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Abstract
We study positive almost periodic solutions for a delayed Nicholson’s blowflies system
with nonlinear density-dependent mortality terms and patch structure. By applying
the differential inequality technique and the Lyapunov functional, we derive sufficient
conditions for the existence and global exponential stability of positive almost
periodic solutions. We also give an example and its numerical simulations to support
the theoretical effectiveness.

Keywords: nonlinear density-dependent mortality term; delayed Nicholson’s
blowflies system; patch structure; positive almost periodic solution

1 Introduction
To describe the population of Australian sheep-blowfly and agree well with the experi-
mental data of Nicholson [], Gurney et al. [] proposed the following famous Nicholson’s
blowflies equation

N ′(t) = –δN(t) + pN(t – τ )e–aN(t–τ ). (.)

Here, N(t) is the size of the population at time t, p is the maximum per capita daily egg
production, 

a is the size at which the population reproduces at its maximum rate, δ is the
per capita daily adult death rate, and τ is the generation time. The results on the dynam-
ics behavior of this equation and its modifications are abundant [–] and systematically
collected and compared by Berezansky et al. []. In the real world phenomena, since the
almost periodic variation of the environment plays a crucial role in many biological and
ecological dynamical systems and is more frequent and general than the periodic varia-
tion of the environment, some influential theory and results have been obtained in [,
]. Furthermore, there have been extensive results on the problem of the existence of
positive almost periodic solutions for Nicholson’s blowflies equation without nonlinear
density-dependentmortality term in the literature [–]which are considered onlywith
a linear density-dependent mortality term. Recently, considering that new fishery mod-
els with nonlinear density-dependent mortality rates are successfully applied, Berezansky
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et al. [] presented the following Nicholson’s blowflies model with a nonlinear density-
dependent mortality term:

N ′(t) = –D
(
N(t)

)
+ PN(t – τ )e–N(t–τ ), (.)

where P is a positive constant and the function D might have one of the following forms:
D(N) = aN

N+b orD(N) = a–be–N with positive constants a, b. Up to present, several authors
in [–] have researched the permanence and existence of positive periodic and almost
periodic solutions for model (.) and its generalized model. Moreover, Wang [] stud-
ied the exponential extinction for the following delayed Nicholson’s blowflies system with
nonlinear density-dependent mortality terms and patch structure:

N ′
i (t) = –Dii

(
t,Ni(t)

)
+

n∑
j=,j �=i

Dij
(
t,Nj(t)

)
+

l∑
j=

cij(t)Ni
(
t – τij(t)

)
e–γij(t)Ni(t–τij(t)), (.)

where

Dij(t,N) =
aij(t)N
bij(t) +N

or Dij(t,N) = aij(t) – bij(t)e–N .

However, as far as we know, there exist few works on the global exponent stability of pos-
itive almost periodic solutions for a Nicholson’s blowflies system with nonlinear density-
dependent mortality terms and patch structure. Motivated by the above arguments, in
this paper, we investigate the existence and global exponential stability of positive almost
periodic solutions for the following delayed Nicholson’s blowflies system with nonlinear
density-dependent mortality terms and patch structure:

N ′
i (t) = –aii(t) + bii(t)e–Ni(t) +

n∑
j=,j �=i

(
aij(t) – bij(t)e–Nj(t)

)

+
l∑
j=

cij(t)Ni
(
t – τij(t)

)
e–γij(t)Ni(t–τij(t)), (.)

where aij,bij, cim,γim : R→ (, +∞) and τim : R→ R+ are continuous almost periodic func-
tions with i, j ∈ � := {, , . . . ,n}, m ∈ ϒ := {, , . . . , l}. It is easy to see that (.) is a special
case of (.) with D(N) = a – be–N .
It is convenient and simple to introduce some notations. Given a bounded continuous

function f defined on R, we denote f + and f – as

f – = inf
t∈R f (t), f + = sup

t∈R
f (t).

It will be assumed that ri = max≤j≤l τ
+
ij >  and, without loss of generality (after scal-

ing), that γ –
ij ≥ , i ∈ �, j ∈ ϒ . Let Rn(Rn

+) be the set of all (nonnegative) real vectors,
we will use x = (x, . . . ,xn)T ∈ Rn to denote a column vector, in which the symbol (T )
denotes the transpose of a vector. We let |x| denote the absolute-value vector given by
|x| = (|x|, . . . , |xn|)T and define ‖x‖ = max≤i≤n |xi|. Denote C =

∏n
i=C([–ri, ],R) and

C+ =
∏n

i=C([–ri, ],R+) as a Banach space equipped with the supremum norm defined
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by ‖ϕ‖ = sup–ri≤t≤max≤i≤n |ϕi(t)| for all ϕ(t) = (ϕ(t), . . . ,ϕn(t))T ∈ C (or ∈ C+). If xi(t) is
defined on [t – ri,ν) with t, ν ∈ R and i ∈ �, then we define xt ∈ C as xt = (xt , . . . ,xnt )T ,
where xit(θ ) = xi(t + θ ) for all θ ∈ [–ri, ] and i ∈ �.
It is biologically reasonable to assume that only positive solutions of model (.) are

meaningful and therefore admissible. So we consider the admissible initial conditions

Nt = ϕ, ϕ = (ϕ, . . . ,ϕn)T ∈ C+ and ϕi() > , i ∈ �. (.)

Define a continuous map f = (f, f, . . . , fn)T : R×C+ → R by setting

fi(t,ϕ) = –aii(t) + bii(t)e–ϕi() +
n∑

j=,j �=i

(
aij(t) – bij(t)e–ϕj()

)

+
l∑
j=

cij(t)ϕi
(
–τij(t)

)
e–γij(t)ϕi(–τij(t)), i ∈ �.

Then f is a locally Lipschitz map with respect to ϕ ∈ C+, which ensures the existence and
uniqueness of the solution of (.) with admissible initial conditions (.).
We denoteNt(t,ϕ) (N(t; t,ϕ)) for a solution of the initial value problem (.) and (.).

Also, let [t,η(ϕ)) be the maximal right-interval of existence of Nt(t,ϕ).
The remaining part of this paper is structured as follows. We devote Section  to some

definitions and lemmas on the bounded set and almost periodicity for system (.) which
help to deduce the existence, uniqueness and global exponential stability of positive almost
periodic solutions in Section . In Section  an example and its numerical simulations are
provided to verify our results obtained in the previous sections.

2 Preliminary results
As it is easy to analyze the property of functions –x

ex and xe–x in the range R+, one can get
that there exist only κ ∈ (, ) and κ̃ ∈ (, +∞) such that

 – κ

eκ
=


e
, sup

x≥κ

∣∣∣∣ – x
ex

∣∣∣∣ = 
e
, κe–κ = κ̃e–κ̃ . (.)

The following definitions and lemmas will be used to prove our main results in Section .

Definition . (see [, ]) Let u(t) : R −→ Rn be continuous in t. u(t) is said to be
almost periodic on R if for any ε > , the set T(u, ε) = {δ : ‖u(t+δ)–u(t)‖ < ε for all t ∈ R}
is relatively dense, i.e., for any ε > , it is possible to find a real number l = l(ε) >  such that
for any interval with length l(ε), there exists a number δ = δ(ε) in this interval such that
‖u(t + δ) –u(t)‖ < ε for all t ∈ R. From the theory of almost periodic functions in [, ],
it follows that for any ε > , it is possible to find a real number l = l(ε) > ; for any interval
with length l(ε), there exists a number δ = δ(ε) in this interval such that⎧⎪⎪⎨⎪⎪⎩

|aij(t + δ) – aij(t)| < ε, |bij(t + δ) – bij(t)| < ε,

|cim(t + δ) – cim(t)| < ε,

|τim(t + δ) – τim(t)| < ε, |γim(t + δ) – γim(t)| < ε

(.)

for all t ∈ R, i, j ∈ � andm ∈ ϒ .
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Lemma . Suppose that there exists a positive constant M such that

γ +
ij ≤ κ̃

M
, i ∈ �, j ∈ ϒ , (.)

supt∈R{–aii(t) + bii(t)e–M +
∑n

j=,j �=i aij(t) +
∑l

j=
cij(t)
γij(t)


e } < , i ∈ �,

inft∈R,s∈[,κ]{–aii(t) + bii(t)e–s +
∑n

j=,j �=i(aij(t) – bij(t))
+

∑l
j=

cij(t)
γij(t)

se–s} > , i ∈ �.

⎫⎪⎪⎬⎪⎪⎭ (.)

Then every solution N(t; t,ϕ) of (.) and (.) is positive and bounded on [t,η(ϕ)) and
η(ϕ) = +∞.Moreover, there exists tϕ > t such that

κ <Ni(t; t,ϕ) <M for all t ≥ tϕ , i ∈ �. (.)

Proof LetN(t) =N(t; t,ϕ) = (N(t),N(t), . . . ,Nn(t))T for all t ∈ [t,η(ϕ)). Firstly, we assert
that

Ni(t) >  for all t ∈ [
t,η(ϕ)

)
, i ∈ �. (.)

With the reduction to absurdity, assume that there exist s ∈ [t,η(ϕ)) and i ∈ � such that

Ni(s) = , Nj(t) >  for all t ∈ [t, s), j ∈ �. (.)

Calculating the derivative of Ni(t), (.), the second inequalities of (.) and (.) imply
that

 ≥ N ′
i (s)

= –aii(s) + bii(s)e–Ni(s) +
n∑

j=,j �=i

(
aij(s) – bij(s)e–Nj(s)

)

+
l∑
j=

cij(s)Ni
(
s – τij(s)

)
e–γij(s)Ni(s–τij(s))

≥ –aii(s) + bii(s) +
n∑

j=,j �=i

(
aij(s) – bij(s)

)

≥ inf
t∈R,s∈[,κ]

{
–aii(t) + bii(t)e–s +

n∑
j=,j �=i

(
aij(t) – bij(t)

)
+

l∑
j=

cij(t)
γij(t)

se–s
}

> ,

which is paradoxical and implies that (.) holds.
Next we show that N(t) is bounded on [t,η(ϕ)). For each t ∈ [t – ri,η(ϕ)), i ∈ �, we

define

Mi(t) =max
{
ξ : ξ ≤ t,Ni(ξ ) = max

t–ri≤s≤t
Ni(s)

}
.
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In the contrary case, suppose that there exists i ∈ � such that Ni(t) is unbounded on
[t,η(ϕ)). Then, observeMi(t)→ η(ϕ) as t → η(ϕ), we get

lim
t→η(ϕ)

Ni
(
M(t)

)
= +∞. (.)

On the other hand,

Ni
(
M(t)

)
= max

t–ri≤s≤t
Ni(s), and so N ′

i
(
M(t)

) ≥ , whereM(t) > t.

Hence, together with the reality that supu≥ ue–u = 
e and (.), we have

 ≤ N ′
i
(
M(t)

)
= –aii

(
M(t)

)
+ bii

(
M(t)

)
e–Ni(M(t))

+
n∑

j=,j �=i

(
aij

(
M(t)

)
– bij

(
M(t)

)
e–Nj(M(t)))

+
l∑
j=

cij(M(t))
γij(M(t))

γij
(
M(t)

)
Ni

(
M(t) – τij

(
M(t)

))
e–γij(M(t))Ni(M(t)–τij(M(t)))

≤ –aii
(
M(t)

)
+ bii

(
M(t)

)
e–Ni(M(t)) +

n∑
j=,j �=i

aij
(
M(t)

)

+
l∑
j=

cij(M(t))
γij(M(t))


e
, whereM(t) > t.

Taking t → η(ϕ) results in

 ≤ lim
t→η(ϕ)

[
–aii(t) +

n∑
j=,j �=i

aij(t) +
l∑
j=

cij(t)
γij(t)


e

]

≤ sup
t∈R

{
–aii(t) + bii(t)e–M +

n∑
j=,j �=i

aij(t) +
l∑
j=

cij(t)
γij(t)


e

}
< ,

which is absurd and implies thatN(t) is bounded on [t,η(ϕ)). FromTheorem .. in [],
we easily obtain η(ϕ) = +∞.
Another step is to prove that there exists s ∈ [t, +∞) such that

Ni(s) <M, i ∈ �. (.)

Otherwise, there exists i ∈ � such that

Ni(t) ≥ M for all t ∈ [t, +∞),

http://www.advancesindifferenceequations.com/content/2014/1/205
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which together with the first inequalities of (.) and (.) implies that

N ′
i (t) = –aii(t) + bii(t)e–Ni(t) +

n∑
j=,j �=i

(
aij(t) – bij(t)e–Nj(t)

)

+
l∑
j=

cij(t)
γij(t)

γij(t)Ni
(
t – τij(t)

)
e–γij(t)Ni(t–τij(t))

≤ –aii(t) + bii(t)e–M +
n∑

j=,j �=i
aij(t) +

l∑
j=

cij(t)
γij(t)


e

<  for all t ≥ t.

It leads to

Ni(t) = Ni(t) +
∫ t

t
N ′

i (s)ds

≤ Ni(t) + sup
t∈R

{
–aii(t) + bii(t)e–M +

n∑
j=,j �=i

aij(t) +
l∑
j=

cij(t)
γij(t)


e

}
× (t – t) for all t ≥ t.

Thus

lim
t→+∞Ni(t) = –∞,

which contradicts (.). Hence (.) holds. We now prove that

Ni(t) <M for all t ∈ [s, +∞), i ∈ �. (.)

Suppose, for the sake of contradiction, that there exist s ∈ (s, +∞) and i ∈ � such that

Ni(s) =M, Nj(t) <M for all t ∈ [s, s), j ∈ �. (.)

Calculating the derivative of Ni(t), together with the fact that supx∈R xe–x = 
e , (.), the

first inequalities of (.) and (.) imply that

 ≤ N ′
i (s)

= –aii(s) + bii(s)e–Ni(s) +
n∑

j=,j �=i

(
aij(s) – bij(s)e–Nj(s)

)

+
l∑
j=

cij(s)
γij(s)

γij(s)Ni
(
s – τij(s)

)
e–γij(s)Ni(s–τij(s))

≤ –aii(s) + bii(s)e–M +
n∑

j=,j �=i
aij(s) +

l∑
j=

cij(s)
γij(s)


e

< ,

which is a contradiction and implies that (.) holds.

http://www.advancesindifferenceequations.com/content/2014/1/205
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Finally, we show that li = lim inft→+∞ Ni(t) > κ for all i ∈ �. By a way of contradiction,
we assume that there exists i ∈ � such that  ≤ li ≤ κ . By the fluctuation lemma [,
Lemma A..], there exists a sequence {tk}k≥ such that

tk → +∞, Ni(tk) → lim inf
t→+∞ Ni(t), N ′

i (tk) →  as k → +∞.

Since {Ntk }k≥ is bounded and equicontinuous, by the Ascoli-Arzelà theorem, there exists
a subsequence, still denoted by itself for simplicity of notation, such that

Ntk → ϕ∗ for some ϕ∗ ∈ C+.

Moreover,

ϕ∗
j () = lj ≤ ϕ∗

j (θ ) ≤ M for θ ∈ [–rj, ), j ∈ �.

Without loss of generality, we assume that all aij(tk), bij(tk), cim(tk), γim(tk) and τim(tk) are
convergent to a∗

ij, b∗
ij, c∗im, γ ∗

im and τ ∗
im, respectively, and i, j ∈ �,m ∈ ϒ . This can be achieved

because of almost periodicity. Then by (.) and (.) we arrive at

li ≤ γ ∗
ij ϕ

∗
i
(
–τ ∗

ij
) ≤ γ ∗

ij M ≤ κ̃ , j ∈ ϒ .

It follows from

N ′
i (tk) = –aii(tk) + bii(tk)e–Ni(tk ) +

n∑
j=,j �=i

(
aij(tk) – bij(tk)e–Nj(tk )

)

+
l∑
j=

cij(tk)
γij(tk)

γij(tk)Ni
(
tk – τij(tk)

)
e–γij(tk )Ni(tk–τij(tk ))

that (taking limits)

 = –a∗
ii + b∗

iie
–li +

n∑
j=,j �=i

(
a∗
ij – b∗

ije
–ϕ∗

j ()
)
+

l∑
j=

c∗ij
γ ∗
ij

γ ∗
ij ϕ

∗
i
(
–τ ∗

ij
)
e–γ ∗

ij ϕ
∗
i (–τ∗

ij )

≥ –a∗
ii + b∗

iie
–li +

n∑
j=,j �=i

(
a∗
ij – b∗

ij
)
+

l∑
j=

c∗ij
γ ∗
ij
lie–li

≥ inf
t∈R,s∈[,κ]

{
–aii(t) + bii(t)e–s +

n∑
j=,j �=i

(
aij(t) – bij(t)

)
+

l∑
j=

cij(t)
γij(t)

se–s
}

> ,

which is a contradiction. This proves that li > κ for all i ∈ �. Hence, from (.), we can
choose tϕ > t such that

κ <Ni(t; t,ϕ) <M for all t ≥ tϕ , i ∈ �.

The proof is now completed. �

http://www.advancesindifferenceequations.com/content/2014/1/205
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Lemma . Suppose that (.) and (.) hold, and

sup
t∈R

{
–bii(t)e–M +

n∑
j=,j �=i

bij(t)e–κ +

e

l∑
j=

cij(t)

}
< , i ∈ �. (.)

Moreover, let N(t) = N(t; t,ϕ) = (N(t),N(t), . . . ,Nn(t))T be a solution of equation (.)
with initial condition (.) and ϕ′

i is bounded continuous on [–ri, ], i ∈ �. Then, for any
ε > , there exists l = l(ε) >  such that every interval [α,α + l] contains at least one number
δ for which there exists N >  satisfies

∥∥N(t + δ) –N(t)
∥∥ ≤ ε for all t >N . (.)

Proof For all i ∈ �, define continuous functions �i(u) by setting

�i(u) = –
[
bii(t)e–M – u

]
+

n∑
j=,j �=i

bij(t)e–κ +

e

l∑
j=

cij(t)euri for all t ∈ R,u ∈ [, ].

Then, from (.), we obtain

�i() = –bii(t)e–M +
n∑

j=,j �=i
bij(t)e–κ +


e

l∑
j=

cij(t) <  for all t ∈ R, i ∈ �,

which implies that there exist two constants η >  and λ ∈ (, ] such that

�i(λ) = –
[
bii(t)e–M – λ

]
+

n∑
j=,j �=i

bij(t)e–κ +

e

l∑
j=

cij(t)eλri

< –η <  for all t ∈ R, i ∈ �. (.)

For i ∈ �, t ∈ (–∞, t – ri], we add the definition of Ni(t) with Ni(t)≡Ni(t – ri). Set

εi(δ, t) =
[
bii(t + δ) – bii(t)

]
e–Ni(t+δ) –

n∑
j=,j �=i

[
bij(t + δ) – bij(t)

]
e–Nj(t+δ)

+
l∑
j=

[
cij(t + δ) – cij(t)

]
Ni

(
t + δ – τij(t + δ)

)
e–γij(t+δ)Ni(t+δ–τij(t+δ))

+
l∑
j=

cij(t)
[
Ni

(
t + δ – τij(t + δ)

)
e–γij(t+δ)Ni(t+δ–τij(t+δ))

–Ni
(
t – τij(t) + δ

)
e–γij(t+δ)Ni(t–τij(t)+δ)]

+
l∑
j=

cij(t)
[
Ni

(
t – τij(t) + δ

)
e–γij(t+δ)Ni(t–τij(t)+δ)

–Ni
(
t – τij(t) + δ

)
e–γij(t)Ni(t–τij(t)+δ)] – [

aii(t + δ) – aii(t)
]

+
n∑

j=,j �=i

[
aij(t + δ) – aij(t)

]
, t ∈ R. (.)

http://www.advancesindifferenceequations.com/content/2014/1/205
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By Lemma ., the solution N(t) is bounded and

κ <Ni(t) <M for all t ≥ tϕ , i ∈ �, (.)

which implies that the right-hand side of (.) is also bounded, and N ′
i (t) is a bounded

function on [t – ri, +∞), i ∈ �. Thus, in view of the fact that Ni(t) ≡ Ni(t – ri) for t ∈
(–∞, t – ri], i ∈ �, we obtain that Ni(t) is uniformly continuous on R. From (.), for any
ε, there exists l = l(ε) >  such that every interval [α,α + l] contains δ for which

∣∣εi(δ, t)∣∣ ≤ 

ηε for all t ∈ R, i ∈ �. (.)

Let N ≥ max{t, t – δ, tϕ + maxi∈� ri} and denote u(t) = (u(t),u(t), . . . ,un(t))T , where
ui(t) =Ni(t + δ) –Ni(t), i ∈ �. Then, for all t ≥ N, we have

u′
i(t) = bii(t)

[
e–Ni(t+δ) – e–Ni(t)

]
–

n∑
j=,j �=i

bij(t)
[
e–Nj(t+δ) – e–Nj(t)

]

+
l∑
j=

cij(t)
[
Ni

(
t – τij(t) + δ

)
e–γij(t)Ni(t–τij(t)+δ)

–N∗
i
(
t – τij(t)

)
e–γij(t)N∗

i (t–τij(t))
]
+ εi(δ, t). (.)

Set

U(t) =
(
U(t),U(t), . . . ,Un(t)

)T , where Ui(t) = eλtui(t), i ∈ �.

Let it be such an index that

∣∣Uit (t)
∣∣ = ∥∥U(t)

∥∥. (.)

Calculating the upper left derivative of |Uis (s)| along with (.), together with (.), (.),
(.), (.) and the inequalities

(
e–s – e–t

)
sgn(s – t) = –e–s+θ (s–t)|s – t|

≤ –e–M|s – t|, where s, t ∈ [κ ,M],  < θ < , (.)∣∣e–s – e–t
∣∣ = e–s+θ (s–t)|s – t|
≤ e–κ |s – t|, where s, t ∈ [κ , +∞],  < θ < , (.)

and

∣∣se–s – te–t
∣∣ = ∣∣∣∣ – (s + θ (t – s))

es+θ (t–s)

∣∣∣∣|s – t|

≤ 
e

|s – t|, where s, t ∈ [κ , +∞],  < θ < , (.)

http://www.advancesindifferenceequations.com/content/2014/1/205


Chen and Wang Advances in Difference Equations 2014, 2014:205 Page 10 of 19
http://www.advancesindifferenceequations.com/content/2014/1/205

we get

D–(∣∣Uis (s)
∣∣)|s=t

≤ λeλt∣∣uit (t)∣∣ + eλt

{
bit it (t)

[
e–Nit (t+δ) – e–Nit (t)

]
sgn

(
Nit (t + δ) –Nit (t)

)
+

n∑
j=,j �=it

bit j(t)
∣∣e–Nj(t+δ) – e–Nj(t)

∣∣ + l∑
j=

cit j(t)

× ∣∣Nit
(
t – τit j(t) + δ

)
e–γit j(t)Nit (t–τit j(t)+δ) –Nit

(
t – τit j(t)

)
e–γit j(t)Nit (t–τit j(t))

∣∣
+

∣∣εit (δ, t)∣∣
}

= λeλt∣∣uit (t)∣∣ + eλt

{
bit it (t)

[
e–Nit (t+δ) – e–Nit (t)

]
sgn

(
Nit (t + δ) –Nit (t)

)
+

n∑
j=,j �=it

bit j(t)
∣∣e–Nj(t+δ) – e–Nj(t)

∣∣ + l∑
j=

cit j(t)
γit j(t)

× ∣∣γit j(t)Nit
(
t – τit j(t) + δ

)
e–γit j(t)Nit (t–τit j(t)+δ)

– γit j(t)Nit
(
t – τit j(t)

)
e–γit j(t)Nit (t–τit j(t))

∣∣ + ∣∣εit (δ, t)∣∣
}

≤ λeλt∣∣uit (t)∣∣ + eλt

{
–bit it (t)e

–M∣∣Uit (t)
∣∣ + n∑

j=,j �=it
bit j(t)e

–κ
∣∣uj(t)∣∣

+
l∑
j=

cit j(t)
γit j(t)


e

∣∣uit (t – τit j(t)
)∣∣ + ∣∣εit (δ, t)∣∣

}

= –
[
bit it (t)e

–M – λ
]∣∣Uit (t)

∣∣ + n∑
j=,j �=it

bit j(t)e
–κ

∣∣Uj(t)
∣∣

+
l∑
j=

cit j(t)
γit j(t)


e
eλτit j(t)

∣∣Uit
(
t – τit j(t)

)∣∣ + eλt∣∣εit (δ, t)∣∣ for all t ≥ N, (.)

which is held under the following fact:

κ ≤ γit j(t)Nit
(
t – τit j(t) + δ

)
,γit j(t)N

∗
it

(
t – τij(t)

) ≤ γ +
it jM ≤ κ̃ , j = , , . . . , l, t ≥ N.

Let

M(t) =max
s≤t

{∥∥U(s)
∥∥}

. (.)

It is obvious that M(t) ≥ ‖U(t)‖ and M(t) is non-decreasing. Now, we distinguish two
cases to finish the proof.
Case one.

M(t) >
∥∥U(t)

∥∥ for all t ≥ N. (.)

http://www.advancesindifferenceequations.com/content/2014/1/205
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We claim that

M(t) ≡M(N) is a constant for all t ≥ N. (.)

Assume, by a way of contradiction, that (.) does not hold. Then there exists s > N

such thatM(s) >M(N). Since

M(N) ≥
∥∥U(t)

∥∥ for all t ≤ N,

there must exist β ∈ (N, s) such that

∥∥U(β)
∥∥ =M(s) ≥ M(β),

which contradicts (.) and implies that (.) holds. It follows that there exists s > N

such that

∥∥u(t)∥∥ ≤ e–λtM(t) = e–λtM(N) < ε for all t ≥ s. (.)

Case two. There is ρ > N such that M(ρ) = ‖U(ρ)‖. Then, in view of (.), (.) and
(.), we have

 ≤ D–(∣∣Uis (s)
∣∣)|s=ρ

≤ –
[
biρ iρ (ρ)e

–M – λ
]∣∣Uiρ (ρ)

∣∣ + n∑
j=,j �=iρ

biρ j(ρ)e
–κ

∣∣Uj(ρ)
∣∣

+
l∑
j=

ciρ j(ρ)
γiρ j(ρ)


e
eλτiρ j(ρ)

∣∣Uiρ
(
ρ – τiρ j(ρ)

)∣∣ + eλρ
∣∣εiρ (δ,ρ)∣∣

≤
{
–
[
biρ iρ (ρ)e

–M – λ
]
+

n∑
j=,j �=iρ

biρ j(ρ)e
–κ

+
l∑
j=


e
ciρ j(ρ)e

λri

}∥∥U(ρ)
∥∥ +



ηεeλρ

< –η
∥∥U(ρ)

∥∥ + ηεeλρ , (.)

which yields that

eλρ
∥∥u(ρ)∥∥ =

∥∥U(ρ)
∥∥ < εeλρ and

∥∥u(ρ)∥∥ < ε. (.)

For any t > ρ , with the same approach as that in deriving of (.), we can show

eλt∥∥u(t)∥∥ =
∥∥U(t)

∥∥ < εeλt and
∥∥u(t)∥∥ < ε (.)

if M(t) = ‖U(t)‖. On the other hand, if M(t) > ‖U(t)‖ and t > ρ , we can choose ρ ≤ s < t
such that

M(s) =
∥∥U(s)

∥∥, and M(s) >
∥∥U(s)

∥∥ for all s ∈ (s, t],

http://www.advancesindifferenceequations.com/content/2014/1/205
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which together with (.) yields

∥∥u(s)∥∥ < ε.

With a similar argument as that in the proof of case one, we can show that

M(s) ≡M(s) is a constant for all s ∈ (s, t], (.)

which implies that

∥∥u(t)∥∥ < e–λtM(t) = e–λtM(s) =
∥∥u(s)∥∥e–λ(t–s) < ε.

In summary, there must exist N > max{ρ,N, s} such that ‖u(t)‖ ≤ ε holds for all t > N .
This completes the proof. �

3 Main results
In this section, we establish sufficient conditions for the existence and global exponential
stability of positive almost periodic solutions of (.).

Theorem . Suppose that all conditions in Lemma . are satisfied. Then system (.)
has at least one positive almost periodic solution N∗(t). Moreover, N∗(t) is globally expo-
nentially stable, i.e., there exist constants λ > , Kϕ,N∗ >  and tϕ,N∗ such that

∥∥N(t; t,ϕ) –N∗(t)
∥∥ < Kϕ,N∗e–λt for all t > tϕ,N∗ .

Proof Let v(t) = v(t; t,ψ) = (v(t), v(t), . . . , vn(t))T be a solution of equation (.) with ini-
tial conditions satisfying the assumptions in Lemma .. We also add the definition of v(t)
with vi(t)≡ vi(t – ri) for all t ∈ (–∞, t – ri], i ∈ �. Set

εi,k(t)

=
[
bii(t + tk) – bii(t)

]
e–vi(t+tk ) –

n∑
j=,j �=i

[
bij(t + tk) – bij(t)

]
e–vj(t+tk )

+
l∑
j=

[
cij(t + tk) – cij(t)

]
vi

(
t + tk – τij(t + tk)

)
e–γij(t+tk )vi(t+tk–τij(t+tk ))

+
l∑
j=

cij(t)
[
vi

(
t + tk – τij(t + tk)

)
e–γij(t+tk )vi(t+tk–τij(t+tk ))

– vi
(
t – τij(t) + tk

)
e–γij(t+tk )vi(t–τij(t)+tk )

]
+

l∑
j=

cij(t)
[
vi

(
t – τij(t) + tk

)
e–γij(t+tk )vi(t–τij(t)+tk )

– vi
(
t – τij(t) + tk

)
e–γij(t)vi(t–τij(t)+tk )

]
–

[
aii(t + tk) – aii(t)

]
+

n∑
j=,j �=i

[
aij(t + tk) – aij(t)

]
, t ∈ R, i ∈ �, (.)

http://www.advancesindifferenceequations.com/content/2014/1/205
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where {tk} is any sequence of real numbers. By Lemma ., the solution v(t) is bounded
and

κ < vi(t) <M for all t ≥ tψ , i ∈ �, (.)

which implies that the right-hand side of (.) is also bounded, and v′
i(t) (i ∈ �) are

bounded functions on [t – ri, +∞). Thus, in view of the fact that vi(t) ≡ vi(t – ri) for all
t ∈ (–∞, t – ri], i ∈ �, we obtain that vi(t) (i ∈ �) are uniformly continuous on R. Then,
from the almost periodicity of aij, bij, cim, γim and τim, we can select a sequence {tk} → +∞
such that⎧⎪⎪⎨⎪⎪⎩

|aij(t + tk) – aij(t)| ≤ 
k , |bij(t + tk) – bij(t)| ≤ 

k ,

|cim(t + tk) – cim(t)| ≤ 
k ,

|τim(t + tk) – τim(t)| ≤ 
k , |γim(t + tk) – γim(t)| ≤ 

k , |εi,k(t)| ≤ 
k

(.)

for all t ∈ R and i, j ∈ �,m ∈ ϒ .
Since {vi(t + tk)}+∞

k= (i ∈ �) is uniformly bounded and equi-uniformly continuous, by the
Arzelà-Ascoli lemma and the diagonal selection principle, we can choose a subsequence
{tkj} of {tk} such that vi(t + tkj ) (for convenience, we still denote it by vi(t + tk), i ∈ �)
uniformly converges to a continuous function N∗

i (t) (i ∈ �) on any compact set of R, and

κ ≤ N∗
i (t) ≤ M for all t ∈ R, i ∈ �. (.)

Now, we prove that N∗(t) = (N∗
 (t),N∗

 (t), . . . ,N∗
n (t))T is a solution of (.). In fact, for any

t ≥ t and �t ∈ R, from (.), we have

N∗
i (t +�t) –N∗

i (t)

= lim
k→+∞

[
vi(t +�t + tk) – vi(t + tk)

]
= lim

k→+∞

∫ t+�t

t

[
–aii(s + tk) + bii(s + tk)e–vi(s+tk ) +

n∑
j=,j �=i

(
aij(s + tk) – bij(s + tk)e–vj(s+tk )

)

+
l∑
j=

cij(s + tk)vi
(
s + tk – τij(s + tk)

)
e–γij(s+tk )vi(s+tk–τij(s+tk ))

]
ds

= lim
k→+∞

∫ t+�t

t

[
–aii(s) + bii(s)e–vi(s+tk ) +

n∑
j=,j �=i

(
aij(s) – bij(s)e–vj(s+tk )

)

+
l∑
j=

cij(s)vi
(
s + tk – τij(s)

)
e–γij(s)vi(s+tk–τij(s)) + εi,k(s)

]
ds

=
∫ t+�t

t

[
–aii(s) + bii(s)e–N

∗
i (s) +

n∑
j=,j �=i

(
aij(s) – bij(s)e

–N∗
j (s)

)

+
l∑
j=

cij(s)N∗
i
(
s – τij(s)

)
e–γij(s)N∗

i (s–τij(s))

]
ds, (.)
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where t +�t ≥ t, i ∈ �. Consequently, (.) implies that

d
dt

{
N∗

i (t)
}
= –aii(t) + bii(t)e–N

∗
i (t)

+
n∑

j=,j �=i

(
aij(t) – bij(t)e

–N∗
j (t)

)

+
l∑
j=

cij(t)N∗
i
(
t – τij(t)

)
e–γij(t)N∗

i (t–τij(t)), i ∈ �. (.)

Therefore, N∗(t) is a solution of (.).
Next we prove that N∗(t) is an almost periodic solution of (.). From Lemma ., for

any ε > , there exists l = l(ε) >  such that every interval [α,α + l] contains at least one
number δ for which there exists N >  satisfies

∥∥v(t + δ) – v(t)
∥∥ ≤ ε for all t >N . (.)

Then, for any fixed s ∈ R, we can find a sufficiently large positive integer N >N such that
for any k >N,

s + tk >N ,
∥∥v(s + tk + δ) – v(s + tk)

∥∥ ≤ ε. (.)

Let k → +∞, we obtain

∥∥N∗(s + δ) –N∗(s)
∥∥ ≤ ε,

which implies that N∗(t) is an almost periodic solution of system (.).
Finally, we prove that N∗(t) is globally exponentially stable.
Let N(t) = N(t; t,ϕ) and y(t) = N(t) – N∗(t) = (y(t), y(t), . . . , yn(t))T , where yi(t) =

Ni(t) –N∗
i (t), t ∈ [t – ri, +∞), i ∈ �. Then

y′
i(t) = bii(t)

[
e–Ni(t) – e–N

∗
i (t)

]
–

n∑
j=,j �=i

bij(t)
[
e–Nj(t) – e–N

∗
j (t)

]

+
l∑
j=

cij(t)
[
Ni

(
t – τij(t)

)
e–γij(t)Ni(t–τij(t)) –N∗

i
(
t – τij(t)

)
e–γij(t)N∗

i (t–τij(t))
]
. (.)

It follows from Lemma . that there exists tϕ,N∗ > t such that

κ ≤ Ni(t), N∗
i (t)≤ M for all t ∈ [tϕ,N∗ – ri, +∞), i ∈ �. (.)

We consider the Lyapunov functional

Vi(t) =
∣∣yi(t)∣∣eλt , i ∈ �. (.)

http://www.advancesindifferenceequations.com/content/2014/1/205
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For all t > tϕ,N∗ and i ∈ �, calculating the upper left derivative of Vi(t) along with the
solution yi(t) of (.), we have

D–(Vi(t)
) ≤ λ

∣∣yi(t)∣∣eλt + bii(t)
[
e–Ni(t) – e–N

∗
i (t)

]
sgn

(
Ni(t) –N∗

i (t)
)
eλt

+
n∑

j=,j �=i
bij(t)

∣∣e–Nj(t) – e–N
∗
j (t)

∣∣eλt +
l∑
j=

cij(t)eλt

× ∣∣Ni
(
t – τij(t)

)
e–γij(t)Ni(t–τij(t)) –N∗

i
(
t – τij(t)

)
e–γij(t)N∗

i (t–τij(t))
∣∣. (.)

In the sequel, we claim that

Vi(t) =
∣∣yi(t)∣∣eλt

< eλtϕ,N∗
(
max
i∈�

max
t∈[t–ri ,tϕ,N∗ ]

∣∣Ni(t) –N∗
i (t)

∣∣ + 
)

:= Kϕ,N∗ for all t > tϕ,N∗ , i ∈ �. (.)

Contrarily, there must exist s > tϕ,N∗ and i ∈ � such that

Vi(s) = Kϕ,N∗ and Vj(t) < Kϕ,N∗ for all t ∈ [t – rj, s), j ∈ �. (.)

Since

κ ≤ γij(s)Ni
(
s – τij(s)

)
,γij(s)N∗

i
(
s – τij(s)

) ≤ γ +
ij M ≤ κ̃ , j = , , . . . , l,

together with (.)-(.), (.), (.) and (.), we get

 ≤ D–(Vi(s)
)

≤ λ
∣∣yi(s)∣∣eλs + bii(s)

[
e–Ni(s) – e–N

∗
i (s)

]
sgn

(
Ni(s) –N∗

i (s)
)
eλs

+
n∑

j=,j �=i
bij(s)

∣∣e–Nj(s) – e–N
∗
j (s)

∣∣eλs +
l∑
j=

cij(s)eλs

× ∣∣Ni
(
s – τij(s)

)
e–γij(s)Ni(s–τij(s)) –N∗

i
(
s – τij(s)

)
e–γij(s)N∗

i (s–τij(s))
∣∣

≤ λ
∣∣yi(s)∣∣eλs – bii(s)e–M

∣∣yi(s)∣∣eλs +
n∑

j=,j �=i
bij(s)e–κ

∣∣yj(s)∣∣eλs

+
l∑
j=

cij(s)
∣∣Ni

(
s – τij(s)

)
e–γij(s)Ni(s–τij(s))

–N∗
i
(
s – τij(s)

)
e–γij(s)N∗

i (s–τij(s))
∣∣eλs

= –
[
bii(s)e–M – λ

]
Vi(s) +

n∑
j=,j �=i

bij(s)e–κVj(s)

+
l∑
j=

cij(s)
γij(s)

∣∣γij(s)Ni
(
s – τij(s)

)
e–γij(s)Ni(s–τij(s))

– γij(s)N∗
i
(
s – τij(s)

)
e–γij(s)N∗

i (s–τij(s))
∣∣eλs
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≤ –
[
bii(s)e–M – λ

]
Vi(s) +

n∑
j=,j �=i

bij(s)e–κVj(s) +
l∑
j=

cij(s)

e
Vi

(
s – τij(s)

)
eλτij(s)

≤
{
–
[
bii(s)e–M – λ

]
+

n∑
j=,j �=i

bij(s)e–κ +

e

l∑
j=

cij(s)eλri

}
Kϕ,N∗ .

Thus,

 ≤ –
[
bii(s)e–M – λ

]
+

n∑
j=,j �=i

bij(s)e–κ +

e

l∑
j=

cij(s)eλri ,

which contradicts (.). Hence (.) holds. It follows that

∣∣yi(t)∣∣ < Kϕ,N∗e–λt for all t > tϕ,N∗ , i ∈ �.

This completes the proof. �

4 An example
In this section, we give an example and numerical simulations to explain the results ob-
tained in the previous sections.

Example . Consider the followingNicholson’s blowflies systemwith nonlinear density-
dependent mortality terms and patch structure:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N ′
(t) = –e–(+. cos

√
t) + ( + . cos

√
t)e–N(t) + .e–(+. sin

√
t)

– (. + . sin
√
t)e–N(t) + +cos t

, N(t –  sin t)e–N(t– sin t)

+ +cos t
, N(t –  cos t)e–N(t– cos t),

N ′
(t) = –e–(+. sin

√
t) + ( + . sin

√
t)e–N(t) + .e–(+. cos

√
t)

– (. + . cos
√
t)e–N(t) + +sin t

, N(t –  cos t)e–N(t– cos t)

+ +sin t
, N(t –  sin t)e–N(t– sin t).

(.)

Obviously, r = r = , a– = a– = e–., a+ = a+ = e–, a– = a– = .e–., a+ = a+ =
.e–, b– = b– = ., b+ = b+ = ., b– = b– = ., b+ = b+ = ., c– = c– =
c– = c– = ., c+ = c+ = c+ = c+ = ., γ = γ = γ = γ = . Let M = ., from
(.), we obtain κ̃ ≈ ., κ ≈ ., and

 = γ +
ij ≤ κ̃

M
≈ .

.
, i, j = , , (.)

sup
t∈R

{
–aii(t) + bii(t)e–M +

∑
j=,j �=i

aij(t) +
∑
j=

cij(t)
γij(t)


e

}

≤ –a–ii + b+iie
–M +

∑
j=,j �=i

a+ij +
∑
j=

c+ij
γ –
ij


e

≈ –. < , i = , , (.)
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Figure 1 Numerical solutions N(t) = (N1(t),N2(t))T of system (4.1) for the initial value
ϕ(t) ≡ (1.5, 1.7)T , (1.3, 0.8)T , (0.1, 0.1)T .

inf
t∈R,s∈[,κ]

{
–aii(t) + bii(t)e–s +

∑
j=,j �=i

(
aij(t) – bij(t)

)
+

∑
j=

cij(t)
γij(t)

se–s
}

≥ –a+ii + b–iie
–κ +

∑
j=,j �=i

(
a–ij – b+ij

)
≈ . > , i = , , (.)

sup
t∈R

{
–bii(t)e–M +

n∑
j=,j �=i

bij(t)e–κ +

e

l∑
j=

cij(t)

}

≤ –b–iie
–M +

n∑
j=,j �=i

b+ije
–κ +


e

∑
j=

c+ij

≈ –. < , i = , , (.)

which imply that the Nicholson’s blowflies system (.) satisfies (.), (.) and (.).
Therefore, system (.) has a positive almost periodic solution N∗(t) which is globally
exponentially stable with the exponential convergent rate λ ≈ .. The numerical simu-
lations in Figure  strongly support the consequence.
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Remark . To the best of our knowledge, few authors have considered the problems
of the global exponential stability of positive almost periodic solutions for a Nicholson’s
blowflies system with nonlinear density-dependent mortality terms and patch structure.
It is clear that all the results in [–] and the references therein cannot be applicable to
prove that all the solutions of (.) converge exponentially to the positive almost periodic
solution. This implies that the results of this paper are essentially new.
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