ∈ C[, ], x ≤ y ⇔ x(t)≤ y(t), t ∈ [, ].

In [] it is proved that (C[, ],≤) with the classic metric given by

d(x, y) = sup
≤t≤

{∣∣x(t) – y(t)
∣∣}

satisfies condition (.) of Theorem .. Moreover, for x, y ∈ C[, ] as the function
max{x, y} ∈ C[, ], (C[, ],≤) satisfies condition (.).
The main result of this paper is the following.

Theorem . The boundary value problem (.)-(.) has a unique positive solution u(t)
which is strictly increasing if the following conditions are satisfied:

(A) a(t) is a nonnegative measurable function defined in [, ] and a(t) does not identically
vanish on any subinterval of [, ] and

 <
∫ 


a(t)dt < +∞;

(f) f : [, +∞)→ [, +∞) is continuous and nondecreasing respect to u and f (u(t)) �≡  for
t ∈ Z ⊂ [, ] with μ(Z) >  (μ denotes the Lebesgue measure);

http://www.advancesindifferenceequations.com/content/2014/1/20


Miao et al. Advances in Difference Equations 2014, 2014:20 Page 4 of 6
http://www.advancesindifferenceequations.com/content/2014/1/20

(f) there exists  < λ +  < –
∑m–

i= αi
ϕ–(

∫ 
 a(τ )dτ )

such that for u, v ∈ [, +∞) with u ≥ v and t ∈ [, ]

ϕ
(
ln(v + )

) ≤ f (v)≤ f (u) ≤ ϕ
(
ln(u + )(u – v + )λ

)
.

Proof Consider the cone

K =
{
u ∈ C[, ] : u≥ 

}
.

As K is a closed set of C[, ], K is a complete metric space with the distance given by
d(u, v) = supt∈[,] |u(t) – v(t)|.
Now, we consider the operator T defined by

Tu(t) =
∫ t


ϕ–

(∫ 

s
a(τ )f

(
u(τ )

)
dτ

)
ds +

∑m–
i= αi

∫ ξi
 ϕ–(

∫ 
s a(τ )f (u(τ ))dτ )ds

 –
∑m–

i= αi
.

By conditions (A), (f), we have T(K ) ⊂ K .
We now show that all the conditions of Theorem . and Theorem . are satisfied.
Firstly, by condition (f), for u, v ∈ K and u≥ v, we have

Tu(t) =
∫ t


ϕ–

(∫ 

s
a(τ )f

(
u(τ )

)
dτ

)
ds +

∑m–
i= αi

∫ ξi
 ϕ–(

∫ 
s a(τ )f (u(τ ))dτ )ds

 –
∑m–

i= αi

≥
∫ t


ϕ–

(∫ 

s
a(τ )f

(
v(τ )

)
dτ

)
ds +

∑m–
i= αi

∫ ξi
 ϕ–(

∫ 
s a(τ )f (v(τ ))dτ )ds

 –
∑m–

i= αi

= Tv(t).

This proves that T is a nondecreasing operator. On the other hand, for u ≥ v and by (f)
we have

d(Tu,Tv)

= sup
≤t≤

∣∣(Tu)(t) – (Tv)(t)
∣∣ = sup

≤t≤

(
(Tu)(t) – (Tv)(t)

)

≤ sup
≤t≤

∫ t



[
ϕ–

(∫ 

s
a(τ )f

(
u(τ )

)
dτ

)
– ϕ–

(∫ 

s
a(τ )f

(
v(τ )

)
dτ

)]
ds

+
∑m–

i= αi
∫ ξi
 [ϕ–(

∫ 
s a(τ )f (u(τ ))dτ ) – ϕ–(

∫ 
s a(τ )f (v(τ ))dτ )]ds

 –
∑m–

i= αi

≤ ϕ–
(∫ 


a(τ )dτ

)(
ln(u + )(u – v + )λ – ln(v + )

)

+
∑m–

i= αiξiϕ
–(

∫ 
 a(τ )dτ )

 –
∑m–

i= αi

(
ln(u + )(u – v + )λ – ln(v + )

)

≤
[
ϕ–

(∫ 


a(τ )dτ

)
+

∑m–
i= αiξiϕ

–(
∫ 
 a(τ )dτ )

 –
∑m–

i= αi

](
ln

(u + )(u – v + )λ

v + 

)

≤ (λ + ) ln(u – v + )
ϕ–(

∫ 
 a(τ )dτ )

 –
∑m–

i= αi
.
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Since the function h(x) = ln(x + ) is nondecreasing, and condition (f), then we have

d(Tu,Tv) ≤ (λ + ) ln
(‖u – v‖ + 

)ϕ–(
∫ 
 a(τ )dτ )

 –
∑m–

i= αi
< ln

(‖u – v‖ + 
)

= ‖u – v‖ – (‖u – v‖ – ln
(‖u – v‖ + 

))
.

Let ψ(x) = x – ln(x + ). Obviously ψ : [, +∞) → [, +∞) is continuous, nondecreasing,
positive in (,+∞), ψ() = , and limx→+∞ ψ(x) = +∞. Thus, for u≥ v, we have

d(Tu,Tv) ≤ d(u, v) –ψ
(
d(u, v)

)
.

By conditions (A) and (f), we know that

(T)(t) =
∫ t


ϕ–

(∫ 

s
a(τ )f ()dτ

)
ds +

∑m–
i= αi

∫ ξi
 ϕ–(

∫ 
s a(τ )f ()dτ )ds

 –
∑m–

i= αi

≥ .

Therefore, by Theorem . we know that problem (.)-(.) has at least one nonnegative
solution. As (K ,≤) satisfies condition (.), thus, Theorem . implies the uniqueness of
the solution. By definition of T and conditions (A), (f), it is easy to prove that this solution
u(t) is strictly increasing. �

4 Example
Example . Consider the boundary value problem

⎧⎨
⎩
(ϕ(u′(t)))′ + 

 t
f (u(t)) = ,  < t < ,

u() = 
u(


 ) +


u(


 ), u′() = ,

(.)

where

ϕ(u) =

⎧⎨
⎩

u
+u , u≤ ,

u, u > ,

a(t) = 
 t

 and f (x) = [ln(x + )] for x ∈ [, +∞).

Proof Note that f is a continuous function and f (x) > .Moreover, f is nondecreasing with
respect to x since ∂f

∂x =


x+ ln(x + ) > . On the other hand, for u ≥ v, we have

ϕ
(
ln(v + )

)
=

[
ln(v + )

] = f (v)≤ f (u) =
[
ln(u + )

]
≤ (

ln(u + )(u – v + )
)

= ϕ
(
ln(u + )(u – v + )

)
.

In this case, λ =  because  < λ +  < –
∑m–

i= αi
ϕ–(

∫ 
 a(τ )dτ )

= 
 . Thus Theorem . implies that the

boundary value problem (.) has a unique positive solution which is strictly increasing.
�
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