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1 Introduction and notations
In this paper, we shall assume that readers are familiar with the standard notations of
Nevanlinna value distribution theory (see [–]). The theory of complex linear equations
has been developed since s. Many authors have investigated the second-order linear
differential equation

f ′′ +A(z)f = , (.)

whereA(z) is an entire function or ameromorphic function of finite order or finite iterated
order, and have obtainedmany results about the interaction between the solutions and the
coefficient of (.) (see [–]).What about the casewhenA(z) is an entire function of [p,q]-
order or more general growth? In the following, we will introduce some notations about
[p,q]-order, where p and q are two positive integers and satisfy p ≥ q ≥  throughout this
paper (see [–]). Firstly, for r ∈ [, +∞), we define exp r = er and expi+ r = exp(expi r),
i ∈ N, and for all sufficiently large r, we define log r = log r and logi+ r = log(logi r), i ∈ N.
Especially, we have exp r = r = log r and exp– r = log r. Secondly, we denote the linear
measure and the logarithmic measure of a set E ⊂ (, +∞) bymE =

∫
E dt andmlE =

∫
E

dt
t .

Definition . ([]) If f (z) is a meromorphic function, the [p,q]-order of f (z) is defined
by

σ[p,q](f ) = lim
r→∞

logp T(r, f )
logq r

. (.)
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Especially, if f (z) is an entire function, then the [p,q]-order of f (z) is defined by (see [, ,
, ])

σ[p,q](f ) = lim
r→∞

logp T(r, f )
logq r

= lim
r→∞

logp+M(r, f )
logq r

. (.)

Remark . Weuse σ[,](f ) = σ (f ) and σ[p,](f ) = σp(f ) to denote the order and the iterated
order of a function f (z).

Definition . ([, ]) The growth index (or the finiteness degree) of the iterated order
of a meromorphic function f (z) is defined by

i(f ) =

⎧⎪⎨
⎪⎩
 if f is rational,
min{n ∈N : σn(f ) < ∞} if f is transcendental and σn(f ) < ∞ for some n ∈ N,
∞ if with σn(f ) = ∞ for all n ∈N.

Remark . By Definition ., we can similarly give the definition of the growth index
of the iterated exponent of convergence of the zero-sequence of a meromorphic function
f (z) by iλ(f , ).

Definition . ([, ]) The [p,q] exponent of convergence of the (distinct) zero-
sequence of a meromorphic function f (z) is respectively defined by

λ[p,q](f ) = lim
r→∞

logp n(r, f )
logq r

= lim
r→∞

logp N(r, f )
logq r

, (.)

λ[p,q](f ) = lim
r→∞

logp n(r, f )
logq r

= lim
r→∞

logp N(r, f )
logq r

. (.)

Definition . ([]) The [p,q] exponent of convergence of the (distinct) pole-sequence
of a meromorphic function f (z) is respectively defined by

λ[p,q]

(

f

)
= lim

r→∞
logp n(r, f )

logq r
, (.)

λ[p,q]

(

f

)
= lim

r→∞
logp n(r, f )

logq r
. (.)

Remark . We use λ[,](f ) = λ(f ), λ[p,](f ) = λp(f ) and λ[,]( f ) = λ( f ), λ[p,]( f ) = λp( f ) to
denote the (iterated) exponent of convergence of the zero-sequence and pole-sequence of
a meromorphic function f (z).

Recently, some authors have investigated the exponent of convergence of the zero-
sequence and pole-sequence of the solutions of second-order linear differential equations
(see [–]) and have obtained the following results.

Theorem A ([]) Let A be a transcendental meromorphic function of order σ (A), where
 < σ (A) ≤ ∞, and assume that λ(A) < σ (A). Then, if f 	≡  is a meromorphic solution of
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(.), we have

σ (A)≤max

{
λ(f ),λ

(

f

)}
.

TheoremB ([]) Let A(z) be an entire functionwith i(A) = p ∈N+. Let f, f be two linearly
independent solutions of (.) and denote F = ff. Then iλ(F , )≤ p +  and

λp+(F , ) = σp+(F) =max
{
λp+(f, ),λp+(f, )

} ≤ σp(A).

If iλ(F , )≤ p, then iλ(f , ) = p+ holds for all solutions of type f = cf +cf,where cc 	= .

Theorem C ([]) Let A(z) be an entire function with  < i(A) = p < ∞, let f be any non-
trivial solution of (.), and assume λp(A, ) < σp(A) 	= . Then λp+(f , ) ≤ σp(A) ≤ λp(f , ).

Theorem D ([]) Let A(z) be an entire function with i(A) = p and σp(A) = σ < ∞. Let f
and f be two linearly independent solutions of (.) such that max{λp(f, ),λp(f, )} < σ .
Let �(z) 	≡  be any entire function for which either i(�) < p or i(�) = p and σp(�) < σ .
Then any two linearly independent solutions g and g of the differential equation y′′ +
(A(z) +�(z))y =  satisfy max{λp(g),λp(g)} ≥ σ .

Theorem E ([]) Let A be a meromorphic function with i(A) = p ∈ N+, and assume that
λp(A) < σp(A). Then, if f is a nonzero meromorphic solution of (.), we have

σp(A) ≤max

{
λp(f ),λp

(

f

)}
.

In the special case where either δ(∞, f ) >  or the poles of f are of uniformly bounded mul-
tiplicities, we can conclude that

max

{
λp+(f ),λp+

(

f

)}
≤ σp(f ) ≤

{
λp(f ),λp

(

f

)}
.

In [], Chyzhykov and his co-authors introduced the definition of ϕ-order of f (z), where
f (z) is a meromorphic function in the unit disc and used it to investigate the interaction
between the analytic coefficients and solutions of

f (k) +Ak–(z)f (k–) + · · · +A(z)f = 

in the unit disc, where the definition of ϕ-order of f (z) is given as follows.

Definition . ([]) Let ϕ : [, ) → (, +∞) be a non-decreasing unbounded function,
the ϕ-order of a meromorphic function f (z) in the unit disc is defined by

σ (f ,ϕ) = lim
r→–

log+T(r, f )
logϕ(r)

. (.)

On the basis of Definition ., it is natural for us to give the [p,q] – ϕ order of a mero-
morphic function f (z) in the complex plane.
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Definition . Let ϕ : [, +∞) → (, +∞) be a non-decreasing unbounded function, the
[p,q] – ϕ order and [p,q] – ϕ lower order of a meromorphic function f (z) are respectively
defined by

σ[p,q](f ,ϕ) = lim
r→∞

logp T(r, f )
logq ϕ(r)

, (.)

μ[p,q](f ,ϕ) = lim
r→∞

logp T(r, f )
logq ϕ(r)

. (.)

Similar to Definition ., we can also define the [p,q] – ϕ exponent of convergence of
the (distinct) zero-sequence of a meromorphic function f (z).

Definition . The [p,q] – ϕ exponent of convergence of the (distinct) zero-sequence of
a meromorphic function f (z) is respectively defined by

λ[p,q](f ,ϕ) = lim
r→∞

logp n(r, f )
logq ϕ(r)

, (.)

λ[p,q](f ,ϕ) = lim
r→∞

logp n(r, f )
logq ϕ(r)

. (.)

Proposition . If f(z), f(z) are meromorphic functions satisfying σ[p,q](f,ϕ) = a,
σ[p,q](f,ϕ) = b, then

(i) σ[p,q](f + f,ϕ) ≤max{a,b}, σ[p,q](f · f,ϕ) ≤max{a,b};
(ii) If a 	= b, σ[p,q](f + f,ϕ) =max{a,b}, σ[p,q](f · f,ϕ) =max{a,b}.

In this paper, we add two conditions onϕ(r) as follows:ϕ(r) : [, +∞) → (, +∞) is a non-
decreasing unbounded function and satisfies (i) limr→∞

logp+ r
logq ϕ(r) = , (ii) limr→∞

logq ϕ(αr)
logq ϕ(r) = 

for some α > . Throughout this paper, we assume that ϕ(r) always satisfies the above two
conditions without special instruction.

Proposition . Let ϕ(r) satisfy the above two conditions (i)-(ii).
(i) If f (z) is an entire function, then

σ[p,q](f ,ϕ) = lim
r→∞

logp T(r, f )
logq ϕ(r)

= lim
r→∞

logp+M(r, f )
logq ϕ(r)

,

μ[p,q](f ,ϕ) = lim
r→∞

logp T(r, f )
logq ϕ(r)

= lim
r→∞

logp+M(r, f )
logq ϕ(r)

.

(ii) If f (z) is a meromorphic function, then

λ[p,q](f ,ϕ) = lim
r→∞

logp n(r, f )
logq ϕ(r)

= lim
r→∞

logp N(r, f )
logq ϕ(r)

,

λ[p,q](f ,ϕ) = lim
r→∞

logp n(r, f )
logq ϕ(r)

= lim
r→∞

logp N(r, f )
logq ϕ(r)

.
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Proof (i) By the inequality T(r, f ) ≤ log+M(r, f ) ≤ R+r
R–r T(R, f ) ( < r < R), set R = αr (α > ),

we have

T(r, f )≤ log+M(r, f ) ≤ α + 
α – 

T(αr, f ). (.)

By (.) and limr→∞
logq ϕ(αr)
logq ϕ(r) = , it is easy to see that conclusion (i) holds.

(ii) Without loss of generality, assume that f () 	= , then N(r, f ) =
∫ r


n(t, f )
t dt. Since

N
(
r,

f

)
–N

(
r,


f

)
=

∫ r

r

n(t, f )
t

dt ≤ n
(
r,

f

)
log

r
r

( < r < r), (.)

then by (.) and limr→∞
logp+ r
logq ϕ(r) = , we have

lim
r→∞

logp N(r, f )
logq ϕ(r)

≤max

{
lim
r→∞

logp n(r, f )
logq ϕ(r)

, lim
r→∞

logp+ r
logq ϕ(r)

}
= lim

r→∞
logp n(r, f )
logq ϕ(r)

. (.)

On the other hand, since α > , we have

N
(

αr,

f

)
=

∫ αr



n(t, f )
t

dt ≥
∫ αr

r

n(t, f )
t

dt ≥ n
(
r,

f

)
logα. (.)

By (.) and limr→∞
logq ϕ(αr)
logq ϕ(r) = , we have

lim
r→∞

logp N(r, f )
logq ϕ(r)

≥ lim
r→∞

logp n(r, f )
logq ϕ(r)

. (.)

By (.) and (.), it is easy to see that λ[p,q](f ,ϕ) = limr→∞
logp n(r, f )
logq ϕ(r) = limr→∞

logp N(r, f )
logq ϕ(r) .

By the same proof above, we can obtain the conclusion λ[p,q](f ,ϕ) = limr→∞
logp n(r, f )
logq ϕ(r) =

limr→∞
logp N(r, f )
logq ϕ(r) . �

Remark . If ϕ(r) = r, Definitions . and . are special cases of Definitions . and ..

2 Main results
In this paper, our aim is to make use of the concept of [p,q] – ϕ order of entire functions
to investigate the growth, zeros of the solutions of equation (.).

Theorem . Let A(z) be an entire function satisfying σ[p,q](A,ϕ) > . Then σ[p+,q](f ,ϕ) =
σ[p,q](A,ϕ) holds for all non-trivial solutions of (.).

Theorem . Let A(z) be an entire function satisfying σ[p,q](A,ϕ) > , let f, f be two lin-
early independent solutions of (.) and denote F = ff. Then max{λ[p+,q](f,ϕ),λ[p+,q](f,
ϕ)} = λ[p+,q](F ,ϕ) = σ[p+,q](F ,ϕ) ≤ σ[p,q](A,ϕ). If σ[p+,q](F ,ϕ) < σ[p,q](A,ϕ), then
λ[p+,q](f ,ϕ) = σ[p,q](A,ϕ) holds for all solutions of type f = cf + cf, where cc 	= .

http://www.advancesindifferenceequations.com/content/2014/1/200
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Theorem . Let A(z) be an entire function satisfying λ[p,q](A,ϕ) < σ[p,q](A,ϕ). Then
λ[p+,q](f ,ϕ)≤ σ[p,q](A,ϕ) ≤ λ[p,q](f ,ϕ) holds for all non-trivial solutions of (.).

Theorem . Let A(z) be an entire function satisfying σ[p,q](A,ϕ) = σ > , let f and f
be two linearly independent solutions of (.) such that max{λ[p,q](f,ϕ),λ[p,q](f,ϕ)} < σ.
Let �(z) 	≡  be any entire function satisfying σ[p,q](�,ϕ) < σ. Then any two linearly in-
dependent solutions g and g of the differential equation f ′′ + (A(z) + �(z))f =  satisfy
max{λ[p,q](g,ϕ),λ[p,q](g,ϕ)} ≥ σ.

3 Some lemmas
Lemma . ([–]) Let f (z) be a transcendental entire function, and let z be a point with
|z| = r at which |f (z)| = M(r, f ). Then, for all |z| outside a set E of r of finite logarithmic
measure, we have

f (j)(z)
f (z)

=
(
vf (r)
z

)j(
 + o()

)
(j ∈ N), (.)

where vf (r) is the central index of f (z).

Lemma . ([, , ]) Let g : [, +∞) −→ R and h : [, +∞) −→ R be monotone non-
decreasing functions such that g(r) ≤ h(r) outside of an exceptional set E of finite linear
measure or finite logarithmic measure. Then, for any d > , there exists r >  such that
g(r) ≤ h(dr) for all r > r.

Lemma . ([, ]) Let f (z) =
∑∞

n= anzn be an entire function, μ(r) be the maximum
term, i.e., μ(r) =max{|an|rn;n = , , . . .}, and let vf (r) be the central index of f .

(i) If |a| 	= , then

logμ(r) = log |a| +
∫ r



vf (t)
t

dt. (.)

(ii) For r < R, we have

M(r, f ) < μ(r)
{
vf (R) +

R
R – r

}
. (.)

Lemma . Let f (z) be an entire function satisfying σ[p,q](f ,ϕ) = σ and μ[p,q](f ,ϕ) = μ,
and let vf (r) be the central index of f , then

lim
r→∞

logp vf (r)
logq ϕ(r)

= σ, lim
r→∞

logp vf (r)
logq ϕ(r)

= μ.

Proof Let f (z) =
∑∞

n= anzn. Without loss of generality, we can assume that |a| 	= . From
(.), for any  < α < α, we have

logμ(αr) = log |a| +
∫ αr



vf (t)
t

dt ≥ log |a| +
∫ αr

r

vf (t)
t

dt ≥ log |a| + vf (r) logα.

By the Cauchy inequality, it is easy to see μ(αr) ≤M(αr, f ), hence

vf (r) logα ≤ logM(αr, f ) + c, (.)

http://www.advancesindifferenceequations.com/content/2014/1/200
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where c >  is a constant. By Proposition ., (.) and limr→∞
logq ϕ(αr)
logq ϕ(r) =  ( < α < α),

we have

lim
r→∞

logp vf (r)
logq ϕ(r)

≤ lim
r→∞

logp+M(αr, f )
logq ϕ(αr)

· lim
r→∞

logq ϕ(αr)
logq ϕ(r)

= σ[p,q](f ,ϕ), (.)

lim
r→∞

logp vf (r)
logq ϕ(r)

≤ lim
r→∞

logp+M(αr, f )
logq ϕ(αr)

· lim
r→∞

logq ϕ(αr)
logq ϕ(r)

= μ[p,q](f ,ϕ). (.)

On the other hand, set R = αr, by (.), we have

M(r, f ) < μ(r)
(
vf (αr) +

α

α – 

)
= |avf (αr)|rvf (αr)

(
vf (αr) +

α

α – 

)
. (.)

Since {|an|}∞n= is a bounded sequence, by (.), we have

logp+M(r, f ) ≤ logp vf (αr)
[
 +

logp+ vf (αr)
logp vf (αr)

]
+ logp+ r + c, (.)

where c >  is a constant. By Proposition ., (.), limr→∞
logq ϕ(αr)
logq ϕ(r) =  ( < α < α) and

limr→∞
logp+ r
logq ϕ(r) = , we have

σ[p,q](f ,ϕ) = lim
r→∞

logp+M(r, f )
logq ϕ(r)

≤ lim
r→∞

logp vf (αr)
logq ϕ(αr)

= lim
r→∞

logp vf (r)
logq ϕ(r)

, (.)

μ[p,q](f ,ϕ) = lim
r→∞

logp+M(r, f )
logq ϕ(r)

≤ lim
r→∞

logp vf (αr)
logq ϕ(αr)

= lim
r→∞

logp vf (r)
logq ϕ(r)

. (.)

By (.), (.), (.) and (.), we obtain the conclusion of Lemma .. �

Lemma . Let f(z) and f(z) be entire functions of [p,q] – ϕ order and denote F = ff.
Then

λ[p,q](F ,ϕ) =max
{
λ[p,q](f,ϕ),λ[p,q](f,ϕ)

}
.

Proof Let n(r,F), n(r, f) and n(r, f) be unintegrated counting functions for the number of
zeros of F(z), f(z) and f(z). For any r > , it is easy to see

n(r,F) ≥max
{
n(r, f),n(r, f)

}
. (.)

By Definition . and (.), we have

λ[p,q](F ,ϕ)≥max
{
λ[p,q](f,ϕ),λ[p,q](f,ϕ)

}
. (.)

On the other hand, since the zeros of F(z) must be the zeros of f(z) or the zeros of f(z),
for any r > , we have

n(r,F) ≤ n(r, f) + n(r, f)≤ max
{
n(r, f),n(r, f)

}
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/200


Shen et al. Advances in Difference Equations 2014, 2014:200 Page 8 of 14
http://www.advancesindifferenceequations.com/content/2014/1/200

By Definition . and (.), we have

λ[p,q](F ,ϕ)≤max
{
λ[p,q](f,ϕ),λ[p,q](f,ϕ)

}
. (.)

Therefore, by (.) and (.), we have λ[p,q](F ,ϕ) = {λ[p,q](f,ϕ),λ[p,q](f,ϕ)}. �

Lemma . Let f (z) be a transcendental meromorphic function satisfying σ[p,q](f ,ϕ) = σ,
where ϕ(r) only satisfies logp+ r

logq ϕ(r) = , and let k be any positive integer. Then, for any ε > ,
there exists a set E having finite linear measure such that for all r /∈ E, we have

m
(
r,
f (k)

f

)
=O

{
expp–

{
(σ + ε) logq ϕ(r)

}}
.

Proof Set k = , since σ[p,q](f ,ϕ) = σ < ∞, for sufficiently large r and for any given ε > ,
we have

T(r, f ) < expp
{
(σ + ε) logq ϕ(r)

}
. (.)

By the lemma of logarithmic derivative, we have

m
(
r,
f ′

f

)
=O

{
logT(r, f ) + log r

}
(r /∈ E), (.)

where E ⊂ [, +∞) is a set of finite linear measure, not necessarily the same at each oc-
currence. By (.), (.) and logp+ r

logq ϕ(r) = , we have m(r, f
′
f ) = O{expp–{(σ + ε) logq ϕ(r)}}

(r /∈ E).
We assume that m(r, f

(k)

f ) = O{expp–{(σ + ε) logq ϕ(r)}} (r /∈ E) holds for any positive
integer k. By N(r, f (k)) ≤ (k + )N(r, f ), for all r /∈ E, we have

T
(
r, f (k)

)
=m

(
r, f (k)

)
+N

(
r, f (k)

) ≤m
(
r,
f (k)

f

)
+m(r, f ) + (k + )N(r, f )

≤ (k + )T(r, f ) +O
{
expp–

{
(σ + ε) logq ϕ(r)

}}
. (.)

By (.) and (.), for r /∈ E, we have

m
(
r,
f (k+)

f

)
≤m

(
r,
f (k+)

f (k)

)
+m

(
r,
f (k)

f

)
=O

{
expp–

{
(σ + ε) logq ϕ(r)

}}
. �

Lemma . ([]) Let f (z) be an entire function of [p,q]-order, and f (z) can be represented
by the form

f (z) =U(z)eV (z),

where U(z) and V (z) are entire functions such that

λ[p,q](f ) = λ[p,q](U) = σ[p,q](U), σ[p,q](f ) =max
{
σ[p,q](U),σ[p,q]

(
eV

)}
.

If f (z) is an entire function of [p,q] – ϕ order, we have a similar result as follows.

http://www.advancesindifferenceequations.com/content/2014/1/200
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Lemma . Let f (z) be an entire function of [p,q] – ϕ order, and f (z) can be represented
by the form

f (z) =U(z)eV (z),

where U(z) and V (z) are entire functions of [p,q] – ϕ order such that

λ[p,q](f ,ϕ) = λ[p,q](U ,ϕ) = σ[p,q](U ,ϕ),

σ[p,q](f ,ϕ) =max
{
σ[p,q](U ,ϕ),σ[p,q]

(
eV ,ϕ

)}
.

4 Proofs of Theorems 2.1-2.4

Proof of Theorem . Set σ[p,q](A,ϕ) = σ > . First, we prove that every solution of (.)
satisfies σ[p+,q](f ,ϕ) ≤ σ. If f (z) is a polynomial solution of (.), it is easy to know
that σ[p+,q](f ,ϕ) =  ≤ σ holds. If f (z) is a transcendental solution of (.), by (.) and
Lemma ., there exists a set E ⊂ (, +∞) having finite logarithmic measure such that for
all z satisfying |z| = r /∈ [, ]∪ E and |f (z)| =M(r, f ), we have

(
vf (r)
r

)(
 + o()

) ≤ expp+

{(
σ +

ε



)
logq ϕ(r)

}
.

And hence, we have

vf (r) ≤ r expp+
{
(σ + ε) logq ϕ(r)

}
(r /∈ E). (.)

By (.) and Lemma ., there exists some α ( < α < α) such that for all r ≥ r, we have

vf (r) ≤ αr expp+
{
(σ + ε) logq ϕ(αr)

}
. (.)

By Lemma ., (.) and the two conditions on ϕ(r), we have

σ[p+,q](f ,ϕ) = lim
r→∞

logp+ vf (r)
logq ϕ(r)

≤ σ. (.)

On the other hand, by (.), we have

m(r,A) =m
(
r, –

f ′′

f

)
=O

{
log rT(r, f )

}
. (.)

By (.), we have σ[p,q](A,ϕ) ≤ σ[p+,q](f ,ϕ). Therefore, we have that σ[p+,q](f ,ϕ) =
σ[p,q](A,ϕ) holds for all non-trivial solutions of (.). �

Proof of Theorem . Set σ[p,q](A,ϕ) = σ > , by Theorem ., we have σ[p+,q](f,ϕ) =
σ[p+,q](f,ϕ) = σ[p,q](A,ϕ) = σ. Hence, we have

λ[p+,q](F ,ϕ)≤ σ[p+,q](F ,ϕ) ≤max
{
σ[p+,q](f,ϕ),σ[p+,q](f,ϕ)

}
= σ[p,q](A,ϕ). (.)

http://www.advancesindifferenceequations.com/content/2014/1/200
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By Lemma . and (.), we have

max
{
λ[p+,q](f,ϕ),λ[p+,q](f,ϕ)

}
= λ[p+,q](F ,ϕ)≤ σ[p+,q](F ,ϕ) ≤ σ[p,q](A,ϕ). (.)

It remains to show that λ[p+,q](F ,ϕ) = σ[p+,q](F ,ϕ). By (.), we have (see [, pp.-])
that all zeros of F(z) are simple and that

F = C
((

F ′

F

)

– 
(
F ′′

F

)
– A

)–

, (.)

where C 	=  is a constant. Hence,

T(r,F) = T
(
r,

(
F ′

F

)

– 
(
F ′′

F

)
– A

)
+O()

≤O
(
N

(
r,

F

)
+m

(
r,
F ′

F

)
+m

(
r,
F ′′

F

)
+m(r,A)

)
. (.)

By Lemma ., for all r /∈ E, we have m(r,A) = m(r, f
′′
f ) = O{expp{(σ + ε) logq ϕ(r)}},

m(r, F ′
F ) = O{expp{(σ + ε) logq ϕ(r)}} and m(r, F ′′

F ) = O{expp{(σ + ε) logq ϕ(r)}}. By (.),
for all r /∈ E, we have

T(r,F) =O
{
N

(
r,

F

)
+ expp

{
(σ + ε) logq ϕ(r)

}}
. (.)

Let us assume λ[p+,q](F ,ϕ) < β < σ[p+,q](F ,ϕ). Since all zeros of F(z) are simple, we have

N
(
r,

F

)
=N

(
r,

F

)
=O

{
expp+

{
β logq ϕ(r)

}}
. (.)

By (.) and (.), for all r /∈ E, we have

T(r,F) =O
{
expp+

{
β logq ϕ(r)

}}
.

By Definition . and Lemma ., we have σ[p+,q](F ,ϕ)≤ β < σ[p+,q](F ,ϕ), this is a contra-
diction. Therefore, the first assertion is proved.
If σ[p+,q](F ,ϕ) < σ[p,q](A,ϕ), let us assume that λ[p+,q](f ,ϕ) < σ[p,q](A,ϕ) holds for any

solution of type f = cf + cf (cc 	= ). We denote F = ff and F = ff, then we have
λ[p+,q](F ,ϕ) < σ[p,q](A,ϕ) and λ[p+,q](F,ϕ) < σ[p,q](A,ϕ). Since (.) holds for F(z) and F(z)
and F = ff = (cf + cf)f = cf  + cF , we have

T(r, f) =O
(
T(r,F) + T(r,F)

)

=O
{
N

(
r,


F

)
+N

(
r,

F

)
+ expp

{
(σ + ε) logq ϕ(r)

}}
. (.)

By λ[p+,q](F ,ϕ) < σ[p,q](A,ϕ), λ[p+,q](F,ϕ) < σ[p,q](A,ϕ) and (.), for some β < σ[p,q](A,ϕ),
we have

T(r, f) =O
{
expp+

{
β logq ϕ(r)

}}
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/200
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By Definition . and (.), we have σ[p+,q](f,ϕ) ≤ β < σ[p,q](A,ϕ), this is a contradiction
with Theorem .. Therefore, we have that λ[p+,q](f ,ϕ) = σ[p,q](A,ϕ) holds for all solutions
of type f = cf + cf, where cc 	= . �

Proof of Theorem . By Theorem . and λ[p+,q](f ,ϕ) ≤ σ[p+,q](f ,ϕ), it is easy to know
that λ[p+,q](f ,ϕ) ≤ σ[p,q](A,ϕ) holds. It remains to show that σ[p,q](A,ϕ) ≤ λ[p,q](f ,ϕ). Let
us assume σ[p,q](A,ϕ) > λ[p,q](f ,ϕ). By (.) and a similar proof of Theorem . in [, p.],
we have

T
(
r,

f
f ′

)
=O

{
N

(
r,

f

)
+N

(
r,


A

)}
(r /∈ E). (.)

By (.), the assumption σ[p,q](A,ϕ) > λ[p,q](f ,ϕ) and λ[p,q](A,ϕ) ≤ σ[p,q](A,ϕ), for some
β < σ[p,q](A,ϕ), we have

T
(
r,

f
f ′

)
=O

{
expp

{
β logq ϕ(r)

}}
. (.)

By Definition . and (.), we have σ[p,q]( ff ′ ,ϕ) = σ[p,q]( f
′
f ,ϕ) ≤ β < σ[p,q](A,ϕ). By

–A(z) =
(
f ′

f

)′
+

(
f ′

f

)

,

we have σ[p,q](A,ϕ) ≤ σ[p,q]( f
′
f ,ϕ) < σ[p,q](A,ϕ), this is a contradiction. Therefore, we have

that λ[p+,q](f ,ϕ) ≤ σ[p,q](A,ϕ) ≤ λ[p,q](f ,ϕ) holds for all non-trivial solutions of (.). �

Proof of Theorem . As a similar proof of Theorem . in [], we denote F = ff and
F = gg. Let us assume

λ[p,q](F,ϕ) =max
{
λ[p,q](g,ϕ),λ[p,q](g,ϕ)

}
< σ.

By Theorem ., we have σ[p+,q](F ,ϕ) ≤ max{σ[p+,q](f,ϕ),σ[p+,q](f,ϕ)} = σ, and hence,
by Lemma ., for any integer k ≥  and for any ε > , we have

m
(
r,
F (k)

F

)
=O

{
expp

{
(σ + ε) logq ϕ(r)

}}
(r /∈ E).

Furthermore, by Theorem ., we have λ[p,q](F ,ϕ) =max{λ[p,q](f,ϕ),λ[p,q](f,ϕ)} < σ, and
hence we have N(r, F ) = O{expp{β logq ϕ(r)}} for some β < σ. And the [p,q] – ϕ order of
the function A(z) implies that

T(r,A) =O
{
expp

{
(σ + ε) logq ϕ(r)

}}
(r → ∞).

By (.), we obtain

T(r,F) =O
{
N

(
r,

F

)
+ expp

{
(σ + ε) logq ϕ(r)

}}
=O

{
expp

{
(β logq ϕ(r)

}}
. (.)
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By Definition . and (.), we have σ[p,q](F ,ϕ)≤ σ. On the other hand, by

A =
(
F ′

F

)

– 
F ′′

F
–


F , (.)

we have σ[p,q](A,ϕ) = σ ≤ σ[p,q](F ,ϕ), hence σ[p,q](F ,ϕ) = σ. The same reasoning is valid
for the function F, we have

(A +�) =
(
F ′


F

)

– 
F ′′

F

–

F

, (.)

and σ[p,q](F,ϕ) = σ. Since λ[p,q](F ,ϕ) < σ and λ[p,q](F,ϕ) < σ, by Lemma ., we may
write

F =QeP, F = ReS, (.)

where P, Q, R, S are entire functions satisfying σ[p,q](Q,ϕ) = λ[p,q](F ,ϕ) < σ, σ[p,q](R,ϕ) =
λ[p,q](F,ϕ) < σ and σ[p,q](eP,ϕ) = σ[p,q](eS,ϕ) = σ. Substituting (.) into (.) and (.),
we have

A = –


QeP
+G(z), (.)

(A + π ) = –


ReS
+G(z), (.)

where G(z) and G(z) are meromorphic functions satisfying σ[p,q](Gj,ϕ) < σ (j = , ).
Equation (.) subtracting (.), we have


ReS

–


QeP
=G(z), (.)

where G(z) is a meromorphic function satisfying σ[p,q](G,ϕ) < σ. From (.), we have

e–S +He–P =H, (.)

whereH(z) andH(z) aremeromorphic functions satisfying σ[p,q](Hj,ϕ) < σ (j = , ), and
H = – R

Q . Deriving (.), we have

–S′e–S +
(
H ′

 – P′H
)
e–P =H, (.)

where H(z) is a meromorphic function satisfying σ[p,q](H,ϕ) < σ. Eliminating e–S by
(.) and (.), we have

(
H ′

 – 
(
P′ – S′)H

)
e–P =H, (.)

where H(z) is a meromorphic function satisfying σ[p,q](H,ϕ) < σ. Since σ[p,q](eP,ϕ) = σ,
therefore by (.), we have H ′

 – (P′ – S′)H ≡ , thus we have H = ce(P–S), c 	= . Hence

F

F

=
Q

R e
(P–S) = –


c
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/200
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From (.), (.) and (.), we have


(
A +� +


c
A

)
=

(
F ′


F

)

– 
F ′′

F

+

c

(
F ′

F

)

–

c
F ′′

F
.

By Lemma ., we obtain

T
(
r,

(
 +


c

)
A +�

)
=m

(
r,

(
 +


c

)
A +�

)

=O
{
expp–

{
(σ + ε) logq ϕ(r)

}}
(r → ∞).

This implies

σ[p,q]

((
 +


c

)
A +�,ϕ

)
= .

Hence, by Proposition ., we have c = –. Since F = F
 , we have

F ′

F
=
F ′


F
,

F ′′

F
=
F ′′

F

.

From (.) and (.), we have � ≡ , this is a contradiction. Therefore, we obtain the
conclusion of Theorem .. �
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