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Abstract
In this paper, we develop a new compensated split-step θ (CSSθ ) method for
stochastic differential equations with jumps (SDEwJs). First, it is proved that the
proposed method is convergent with strong order 1/2 in the mean-square sense.
Then the condition of the mean-square (MS) stability of the CSSθ method is obtained.
Finally, some scalar test equations are simulated to verify the results obtained from
theory, and a comparison between the compensated stochastic theta (CST) method
by Wang and Gan (Appl. Numer. Math. 60:877-887, 2010) and CSSθ is analyzed.
Meanwhile, the results show the higher efficiency of the CSSθ method.

Keywords: stochastic differential equations; Poisson jumps; compensated split-step
θ -method; convergence; mean-square stability

1 Introduction
In this paper, we consider one-dimensional Itô stochastic differential equations (SDEs)
with Poisson-driven jumps

dX(t) = f
(
X

(
t–

))
dt + g

(
X

(
t–

))
dW (t) + h

(
X

(
t–

))
dN(t) (.)

for t > , with X(–) = X, where X(t–) denotes lims→t– X(s), f : R → R, g : R → R, h :
R → R, W (t) is a scalar standard Wiener process, and N(t) is a scalar Poisson process
with intensity λ.
Recently, stochastic differential equations with jumps (SDEwJs) are becoming increas-

ingly used to model real-world phenomena in different fields, such as economics, finance,
biology, and physics. However, few analytical solutions have been proposed so far; thus, it
is necessary to develop numerical methods for SDEwJs and study the properties of these
methods. For example, Higham and Kloeden [] studied the convergence and stability of
the implicit method for jump-diffusion systems, and they further analyzed the strong con-
vergence rates of the backward Euler method for a nonlinear jump-diffusion system [].
Chalmers and Higham [] studied the convergence and stability for the implicit simula-
tions of SDEs with random jump magnitudes. Higham and Kloeden [] constructed the
split-step backward Euler (SSBE) method and the compensated split-step backward Euler
(CSSBE) method for nonlinear SDEwJs. Bruti-Liberati and Platen [, ] developed strong
and weak approximations of SDEwJs.
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Lately, Wang and Gan [] started to focus on the CSTmethod for stochastic differential
equations with jumps. Hu and Gan [] studied the convergence and stability of the bal-
anced methods for SDEwJs. The split-step θ (SSθ ) method was firstly developed by Ding
et al. [] to solve the stochastic differential equations. Thus, we will construct the com-
pensated split-step θ method (CSSθ ) for SDEwJs.
In this paper, we investigate the convergence and mean-square stability of the CSSθ

method for SDEwJs. The outline of the paper is as follows. In Section , we introduce some
notations and hypotheses and give the CSSθ method for SDEwJs. In Section , we prove
that the numerical solutions produced by the CSSθ method converge to the true solutions
with strong order /. In Section , the mean-square stability of the CSSθ method for
linear test equation is studied. At last, some numerical experiments are used to verify the
results obtained from the theory.

2 The compensated split-step θ -method
For the existence and uniqueness of the solution for (.), we usually assume that f , g , and
h satisfy the following assumptions:
(H) (The uniform Lipschitz condition) There is a constant K > , for all x, y ∈ R, such

that

∣∣f (x) – f (y)
∣∣ ∨ ∣∣g(x) – g(y)

∣∣ ∨ ∣∣h(x) – h(y)
∣∣ ≤ K |x – y|. (.)

(H) (The linear growth condition) There is a constant L > , for all x ∈R, such that

∣∣f (x)∣∣ ∨ ∣∣g(x)∣∣ ∨ ∣∣h(x)∣∣ ≤ L
(
 +

∣∣x∣∣). (.)

We assume that the initial data E|X()| is finite and X() is independent of W (t) and
N(t) for all t ≥ . Under these conditions, we note that equation (.) has a unique solution
on [,+∞), see [, ].
For a constant step size h =�t > , we first define the split-step θ (SSθ ) method for (.)

by Y = X(–) and

Yn
∗ = Yn +

[
( – θ )f (Yn) + θ f

(
Yn

∗)]�t, (.)

Yn+ = Yn
∗ + g

(
Yn

∗)�Wn + h
(
Yn

∗)�Nn, (.)

where θ ∈ [, ], Yn is the numerical approximation of X(tn) with tn = n · �t. Moreover,
the increments �Wn :=W (tn+) –W (tn) are independent Gaussian random variables with
mean  and variance �t; �Nn :=N(tn+) –N(tn) are independent Poisson distributed ran-
dom variables with mean λ�t and variance λ�t.
If we give θ = , the SSθ method becomes the SSBE method in []. If θ = , the SSθ

method is an explicit method.
Note that the compensated Poisson process

Ñ(t) :=N(t) – λt,

which is a martingale. Defining

f
λ
:= f (x) + λh(x),
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we can rewrite the jump-diffusion system (.) in the form

dX(t) = fλ
(
X

(
t–

))
dt + g

(
X

(
t–

))
dW (t) + h

(
X

(
t–

))
dÑ(t). (.)

We note that fλ also satisfies the uniform Lipschitz condition and linear growth condition
with larger constants

Kλ = (λ + )K , Lλ = (λ + )L. (.)

Then we define the compensated split-step θ method (CSSθ ) for (.) by Y = X(–) and

Yn
∗ = Yn +

[
( – θ )fλ(Yn) + θ fλ

(
Yn

∗)]�t, (.)

Yn+ = Yn
∗ + g

(
Yn

∗)�Wn + h
(
Yn

∗)�Ñn, (.)

where �Ñn := Ñ(tn+) – Ñ(tn).
If we give θ = , the CSSθ method becomes the CSSBE method in [].
To answer the question of the existence of numerical solution, we will give the following

lemma.

Lemma . Assume that f : R → R satisfies (.), and let  < θ < ,  < �t < /(
√
Kλθ ),

then equation (.) can be solved uniquely for Yn
∗, with probability .

Proof Writing (.) as Yn
∗ = F(Yn

∗) = a + θ�tfλ(Yn
∗), a ∈R, and using condition (.), we

have

∣∣F(u) – F(v)
∣∣ = ∣∣θ�tfλ(u) – θ�tfλ(v)

∣∣
≤ √

Kλθ�t|u – v|.

Then the result follows from the classical Banach contraction mapping theorem []. �

3 Strong convergence on a finite time interval [0,T]
In this section, we prove the strong convergence of the CSSθ method for problem (.) on
a finite time interval [,T], where T is a constant.
When Lemma . is followed, we find it is convenient to use continuous-time approxi-

mation solution in our strong convergence analysis. Hence, for t ∈ [tn, tn+), we can define
the two step-functions:

Z(t) =
N–∑
n=

YnI[n�t,(n+)�t)(t), (.)

Z(t) =
N–∑
n=

Y ∗
n I[n�t,(n+)�t)(t), (.)

where N is the largest number such that N�t ≤ T , and IA is the indicator function for the
set A, i.e., IA(x) =

{, x ∈ A,
, x /∈ A.
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When t ∈ [tn, tn+), Lemma . ensures the existence of Y ∗
n by (.), then we define

Y (t) = Yn +
[
( – θ )fλ(Yn) + θ fλ

(
Y ∗
n
)]
(t – tn) + g

(
Y ∗
n
)(
W (t) –W (tn)

)
+ h

(
Y ∗
n
)(
Ñ(t) – Ñ(tn)

)
. (.)

Thus we can rewrite (.) in the integral form as follows:

Y (t) = Y +
∫ t


( – θ )fλ

(
Z(s)

)
+ θ fλ

(
Z(s)

)
ds +

∫ t


g
(
Z(s)

)
dW (s)

+
∫ t


h
(
Z(s)

)
dÑ(s). (.)

It is easy to verify that Z(tn) = Yn = Y (tn), that is, Z(t) and Y (t) coincide with the dis-
crete solutions at the gridpoints. Hence we refer to Y (t) as a continuous-time extension
of the discrete approximation {Yn}. So our plan is to prove a strong convergence result for
Y (t).
Now we begin the proof of the strong convergence of the CSSθ method, our first lemma

shows the relationship between E|Yn
∗| and E|Yn|.

Lemma . Suppose f :R →R satisfies (.), and let  < θ < ,  <�t <min{, 
θLλ

}, then
there exist two positive constants A = ( + Lλ) and B = Lλ such that

E
∣∣Yn

∗∣∣ ≤ AE|Yn| + B,

where Yn
∗ and Yn are produced by (.) and (.).

Proof Squaring both sides of (.), we find

∣∣Yn
∗∣∣ = ∣∣Yn + ( – θ )�tfλ(Yn) + θ�tfλ

(
Yn

∗)∣∣
= |Yn| +

∣∣( – θ )�tfλ(Yn)
∣∣ + ∣∣θ�tfλ

(
Yn

∗)∣∣ + θ�tfλ
(
Yn

∗)Yn

+ ( – θ )�tfλ(Yn)Yn + θ ( – θ )�tfλ(Yn)fλ
(
Yn

∗). (.)

Using the elementary inequality ab≤ a + b, we obtain

∣∣Yn
∗∣∣ ≤ |Yn| + ( – θ )�t

∣∣fλ(Yn)
∣∣ + θ�t

∣∣fλ(Yn
∗)∣∣

+ θ�t
[|Yn| +

∣∣fλ(Yn
∗)∣∣] + ( – θ )�t

[|Yn| +
∣∣fλ(Yn)

∣∣]
+ θ ( – θ )�t

[∣∣fλ(Yn)
∣∣ + ∣∣fλ(Yn

∗)∣∣]
= |Yn| +

[
( – θ )�t + ( – θ )�t + θ ( – θ )�t

]∣∣fλ(Yn)
∣∣

+�t|Yn| +
[
θ�t + θ�t + θ ( – θ )�t

]∣∣fλ(Yn
∗)∣∣

= |Yn| +
[
( – θ )�t + ( – θ )�t

]∣∣fλ(Yn)
∣∣

+�t|Yn| +
[
θ�t + θ�t

]∣∣fλ(Yn
∗)∣∣. (.)
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Due to �t < , linear growth condition (.), and  < θ < , we can get

∣∣Yn
∗∣∣ ≤ |Yn| + ( – θ )�tLλ

(
 + |Yn|

)
+�t|Yn|

+ θ�tLλ

(
 +

∣∣Yn
∗∣∣)

≤ |Yn| + ( – θ )�tLλ|Yn| +�t|Yn|

+ θ�tLλ

∣∣Yn
∗∣∣ + (Lλ + Lλ)�t. (.)

Taking mathematical expectation for both sides, we can obtain

E
∣∣Yn

∗∣∣ ≤ (
 + ( – θ )�tLλ +�t

)
E|Yn|

+ θ�tLλE
∣∣Yn

∗∣∣ + Lλ�t. (.)

Since θLλ�t < /, thus  – θLλ�t ≥ /, then by �t <  and  < θ < , we have

E
∣∣Yn

∗∣∣ ≤ ( + ( – θ )�tLλ +�t)
 – θLλ�t

E|Yn| + Lλ�t
 – θ�tLλ

≤ ( + Lλ + )E|Yn| + Lλ

= AE|Yn| + B, (.)

where A = ( + Lλ) and B = Lλ. The proof is completed. �

The next lemma shows that the discrete numerical solutions Yn and Yn
∗ (n = , , . . . ,N ),

produced by the CSSθ method, have bounded second moments.

Lemma . Under conditions (.)-(.), let Yn and Yn
∗ (n = , , . . . ,N ) be produced by

(.) and (.), and let  < θ < ,  < �t <min{, 
θLλ

, √
Kλθ

}, then

E|Yn| ≤ C (.)

and

E
∣∣Yn

∗∣∣ ≤ C, (.)

where C and C are two positive constants independent of �t.

Proof By Lemma ., we can express the CSSθ method (.) and (.) in the following
form:

Yn+ = Y +
∫ (n+)�t



[
( – θ )fλ

(
Z(s)

)
+ θ fλ

(
Z(s)

)]
ds

+
∫ (n+)�t


g
(
Z(s)

)
dW (s) +

∫ (n+)�t


h
(
Z(s)

)
dÑ(s),

where n = , , . . . ,N – .
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Squaring both sides, taking the mathematical expectation and using the element in-
equality (a + b + c + d) ≤ |a| + |b| + |c| + |d|, we have

E|Yn+| ≤ E|Y| + E
∣∣∣∣
∫ (n+)�t



[
( – θ )fλ

(
Z(s)

)
+ θ fλ

(
Z(s)

)]
ds

∣∣∣∣


+ E
∣∣∣∣
∫ (n+)�t


g
(
Z(s)

)
dW (s)

∣∣∣∣


+ E
∣∣∣∣
∫ (n+)�t


h
(
Z(s)

)
dÑ(s)

∣∣∣∣


. (.)

Now, using the Cauchy-Schwarz inequality and the inequality |θx + ( – θ )y| ≤ θ |x| +
( – θ )|y|, the linear growth condition (.) and Fubini’s theorem, we can get

E
∣∣∣∣
∫ (n+)�t



[
( – θ )f

(
Z(s)

)
+ θ f

(
Z(s)

)]
ds

∣∣∣∣


≤ TE
∫ (n+)�t



∣∣( – θ )fλ
(
Z(s)

)
+ θ fλ

(
Z(s)

)∣∣ ds
≤ TE

∫ (n+)�t



∣∣fλ(Z(s)
)∣∣+∣∣fλ(Z(s)

)∣∣ ds
≤ TLλE

∫ (n+)�t


 +

∣∣Z(s)
∣∣+∣∣Z(s)

∣∣ ds
≤ TLλ + TLλ

∫ (n+)�t


E
∣∣Z(s)

∣∣+E∣∣Z(s)
∣∣ ds

≤ TLλ + TLλ�t

( n∑
i=

E|Yi| +
n∑
i=

E
∣∣Yi

∗∣∣). (.)

Using the martingale isometry and linear growth condition (.), we have

E
∣∣∣∣
∫ (n+)�t


g
(
Z(s)

)
dW (s)

∣∣∣∣


=
∫ (n+)�t


E
∣∣g(Z(s)

)∣∣ ds
=�t

n∑
i=

E
∣∣g(Y ∗

i
)∣∣

≤ �tL
n∑
i=

(
 + E

∣∣Y ∗
i
∣∣)

≤ LT +�tL
n∑
i=

E
∣∣Yi

∗∣∣. (.)

For the jump integral, as the compensated Poisson process Ñ(t) =N(t)–λt is amartingale,
so we use the isometry

E
∣∣∣∣
∫ b

a
h
(
Z(s)

)
dÑ(s)

∣∣∣∣


= λ

∫ b

a
E
∣∣h(Z(s)

)∣∣ ds

http://www.advancesindifferenceequations.com/content/2014/1/209
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(see, for example, []), then we have

E
∣∣∣∣
∫ (n+)�t


h
(
Z(s)

)
dÑ(s)

∣∣∣∣


= λ

∫ (n+)�t


E
∣∣h(Z(s)

)∣∣ ds
= λ�t

n∑
i=

E
∣∣h(Yi

∗)∣∣

≤ λ�tL
n∑
i=

(
 + E

∣∣Yi
∗∣∣)

≤ λTL + λ�tL
n∑
i=

E
∣∣Yi

∗∣∣. (.)

Inserting (.)-(.) in (.) gives

E|Yn+| ≤ 
(
E|Y| + TLλ + LT + λTL

)
+ �t(TLλ + L + λL)

n∑
i=

E
∣∣Yi

∗∣∣

+ TLλ�t
n∑
i=

E|Yi|. (.)

By Lemma ., we can derive that

E|Yn+| ≤ 
(
E|Y| + TLλ + LT + λTL

)
+ �t(TLλ + L + λL)

(
A

n∑
i=

E|Yi| + (n + )B

)

+ TLλ�t
n∑
i=

E|Yi|

≤ 
(
E|Y| + TLλ + LT + λTL

)
+ (n + )B(TLλ + L + λL)�t

+
[
A(TLλ + L + λL) + TLλ

]
�t

n∑
i=

E|Yi|

≤ c + c�t
n∑
i=

E|Yi|, (.)

where

c = 
(
E|Y| + TLλ + LT + λTL

)
+ (n + )B(TLλ + L + λL)

and

c = A(TLλ + L + λL) + TLλ

are both independent of �t.

http://www.advancesindifferenceequations.com/content/2014/1/209
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Then, using the discrete Gronwall inequality, we can get

E|Yn| ≤ cec ≡ C.

Then, by Lemma ., we can obtain that

E
∣∣Yn

∗∣∣ ≤ AE|Yn| + B ≤ AC + B≡ C. �

The next lemma shows that the continuous-time approximation Y (t) in (.) remains
close to the step functions Z(t) and Z(t) in the mean square sense.

Lemma . Under conditions (.)-(.), let Yn
∗ and Yn be produced by (.) and (.),

and let  < θ < ,  <�t <min{, 
θLλ

, √
Kλθ

}, then there exist two positive constants C and
C that are independent of �t, such that

E
∣∣Y (t) – Z(t)

∣∣ ≤ C�t, (.)

and

E
∣∣Y (t) – Z(t)

∣∣ ≤ C�t, (.)

where t ∈ [,T], Z(t), Z(t), and Y (t) are defined by (.), (.), (.), respectively.

Proof For any t ∈ [,T], there exists a nonnegative integer n such that

t ∈ [
n�t, (n + )�t

] ⊆ [,T],

we have

Y (t) – Z(t) = Y (t) – Yn

=
∫ t

n�t
( – θ )fλ

(
Z(s)

)
+ θ fλ

(
Z(s)

)
ds

+
∫ t

n�t
g
(
Z(s)

)
dW (s)

+
∫ t

n�t
h
(
Z(s)

)
dÑ(s).

Squaring both sides and using the element inequality (a + b + c) ≤ |a| +|b| +|c|, we
have

∣∣Y (t) – Z(t)
∣∣ ≤ 

∣∣∣∣
∫ t

n�t

[
( – θ )fλ

(
Z(s)

)
+ θ fλ

(
Z(s)

)]
ds

∣∣∣∣


+ 
∣∣∣∣
∫ t

n�t
g
(
Z(s)

)
dW (s)

∣∣∣∣


+ 
∣∣∣∣
∫ t

n�t
h
(
Z(s)

)
dÑ(s)

∣∣∣∣


.

http://www.advancesindifferenceequations.com/content/2014/1/209
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Taking mathematical expectation, by the element inequality (a + b) ≤ |a| + |b|, and
using the martingale isometry, we have

E
∣∣Y (t) – Z(t)

∣∣ ≤ �t
∫ t

n�t

[
E
∣∣fλ(Z(s)

)∣∣ + E
∣∣fλ(Z(s)

)∣∣]ds
+ 

∫ t

n�t
E
∣∣g(Z(s)

)∣∣ ds
+ λ

∫ t

n�t
E
∣∣h(Z(s)

)∣∣ ds.
By the linear growth conditions (.) and (.), we get

E
∣∣Y (t) – Z(t)

∣∣ ≤ �tLλ

∫ t

n�t
 + E

∣∣Z(s)
∣∣ + E

∣∣Z(s)
∣∣ ds

+ L( + λ)
∫ t

n�t
 + E

∣∣Z(s)
∣∣ ds.

Since Z(t) ≡ Yn and Z(t) ≡ Y ∗
n on [n�t, (n + )�t), we have

E
∣∣Y (t) – Z(t)

∣∣ ≤ �tLλ

(
 + E|Yn| + E

∣∣Y ∗
n
∣∣)

+ L�t( + λ)
(
 + E

∣∣Y ∗
n
∣∣).

Then, for each t ∈ [,T], and by Lemma ., we can derive

E
∣∣Y (t) – Z(t)

∣∣ ≤ �tLλ( +C +C)

+ L�t( + λ)( +C)

≤ C�t, (.)

where C = Lλ( +C +C) + L( + λ)( +C). Thus we can prove (.).
Now we give the proof of (.).
By (.) and for each t ∈ [n�t, (n + )�t]⊆ [,T], we get

Z(t) – Z(t) = Yn – Yn
∗ = –

[
( – θ )fλ(Yn) + θ fλ

(
Yn

∗)]�t.

Using the inequality |θx + ( – θ )y| ≤ θ |x| + ( – θ )|y|, and  < θ < , we can get

∣∣Z(t) – Z(t)
∣∣ =

∣∣( – θ )fλ(Yn) + θ fλ
(
Yn

∗)∣∣�t

≤ [
( – θ )

∣∣fλ(Yn)
∣∣ + θ

∣∣fλ(Yn
∗)∣∣]�t

≤ [∣∣fλ(Yn)
∣∣ + ∣∣fλ(Yn

∗)∣∣]�t.

Taking mathematical expectation, and by the linear growth condition (.),

E
∣∣Z(t) – Z(t)

∣∣ ≤ [
E
∣∣fλ(Yn)

∣∣ + E
∣∣fλ(Yn

∗)∣∣]�t

≤ Lλ

(
 + E|Yn| + E

∣∣Y ∗
n
∣∣)�t.

http://www.advancesindifferenceequations.com/content/2014/1/209
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Then by Lemma . we can derive

E
∣∣Z(t) – Z(t)

∣∣ ≤ Lλ( +C +C)�t. (.)

Then, by the element inequality (a + b) ≤ |a| + |b| and using (.) and (.), we
have

E
∣∣Y (t) – Z(t)

∣∣ ≤ E
∣∣Y (t) – Z(t)

∣∣ + E
∣∣Z(t) – Z(t)

∣∣
≤ C�t + Lλ( +C +C)�t

≤ C�t,

where C = C + Lλ( +C +C). Then we have proved (.). �

Now we use the above lemmas to prove a strong convergence result.

Definition . A numerical method is said to have strong order of convergence equal to
γ if there exists a constant C such that the numerical solution sequence Yn produced by
this numerical scheme satisfies

E
∣∣Yn –X(τ )

∣∣ ≤ C�tγ

for any fixed τ = n�t ∈ [,T], and �t sufficiently small.

Theorem . Under conditions (.)-(.), let  < θ < ,  < �t < min{, 
θLλ

, √
Kλθ

}, the
continuous-time approximate solution Y (t) defined by (.) will converge to the true solu-
tion of (.) in the mean square sense, i.e.,

E sup
≤t≤T

∣∣Y (t) –X(t)
∣∣ ≤ C�t, (.)

where C is a positive constant independent of �t.

Proof From (.) and (.), we have

Y (t) –X(t)

=
∫ t


( – θ )

[
fλ

(
Z(s)

)
– fλ

(
X

(
s–

))]
+ θ

[
fλ

(
Z(s)

)
– fλ

(
X

(
s–

))]
ds

+
∫ t


g
(
Z(s)

)
–g

(
X

(
s–

))
dW (s) +

∫ t


h
(
Z(s)

)
–g

(
X

(
s–

))
dÑ(s). (.)

For any t ∈ [,T], using the Cauchy-Schwarz inequality and the inequality |θx + ( –
θ )y| ≤ θ |x| + ( – θ )|y|, we have

E sup
≤t≤t

∣∣Y (t) –X(t)
∣∣

≤ E sup
≤t≤t

∣∣∣∣
∫ t


( – θ )

[
fλ

(
Z(s)

)
– fλ

(
X

(
s–

))]
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+ θ
[
fλ

(
Z(s)

)
– fλ

(
X

(
s–

))]
ds

∣∣∣∣


+ E sup
≤t≤t

∣∣∣∣
∫ t


g
(
Z(s)

)
–g

(
X

(
s–

))
dW (s)

∣∣∣∣


+ E sup
≤t≤t

∣∣∣∣
∫ t


h
(
Z(s)

)
–h

(
X

(
s–

))
dÑ(s)

∣∣∣∣


≤  sup
≤t≤t

∫ t


 dsE sup

≤t≤t

∫ t



∣∣fλ(Z(s)
)
– fλ

(
X

(
s–

))∣∣
+

∣∣fλ(Z(s)
)
– fλ

(
X

(
s–

))∣∣ ds
+ E sup

≤t≤t

∣∣∣∣
∫ t


g
(
Z(s)

)
–g

(
X

(
s–

))
dW (s)

∣∣∣∣


+ E sup
≤t≤t

∣∣∣∣
∫ t


h
(
Z(s)

)
–h

(
X

(
s–

))
dÑ(s)

∣∣∣∣


.

Now using the Doob martingale inequality for the two martingale terms, we have

E sup
≤t≤t

∣∣Y (t) –X(t)
∣∣

≤ tE
∫ t



∣∣fλ(Z(s)
)
– fλ

(
X

(
s–

))∣∣ + ∣∣fλ(Z(s)
)
– fλ

(
X

(
s–

))∣∣ ds
+ E

∣∣∣∣
∫ t


g
(
Z(s)

)
–g

(
X

(
s–

))
dW (s)

∣∣∣∣


+ E
∣∣∣∣
∫ t


h
(
Z(s)

)
–h

(
X

(
s–

))
dÑ(s)

∣∣∣∣


. (.)

Then Fubini’s theorem and the martingale isometries give

E sup
≤t≤t

∣∣Y (t) –X(t)
∣∣

≤ T
∫ t


E
∣∣fλ(Z(s)

)
– fλ

(
X

(
s–

))∣∣ + E
∣∣fλ(Z(s)

)
– fλ

(
X

(
s–

))∣∣ ds
+ 

∫ t


E
∣∣g(Z(s)

)
– g

(
X

(
s–

))∣∣ ds
+ λ

∫ t


E
∣∣h(Z(s)

)
– h

(
X

(
s–

))∣∣ ds.
Applying Lipschitz conditions (.) and (.), we get

E sup
≤t≤t

∣∣Y (t) –X(t)
∣∣

≤ TKλ

∫ t


E
∣∣Z(s) –X

(
s–

)∣∣ + E
∣∣Z(s) –X

(
s–

)∣∣ ds
+ K

∫ t


E
∣∣Z(s) –X

(
s–

)∣∣ ds + λK
∫ t


E
∣∣Z(s) –X

(
s–

)∣∣ ds
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= TKλ

∫ t


E
∣∣Z(s) –X

(
s–

)∣∣ ds
+ (TKλ + K + λK )

∫ t


E
∣∣Z(s) –X

(
s–

)∣∣ ds
≤ TKλ

∫ t


E
∣∣Z(s) – Y

(
s–

)∣∣ + E
∣∣Y (s) –X

(
s–

)∣∣ ds
+ (TKλ + K + λK)

∫ t


E
∣∣Z(s) – Y

(
s–

)∣∣ + E
∣∣Y (s) –X

(
s–

)∣∣ ds.
Finally, applying Lemma ., we have

E sup
≤t≤t

∣∣Y (t) –X(t)
∣∣

≤ TKλC�t + (TKλ + K + λK )TC�t

+ (TKλ + TKλ + K + λK )
∫ t


E
∣∣Y (s) –X

(
s–

)∣∣ ds
≤ TKλC�t + (TKλ + K + λK )TC�t

+ (TKλ + K + λK )
∫ t


E sup

≤r≤s

∣∣Y (r) –X
(
r–

)∣∣ ds. (.)

Using the Gronwall inequality (see []), we have

E sup
≤t≤t

∣∣Y (t) –X(t)
∣∣ ≤ C�t. (.)

Thus for any t ∈ [,T], we have

E sup
≤t≤T

∣∣Y (t) –X(t)
∣∣ ≤ C�t. (.)

�

4 Mean-square stability
In order to study the stability property of the CSSθ method, we consider a linear test equa-
tion with scalar coefficients

dX(t) = aX
(
t–

)
dt + bX

(
t–

)
dW (t) + cX

(
t–

)
dN(t), (.)

where a,b, c ∈ R. Hence, the mean-square stability of the zero solution to equation (.)
was proved in [], i.e.,

lim
t→∞E

∣∣X(t)∣∣ =  ⇔ a + b + λc(c + ) < . (.)

Applying the CSSθ method (.)-(.) to equation (.), we have

Yn
∗ = Yn +

[
( – θ )(a + λc)Yn + θ (a + λc)Yn

∗]h, (.)

Yn+ = Yn
∗ + bYn

∗�Wn + cYn
∗�Ñn. (.)

http://www.advancesindifferenceequations.com/content/2014/1/209
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Definition. Under condition (.), a numericalmethod applied to equation (.) is said
to be MS-stable if there exists h(a,b, c,λ) >  such that the numerical solution sequence
Yn produced by this numerical scheme satisfies

lim
n→∞E|Yn| =  (.)

for all h ∈ (,h(a,b, c,λ)).

Theorem . Under condition (.), then for

�t ≤ h(a,b, c,λ, θ ) =
–B +

√
B – AC
A

, (.)

where

A = ( – θ )(a + λc)
(
b + λc

)
,

B = ( – θ )(a + λc) + ( – θ )(a + λc)
(
b + λc

)
,

C = a + b + λc(c + ),

θ ∈ [, ),

the CSSθ method (.)-(.) applied to equation (.) is MS-stable.

Proof Assuming that  – θ (a + λc)h = , from (.) we have

Yn
∗ =

 + ( – θ )(a + λc)h
 – θ (a + λc)h

Yn. (.)

Substituting this into (.) yields

Yn+ =
 + ( – θ )(a + λc)h

 – θ (a + λc)h
( + b�Wn + c�Ñn)Yn. (.)

Squaring both sides of (.), we can get

|Yn+| =
(
 + ( – θ )(a + λc)h

 – θ (a + λc)h

)

( + b�Wn + c�Ñn)|Yn|. (.)

Noting that E(�Wn) = , E[(�Wn)] = h, E(�Ñn) = , E[(�Ñn)
] = λh, we have

E|Yn+| =
(
 + ( – θ )(a + λc)h

 – θ (a + λc)h

)(
 + bh + λch

)
E|Yn|. (.)

By the iteration of (.), we conclude that limn→∞ E|Yn| =  if

(
 + ( – θ )(a + λc)h

 – θ (a + λc)h

)(
 + bh + λch

)
< , (.)

http://www.advancesindifferenceequations.com/content/2014/1/209
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which is equivalent to

(
 + ( – θ )(a + λc)h

)( + bh + λch
)
<

(
 – θ (a + λc)h

), (.)

i.e.,

(
( – θ )(a + λc)

(
b + λc

))
h

+
[
( – θ )(a + λc) + ( – θ )(a + λc)

(
b + λc

)]
h

+ a + b + λc(c + ) < . (.)

Let

f (h) =
(
( – θ )(a + λc)

(
b + λc

))
h

+
[
( – θ )(a + λc) + ( – θ )(a + λc)

(
b + λc

)]
h

+ a + b + λc(c + ). (.)

If θ = , (.) becomes

–(a + λc)h + a + b + λc(c + ) < . (.)

By (.), we know that (.) holds for all h > , i.e., the CSSθ method is MS-stable for all
h > . Note that if θ = , the CSSθ method reduces to CSSBE, and (.) coincides with
Theorem  which was studied in [].
If θ ∈ [, ), let

A = ( – θ )(a + λc)
(
b + λc

)
,

B = ( – θ )(a + λc) + ( – θ )(a + λc)
(
b + λc

)
,

C = a + b + λc(c + ).

(.)

In view of (.), we know that a+λc < , then A =  (if A = , b + λc = , i.e., b = , c = ,
then equation (.) becomes nonsense), so we can get

A > ,

B = ( – θ )(a + λc) + ( – θ )(a + λc)
(
b + λc

)
< ( – θ )(a + λc) – ( – θ )(a + λc)(a + λc)

= (– + θ )(a + λc) < ,

C < ,

� = B – AC > .

(.)

http://www.advancesindifferenceequations.com/content/2014/1/209
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So f (h) =  has two real roots h and h, with h <  < h, where

h(a,b, c,λ, θ ) =
–B +

√
�

A
> ,

h(a,b, c,λ, θ ) =
–B –

√
�

A
< .

(.)

So we can easily obtain that f (h) <  holds when

h ∈ (
,h(a,b, c,λ, θ )

)
.

From (.), we know that the CSSθ method is MS-stable. This proves the theorem. �

5 Numerical experiments
We consider the following equation:

{
dX(t) = aX(t–) dt + bX(t–) dW (t) + cX(t–) dN(t),
X() = .

(.)

Equation (.) has the exact solution

X(t) = X() exp
((

a –


b

)
t + bW (t)

)
( + c)N(t), (.)

see, for example, [].
To illustrate the convergence order and the linear mean-square stability of the CSSθ

method, we choose the following examples from the reference [].

Example . a = –, b = , c = , λ = .

Example . a = , b = , c = –., λ = .

In this section, the data used in all figures are obtained by the mean square of data by
, trajectories, that is, ωi :  ≤ i ≤ ,, Yn = /,

∑,
i= |Yn(ωi)|; in all figures tn

denotes the mesh-point.
To show the strong convergence order of the CSSθ method, we apply the CSSθ method

to Example .. First, we plot the exact solution of Example . for one sample path and
the CSSθ approximations in Figure . Then we simulate the numerical solutions with
five different step sizes h = p–�t for  ≤ p ≤ , �t = –. The mean-square errors
ε = /,

∑,
i= |Yn(ωi) –X(T)| all measured at time T =  are estimated by trajectory

averaging. We plot our approximation to
√

ε against �t on a log-log scale. For reference
a dashed line of slope one-half is added. We see that the slopes of the two curves appear
to match well in Figure . Hence, our results are consistent with a strong order of conver-
gence equal to /.
To illustrate the step size h on themean-square stability of the CSSθ method, we applied

the CSSθ method to Examples . and ..
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Figure 1 The exact solution and the CSSθ method approximations with fixed θ = 0.1 for Example 5.1.

Figure 2 The convergence rate of the CSSθ method for Example 5.1 with fixed θ = 0.2.

For Example ., we first choose θ = ., then by Theorem . we know that the CSSθ
method is MS-stable when h(a,b, c,λ, θ ) = .. Figure  illustrates the numerical so-
lution produced by the CSSθ method is MS-stable when h = /. However, applied to the
same test equation, and also choose θ = ., then by Theorem . in [] the CSTM is MS-
stable when the step size h ∈ (, .).
When we choose θ = ., by Theorem . we know that the CSSθ method is MS-stable

when h(a,b, c,λ, θ ) = ., while the CSTmethod in [] isMS-stable when the step size
h ∈ (, .). Figure  illustrates the numerical solution produced by the CSSθ method is
MS-stable when h = . At the same times we know that the Euler-Maruyama (EM)method
in [] is MS-stable for Example . when the step size h ∈ (, .).
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Figure 3 The CSSθ method approximations for Example 5.1 with θ = 0.1, h = 1/2.

Figure 4 The CSSθ method approximations for Example 5.1 with θ = 0.4, h = 1.

Remark  Figures  and  indicate that the restriction on the step size h of the CSSθ
method for theMS-stability is less than that of both the CSTmethod and the EMmethod.

For Example ., we note that c = –. < , then the theta method in [] is not guar-
anteed to preserve stability for all �t ≥ . However, if we choose θ = ., then by Theo-
rem . we know that the CSSθ method is MS-stable when h(a,b, c,λ, θ ) = ., and
when θ = ., h(a,b, c,λ, θ ) = .. Figure  and Figure  (upper) illustrate the numer-
ical solution produced by the CSSθ method is MS-stable for Example . when the step
size h ∈ (,h(a,b, c,λ, θ )) = (, .).
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Figure 5 The CSSθ method approximations for Example 5.2 with θ = 0.1, h = 0.1.

Figure 6 The CSSθ method approximations for Example 5.2 with θ = 0.4, h = 0.5 (upper), h = 0.6
(lower).

At last, Figure  (lower) shows that the numerical solution of the CSSθ method is still
stable when h = . > h(a,b, c,λ, θ ) = .. This implies that maybe the mean-square
stability bound we obtained by Theorem . is not optimal.
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