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Abstract
In this paper, a discrete Lasota-Wazewska model is studied. By using the fixed point
theorem of decreasing operator, we obtain sufficient conditions for the existence of a
unique positive almost periodic solution. Particularly, we give iterative sequence
which converges to the positive almost periodic solution. Moreover, we investigate
exponential stability of the positive almost periodic solution by the Lyapunov
functional.
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1 Introduction
Biological dynamic models are very important and hot research topics. In ,
Wazewska-Czyzewska and Lasota [] investigated the Lasota-Wazewska model

x′(t) = –ax(t) + be–px(t–τ ) (.)

which described the survival of red blood cells in animals. Kulenovic and Ladas [] inves-
tigated the oscillation and global attractivity of the abovemodel (.).Moreover, themodel
(.) and some generalized models have been investigated by many authors; see Graef et
al. [], Kulenovic et al. [], Xu and Li [], Jiang [], Li and Wang [].
The assumption that the environment is constant is rarely the case in real life.When the

environmental fluctuation is taken into account, a model must be nonautonomous. Due
to the various seasonal effects of the environmental factors in a real life situation (e.g.,
seasonal effects of weather, food supplies, mating habits, harvesting, etc.), it is rational
and practical to study the biological system with periodic coefficients or almost periodic
coefficients. Many authors [, ] have studied nonautonomous differential equations with
periodic coefficients of the above model (.).
Thoughmostmodels are describedwith differential equations, the discrete-timemodels

governed by difference equations aremore appropriate than the continuous oneswhen the
size of the population is rarely small or the population has non-overlapping generations. It
is also known that the discrete models can provide more efficient computational methods

©2014 Yao; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/206
mailto:zhijianyao@126.com
http://creativecommons.org/licenses/by/2.0


Yao Advances in Difference Equations 2014, 2014:206 Page 2 of 11
http://www.advancesindifferenceequations.com/content/2014/1/206

for numerical simulations [–]. However, the studies in the past [–] were concerned
with the continuous case of the above model (.).
To our knowledge, studies on the uniqueness and exponential stability of positive almost

periodic solutions for discrete models are scarce.
Motivated by the above facts, in this paper, we investigate the following Lasota-

Wazewska difference equation:

�x(k) = –a(k)x(k) + b(k)e–β(k)x(k–τ ), (.)

where �x(k) = x(k + ) – x(k), a(k) : Z → (, ), b(k) : Z → (, +∞), β(k) : Z → (, +∞),
a(k), b(k), β(k) are bounded almost periodic functions, τ ∈ Z+. Due to biological reasons,
we restrict our attention to positive solutions of equation (.). The initial condition of
equation (.) is x(k) = φ(k) >  for –τ ≤ k ≤ .
In the study of biological systems, an important ecological problem is concerned with

the existence of positive periodic solutions or positive almost periodic solutions. Recently,
many authors investigated the existence of positive periodic solutions by using the Kras-
noselskii cone fixed point theorem andMawhin’s coincidence degree theory [, , –].
Most of the past studies are concerned with the existence of at least one positive periodic
solution [, , , ].
Almost periodicity is more practical and more close to the reality in biological systems

[, ], the recent contributions such as the almost periodic solutions of delay and im-
pulsive differential equations [–] have appeared.
However, few papers study the existence and exponential stability of unique positive al-

most periodic solutions for discretemodels. For the existence and uniqueness of a positive
almost periodic solution, the method used in most of the past studies is the contraction
mapping fixed point theorem.
In this paper, different from the past studies, we aim to obtain sufficient conditions that

guarantee the existence of a unique positive almost periodic solution of discrete model
(.) by using the fixed point theorem of decreasing operator. Particularly, we give an iter-
ative sequence which converges to the positive almost periodic solution. We also obtain
sufficient conditions for the exponential stability of the unique positive almost periodic
solution by means of the Lyapunov functional. The results of this paper are new andmore
valuable in applications, which complement the previously obtained results in [–].

2 Preliminaries
For any bounded sequence {f (k)}, we define f = supk∈Z f (k), f = infk∈Z f (k).
For equation (.), we assume that the bounded almost periodic sequences {a(k)}, {b(k)},

{β(k)} satisfy  < a ≤ a(k)≤ a < ,  < b≤ b(k)≤ b,  < β ≤ β(k)≤ β .

Definition  [] A sequence x(k) : Z → R is called an almost periodic sequence if the
ε-translation set E{ε,x} = {δ ∈ Z : |x(k + δ) – x(k)| < ε,∀k ∈ Z} is a relatively dense set in Z
for all ε > ; that is, for any ε > , there exists a constant l(ε) >  such that each interval of
length l(ε) contains a number δ ∈ E{ε,x} such that |x(k + δ) – x(k)| < ε for all k ∈ Z.

δ is called the ε-translation number of x(k).

Definition  Let X be a Banach space and P be a closed, nonempty subset of X. P is called
a cone if
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(i) x ∈ P, λ ≥  implies λx ∈ P;
(ii) x ∈ P, –x ∈ P implies x = θ .
Every cone P ⊂ X induces an ordering in X, we define ‘≤’ with respect to P by x ≤ y if

and only if y – x ∈ P.

Definition  A cone P of X is called a normal cone if there exists a positive constant σ

such that ‖x + y‖ ≥ σ for any x, y ∈ P, ‖x‖ = ‖y‖ = .

Definition  Let P be a cone of X and A : P → P be an operator. A is called decreasing if
θ ≤ x≤ y implies Ax ≥ Ay.

The following fixed point theorem of decreasing operator (see []) is an important tool
in our proofs.

Lemma  [] Suppose that
(i) P is a normal cone of the Banach space X , the operator A : P → P is decreasing;
(ii) Aθ > θ , Aθ ≥ εAθ , where ε > ;
(iii) For ∀ < a < c < , there exists η = η(a, c) >  such that

A(λx)≤ [
λ( + η)

]–Ax for ∀a≤ λ ≤ c and θ < x ≤ Aθ .

Then A has a unique positive fixed point x∗ > θ .Moreover, ‖xk – x∗‖ →  (k → ∞), where
xk = Axk– (k = , , . . .) for any initial x ∈ P.

In this paper, we will use the above Lemma  to investigate the existence of a unique
positive almost periodic solution of model (.).

Remark In Lemma , the operator A does not need continuity and compactness.

Lemma  Every solution x(k) of equation (.) is positive.

Proof Let x(k) be the solution of equation (.), then we have

x(k + ) –
[
 – a(k)

]
x(k) = b(k)e–β(k)x(k–τ ).

Hence we get

(E) x(k) –
[
 – a(k – )

]
x(k – ) = b(k – )e–β(k–)x(k––τ ),

(E) x(k – ) –
[
 – a(k – )

]
x(k – ) = b(k – )e–β(k–)x(k––τ ),

(E) x(k – ) –
[
 – a(k – )

]
x(k – ) = b(k – )e–β(k–)x(k––τ ),

· · ·
(Ek–) x() –

[
 – a()

]
x() = b()e–β()x(–τ ),

(Ek) x() –
[
 – a()

]
x() = b()e–β()x(–τ ).

http://www.advancesindifferenceequations.com/content/2014/1/206


Yao Advances in Difference Equations 2014, 2014:206 Page 4 of 11
http://www.advancesindifferenceequations.com/content/2014/1/206

Multiplying two sides of (E), (E), . . . , (Ek–), (Ek) by –a(k–), [–a(k–)][–a(k–)],
. . . , [ – a(k – )][ – a(k – )] · · · [ – a()], [ – a(k – )][ – a(k – )] · · · [ – a()][ – a()],
respectively, we get

(
E′

) [

 – a(k – )
]
x(k – ) –

[
 – a(k – )

][
 – a(k – )

]
x(k – )

= b(k – )e–β(k–)x(k––τ )[ – a(k – )
]
,(

E′

) [

 – a(k – )
][
 – a(k – )

]
x(k – )

–
[
 – a(k – )

][
 – a(k – )

][
 – a(k – )

]
x(k – )

= b(k – )e–β(k–)x(k––τ )[ – a(k – )
][
 – a(k – )

]
,

· · ·(
E′
k–

) [
 – a(k – )

][
 – a(k – )

] · · · [ – a()
]
x()

–
[
 – a(k – )

][
 – a(k – )

] · · · [ – a()
][
 – a()

]
x()

= b()e–β()x(–τ )[ – a(k – )
][
 – a(k – )

] · · · [ – a()
]
,(

E′
k
) [

 – a(k – )
][
 – a(k – )

] · · · [ – a()
][
 – a()

]
x()

–
[
 – a(k – )

][
 – a(k – )

] · · · [ – a()
][
 – a()

][
 – a()

]
x()

= b()e–β()x(–τ )[ – a(k – )
][
 – a(k – )

] · · · [ – a()
][
 – a()

]
.

Summing (E), (E′
), (E′

), . . . , (E′
k–), (E

′
k), we get

x(k) –
[
 – a(k – )

][
 – a(k – )

] · · · [ – a()
][
 – a()

][
 – a()

]
x()

= b(k – )e–β(k–)x(k––τ ) +
k–∑
s=

(
b(s)e–β(s)x(s–τ )

k–∏
i=s+

(
 – a(i)

))
.

That is,

x(k) = x()
k–∏
s=

(
 – a(s)

)
+ b(k – )e–β(k–)x(k––τ ) +

k–∑
s=

(
b(s)e–β(s)x(s–τ )

k–∏
i=s+

(
 – a(i)

))
.

Since x(k) = φ(k) >  for –τ ≤ k ≤ , we can deduce that x() > , x() > , . . . , and
x(k) >  for all k ∈ Z+. The proof is complete. �

Let X = {x(k) | x(k) : Z → R,x(k) be an almost periodic function}. For x ∈ X, we define
‖x‖ = supk∈Z |x(k)|, then X is a Banach space.
It is easy to verify that x(k) is the solution of equation (.) if and only if x(k) is the

solution of the following equation:

x(k) = b(k – )e–β(k–)x(k––τ ) +
k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )

k–∏
i=s+

(
 – a(i)

))
.
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We define the operator A : X → X

(Ax)(k) = b(k – )e–β(k–)x(k––τ ) +
k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )

k–∏
i=s+

(
 – a(i)

))
.

Obviously, x(k) ∈ X is the almost periodic solution of equation (.) if and only if x is the
fixed point of the operator A.
Let

W (k, s) =
k–∏
i=s+

(
 – a(i)

)
, –∞ < s < k – , s ∈ Z.

Then

W (k, s) =
k–∏
i=s+

(
 – a(i)

) ≤
k–∏
i=s+

( – a) = ( – a)k––s ≤  – a < .

Define

m = inf
k∈Z,s∈Z
–∞<s<k–

W (k, s),

thenm < .
For x ∈ X, we define

Jx = sup
k∈Z

{ k–∑
s=–∞

e–βx(s–τ )

}
, Qx = inf

k∈Z

{ k–∑
s=–∞

e–βx(s–τ )

}
,

J = sup
x∈X

{Jx}, Q = inf
x∈X{Qx}.

Define the cone

� =
{
x | x ∈ X,x(k)≥ ,x(k)≥ γ ‖x‖},

here γ = mbQ
Jb

< .

Lemma  A� ⊂ �.

Proof For ∀x ∈ �,

‖Ax‖ = sup
k∈Z

∣∣(Ax)(k)∣∣ = sup
k∈Z

∣∣∣∣∣b(k – )e–β(k–)x(k––τ ) +
k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )W (k, s)

)∣∣∣∣∣
≤ sup

k∈Z

{
b(k – )e–β(k–)x(k––τ ) + ( – a)

k–∑
s=–∞

(
b(s)e–β(s)x(s–τ ))}

≤ sup
k∈Z

{
b(k – )e–β(k–)x(k––τ ) +

k–∑
s=–∞

(
b(s)e–β(s)x(s–τ ))}

http://www.advancesindifferenceequations.com/content/2014/1/206
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≤ sup
k∈Z

{
be–βx(k––τ ) + b

k–∑
s=–∞

e–βx(s–τ )

}
= sup

k∈Z

{
b

k–∑
s=–∞

e–βx(s–τ )

}

= b sup
k∈Z

{ k–∑
s=–∞

e–βx(s–τ )

}
= bJx ≤ bJ .

On the other hand,

(Ax)(k) = b(k – )e–β(k–)x(k––τ ) +
k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )W (k, s)

)

≥ be–βx(k––τ ) +mb
k–∑
s=–∞

e–βx(s–τ ) >mbe–βx(k––τ ) +mb
k–∑
s=–∞

e–βx(s–τ )

=mb
k–∑

s=–∞
e–βx(s–τ ) ≥mbQx ≥mbQ.

Hence

(Ax)(k)≥mbQ =
mbQ
J

J ≥ mbQ
J

‖Ax‖
b

= γ ‖Ax‖.

Thus Ax ∈ �, so we have A� ⊂ �. The proof is complete. �

3 Existence and uniqueness of a positive almost periodic solution
Let B+ = supk∈Z

∑k
s=–∞ b(s), B– = infk∈Z

∑k
s=–∞ b(s).

Theorem  Assume that β[b + ( – a)B+] ≤ , then equation (.) has a unique almost
periodic positive solution x∗(k). Moreover, ‖xk – x∗‖ →  (k → ∞), where xk = Axk– (k =
, , . . .) for any initial x ∈ �.

Proof It is clear that � is a normal cone, A :� → � is a decreasing operator.
Now, we will show that condition (ii) of Lemma  is satisfied.

b + ( – a)B+ ≥ b + ( – a)
k–∑
s=–∞

b(s)≥ (Aθ )(k) = b(k – ) +
k–∑
s=–∞

(
b(s)W (k, s)

)

≥ b(k – ) +m
k–∑
s=–∞

b(s) > ,

which implies Aθ > θ .
Again, we have

(
Aθ

)
(k) = b(k – )e–β(k–)(Aθ )(k––τ ) +

k–∑
s=–∞

(
b(s)e–β(s)(Aθ )(s–τ )

k–∏
i=s+

(
 – a(i)

))

≥ b(k – )e–β(k–)[b+(–a)B+] +
k–∑
s=–∞

(
b(s)e–β(s)[b+(–a)B+]

k–∏
i=s+

(
 – a(i)

))
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≥ b(k – )e–β[b+(–a)B+] +
k–∑
s=–∞

(
b(s)e–β[b+(–a)B+]

k–∏
i=s+

(
 – a(i)

))

= e–β[b+(–a)B+]

[
b(k – ) +

k–∑
s=–∞

(
b(s)

k–∏
i=s+

(
 – a(i)

))]
= e–β[b+(–a)B+](Aθ )(k)

= ε(Aθ )(k),

which implies Aθ ≥ εAθ , here ε = e–β[b+(–a)B+].
Finally, we show that condition (iii) of Lemma  is satisfied.
Let ∀ < a < c < , for ∀a≤ λ ≤ c and θ < x≤ Aθ , we have  < ‖x‖ ≤ ‖Aθ‖ ≤ b+(–a)B+.

A(λx)(k) = b(k – )e–β(k–)λx(k––τ ) +
k–∑
s=–∞

(
b(s)e–β(s)λx(s–τ )

k–∏
i=s+

(
 – a(i)

))

= b(k – )e–β(k–)x(k––τ )e(–λ)β(k–)x(k––τ )

+
k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )e(–λ)β(s)x(s–τ )W (k, s)

)

≤ b(k – )e–β(k–)x(k––τ )e(–λ)β[b+(–a)B+]

+
k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )e(–λ)β[b+(–a)B+]W (k, s)

)

=

λ

· λe(–λ)β[b+(–a)B+]

[
b(k – )e–β(k–)x(k––τ ) +

k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )W (k, s)

)]
.

Let f (x) = xe(–x)β[b+(–a)B+], we have

f ′(x) = e(–x)β[b+(–a)B
+] – xβ

[
b + ( – a)B+]e(–x)β[b+(–a)B+]

=
(
 – xβ

[
b + ( – a)B+])e(–x)β[b+(–a)B+].

Since β[b + ( – a)B+] ≤ , we know f ′(x) >  for  < x < , so we have

 = f () < f (a)≤ f (λ)≤ f (c) < f () = .

Hence we get

A(λx)(k)≤ 
λ

· f (λ)
[
b(k – )e–β(k–)x(k––τ ) +

k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )W (k, s)

)]

≤ 
λ

· f (c)
[
b(k – )e–β(k–)x(k––τ ) +

k–∑
s=–∞

(
b(s)e–β(s)x(s–τ )W (k, s)

)]

=

λ

· f (c)(Ax)(k) = 
λ

· 
 + η(c)

(Ax)(k),

here η = η(c) = 
f (c) –  > .

http://www.advancesindifferenceequations.com/content/2014/1/206
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By Lemma , we know that the operator A has a unique positive fixed point x∗ > θ , ‖xk –
x∗‖ →  (k → ∞), xk = Axk– (k = , , . . .) for any initial x ∈ �. The proof of Theorem 
is complete. �

Remark  Theorem  of this paper not only gives sufficient conditions for the existence of
a unique positive almost periodic solution, but also gives the iterative sequence {xk}which
converges to the positive almost periodic solution x∗(k).

Remark  From the above proof, we have

x∗(k) =
(
Ax∗)(k) = b(k – )e–β(k–)x∗(k––τ ) +

k–∑
s=–∞

(
b(s)e–β(s)x∗(s–τ )W (k, s)

)

≤ b + ( – a)
k–∑
s=–∞

b(s)≤ b + ( – a)B+.

We also have

x∗(k) =
(
Ax∗)(k) = b(k – )e–β(k–)x∗(k––τ ) +

k–∑
s=–∞

(
b(s)e–β(s)x∗(s–τ )W (k, s)

)

≥ b(k – )e–β(k–)[b+(–a)B+] +
k–∑
s=–∞

(
b(s)e–β(s)[b+(–a)B+]W (k, s)

)

≥ be–β[b+(–a)B+] +m
k–∑
s=–∞

(
b(s)e–β[b+(–a)B+])

=

(
b +m

k–∑
s=–∞

b(s)

)
e–β[b+(–a)B+] ≥ (

b +mB–)e–β[b+(–a)B+].

So, we get (b +mB–)e–β[b+(–a)B+] ≤ x∗(k)≤ b + ( – a)B+.

4 Exponential stability of a positive almost periodic solution
In this section, we study the exponential stability of a positive almost periodic solution.

Theorem  Assume that β[b+ (–a)B+] ≤  and a > βb, then equation (.) has a unique
exponentially stable almost periodic positive solution.

Proof Since β[b+ (–a)B+] ≤  holds, by Theorem  we know equation (.) has a unique
almost periodic positive solution x∗(k), and (b+mB–)e–β[b+(–a)B+] ≤ x∗(k)≤ b+ ( – a)B+.
Now we prove that x∗(k) is exponentially stable.
Suppose that x(k) is an arbitrary solution of equation (.) with the initial function x(k) =

φ(k) >  for –τ ≤ k ≤ . Assume that the initial function of the almost periodic positive
solution x∗(k) is x∗(k) =ψ(k) >  for –τ ≤ k ≤ .
Consider the function H(x) = βbe(τ+)x – aex + ex – , x ∈ [, ].
Since H() = βb – a < , then there exists a constant μ ∈ (, ) such that H(μ) < .
That is,

–aeμ + eμ + βbe(τ+)μ < . (.)

http://www.advancesindifferenceequations.com/content/2014/1/206
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Let y(k) = x(k) – x∗(k), we define V (k) = |y(k)|eμk , then we get

�V (k) = V (k + ) –V (k) =
∣∣y(k + )

∣∣eμ(k+) –
∣∣y(k)∣∣eμk

=
∣∣y(k + )

∣∣eμ(k+) –
∣∣y(k)∣∣eμ(k+) +

∣∣y(k)∣∣eμ(k+) –
∣∣y(k)∣∣eμk

=
(∣∣y(k + )

∣∣ – ∣∣y(k)∣∣)eμ(k+) +
(
eμ – 

)∣∣y(k)∣∣eμk

=
(∣∣x(k + ) – x∗(k + )

∣∣ – ∣∣x(k) – x∗(k)
∣∣)eμ(k+) +

(
eμ – 

)∣∣y(k)∣∣eμk . (.)

Notice that

∣∣x(k+)–x∗(k+)
∣∣–∣∣x(k)–x∗(k)

∣∣ ≤ –a(k)
∣∣x(k)–x∗(k)

∣∣+b(k)∣∣e–β(k)x(k–τ ) –e–β(k)x∗(k–τ )∣∣,
which, together with (.), leads to

�V (k) = V (k + ) –V (k)

≤ (
–a(k)

∣∣x(k) – x∗(k)
∣∣ + b(k)

∣∣e–β(k)x(k–τ ) – e–β(k)x∗(k–τ )∣∣)eμ(k+)

+
(
eμ – 

)∣∣y(k)∣∣eμk

=
(
–a(k)eμ + eμ – 

)∣∣y(k)∣∣eμk + b(k)eμ
∣∣e–β(k)x(k–τ ) – e–β(k)x∗(k–τ )∣∣eμk

=
(
–a(k)eμ + eμ – 

)
V (k) + b(k)eμ

∣∣e–β(k)x(k–τ ) – e–β(k)x∗(k–τ )∣∣eμk . (.)

LetM = b + ( – a)B+ +max–τ≤k≤,k∈Z |φ(k) –ψ(k)|.
For ∀k ∈ [–τ , ],

V (k) =
∣∣y(k)∣∣eμk ≤ ∣∣y(k)∣∣ = ∣∣x(k) – x∗(k)

∣∣ = ∣∣φ(k) –ψ(k)
∣∣

≤ max
–τ≤k≤,k∈Z

∣∣φ(k) –ψ(k)
∣∣ < b + ( – a)B+ + max

–τ≤k≤,k∈Z
∣∣φ(k) –ψ(k)

∣∣ =M.

We claim that

V (k) <M for all k > ,k ∈ Z. (.)

Suppose that claim (.) is not true, then there must exist K∗ ∈ Z+ such that V (K∗) ≥M
and V (k) <M for –τ ≤ k < K∗, k ∈ Z.
It follows from (.) that

V
(
K∗) –V

(
K∗ – 

) ≤ (
–a

(
K∗ – 

)
eμ + eμ – 

)
V

(
K∗ – 

)
+ b

(
K∗ – 

)
eμ

∣∣e–β(K∗–)x(K∗––τ ) – e–β(K∗–)x∗(K∗––τ )∣∣eμ(K∗–)

≤ (
–aeμ + eμ – 

)
V

(
K∗ – 

)
+ beμ

∣∣e–β(K∗–)x(K∗––τ ) – e–β(K∗–)x∗(K∗––τ )∣∣eμ(K∗–). (.)
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By the mean value theorem, we have

∣∣e–β(K∗–)x(K∗––τ ) – e–β(K∗–)x∗(K∗––τ )∣∣
=

∣∣–e–ξ
(
β
(
K∗ – 

)
x
(
K∗ –  – τ

)
– β

(
K∗ – 

)
x∗(K∗ –  – τ

))∣∣
≤ ∣∣β(

K∗ – 
)(
x
(
K∗ –  – τ

)
– x∗(K∗ –  – τ

))∣∣
≤ β

∣∣x(K∗ –  – τ
)
– x∗(K∗ –  – τ

)∣∣, (.)

in which ξ lies between β(K∗ – )x(K∗ –  – τ ) and β(K∗ – )x∗(K∗ –  – τ ).
Thus, from (.) and (.), we get

V
(
K∗) –V

(
K∗ – 

)
≤ (

–aeμ + eμ – 
)
V

(
K∗ – 

)
+ beμβ

∣∣x(K∗ –  – τ
)
– x∗(K∗ –  – τ

)∣∣eμ(K∗–)

=
(
–aeμ + eμ – 

)
V

(
K∗ – 

)
+ beμβ

∣∣x(K∗ –  – τ
)
– x∗(K∗ –  – τ

)∣∣eμ(K∗––τ )eμτ

=
(
–aeμ + eμ – 

)
V

(
K∗ – 

)
+ beμβ

∣∣y(K∗ –  – τ
)∣∣eμ(K∗––τ )eμτ

=
(
–aeμ + eμ – 

)
V

(
K∗ – 

)
+ beμβV

(
K∗ –  – τ

)
eμτ . (.)

From (.), we obtain

V
(
K∗) ≤ (

–aeμ + eμ
)
V

(
K∗ – 

)
+ beμβV

(
K∗ –  – τ

)
eμτ

<
(
–aeμ + eμ

)
M + beμβMeμτ

=
(
–aeμ + eμ + βbeμ(τ+))M <M,

which contradicts V (K∗)≥M.
So claim (.) is true. Hence V (k) = |y(k)|eμk <M for all k > , k ∈ Z.
That is, |x(k)–x∗(k)| <Me–μk for all k > , k ∈ Z, whichmeans that x∗(k) is exponentially

stable.
The proof of Theorem  is complete. �
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