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Abstract
In this paper, we establish the existence of positive solutions of a boundary value
problem for nonlinear singular third-order q-difference equations
D3
qu(t) + λa(t)f (u(t)) = 0, t ∈ Iq, u(0) = 0, Dqu(0) = 0, αDqu(1) + βD2

qu(1) = 0, by using
Krasnoselskii’s fixed-point theorem on a cone, where λ is a positive parameter. Finally,
we give an example to demonstrate the use of the main result of this paper. The
conclusions in this paper essentially extend and improve known results.
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1 Introduction
The q-difference equations initiated in the beginning of the th century [–], is a very
interesting field in difference equations. In the last few decades, it has evolved into a mul-
tidisciplinary subject and plays an important role in several fields of physics, such as cos-
mic strings and black holes [], conformal quantummechanics [], and nuclear and high-
energy physics []. For some recent work on q-difference equations, we refer the reader to
[–]. However, the theory of boundary value problems (BVPs) for nonlinear q-difference
equations is still in an early stage and many aspects of this theory need to be explored. To
the best of our knowledge, for the BVPs of nonlinear third-order q-difference equations,
a few works were done, see [, ] and the references therein.
Recently, in [], El-Shahed has studied the existence of positive solutions for the fol-

lowing nonlinear singular third-order BVP:
{
u′′′(t) + λa(t)f (u(t)) = ,  ≤ t ≤ ,
u() = u′() = , αu′() + βu′′() = ,

by Krasnoselskii’s fixed-point theorem on a cone.
More recently, in [] Ahmad has studied the existence of positive solutions for the fol-

lowing nonlinear BVP of third-order q-difference equations:
{
D

qu(t) = f (t,u(t)), ≤ t ≤ ,
u() = , Dqu() = , u() = ,

by Leray-Schauder degree theory and some standard fixed-point theorems.
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Motivated by the work above, in this paper, we will study the following BVP of nonlinear
singular third-order q-difference equations:

{
D

qu(t) + λa(t)f (u(t)) = , t ∈ Iq,
u() = , Dqu() = , αDqu() + βD

qu() = ,
(.)

where λ >  is a positive parameter, a : (, ) → [,∞) is continuous and  <
∫ 
 a(t)dqt <

∞, f is a continuous function, Iq = {qn : n ∈ N} ∪ {, }, q ∈ (, ) is a fixed constant, and
α,β ≥ , α + β > .
Obviously, when q → –, BVP (.) reduces to the standard BVP in [].
Throughout this paper, we always suppose the following conditions to hold:

(C) f ∈ C([, ], [, +∞));
(C) α,β ≥ , α + β >  and α–β

α+β
≤ q.

2 Preliminary results
In this section, firstly, let us recall some basic concepts of q-calculus [, ].

Definition . For  < q < , we define the q-derivative of a real-value function f as

Dqf (t) =
f (t) – f (qt)
( – q)t

, t ∈ Iq – {}, Dqf () = lim
t→

Dqf (t).

Note that limq→– Dqf (t) = f ′(t).

Definition . The higher-order q-derivatives are defined inductively as

D
qf (t) = f (t), Dn

qf (t) =DqDn–
q f (t), n ∈N .

For example, Dq(tk) = [k]qtk–, where k is a positive integer and the bracket [k]q = (qk –
)/(q – ). In particular, Dq(t) = ( + q)t.

Definition . The q-integral of a function f defined in the interval [a,b] is given by

∫ x

a
f (t)dqt :=

∞∑
n=

x( – q)qnf
(
xqn

)
– af

(
aqn

)
, x ∈ [a,b],

and for a = , we denote

Iqf (x) =
∫ x


f (t)dqt =

∞∑
n=

x( – q)qnf
(
xqn

)
,

then
∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt.

Similarly, we have

Iq f (t) = f (t), Inq f (t) = IqIn–q f (t), n ∈N .
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Observe that

DqIqf (x) = f (x),

and if f is continuous at x = , then IqDqf (x) = f (x) – f ().
In q-calculus, the product rule and integration by parts formula are

Dq(gh)(t) =Dqg(t)h(t) + g(qt)Dqh(t), (.)∫ x


f (t)Dqg(t)dqt =

[
f (t)g(t)

]x
 –

∫ x


Dqf (t)g(qt)dqt. (.)

Remark . In the limit q → –, the above results correspond to their counterparts in
standard calculus.

Definition . Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called
a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥  implies λx ∈ P;
(ii) x ∈ P, –x ∈ P implies x = .

Theorem. (Krasnoselskii) [] Let E be a Banach space and let K ∈ E be a cone in E.As-
sume that� and� are open subsets of E with  ∈ � and� ⊂ �.Let T : K∩(�\�) →
K be a completely continuous operator. In addition, suppose either

(H) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂� or
(H) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂�

holds. Then T has a fixed point in K ∩ (�\�).

Lemma . Let y ∈ C[, ], then the BVP
{
D

qu(t) + y(t) = , t ∈ Iq,
u() = , Dqu() = , αDqu() + βD

qu() = ,
(.)

has a unique solution

u(t) =
∫ 


G(t, s;q)y(s)dqs,

where

G(t, s;q) =


( + q)(α + β)

{
αt( – qs) + βt – (t – qs)(t – qs)(α + β),  ≤ s≤ t ≤ ,
αt( – qs) + βt,  ≤ t ≤ s≤ .

Proof Integrate the q-difference equation from  to t, we get

D
qu(t) = –

∫ t


y(s)dqs + a. (.)

Integrate (.) from  to t, and change the order of integration, we have

Dqu(t) = –
∫ t


(t – qs)y(s)dqs + at + a. (.)
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Integrating (.) from  to t, and changing the order of integration, we obtain

u(t) = –
∫ t



(
t + qs

 + q
– qts

)
y(s)dqs +

a
 + q

t + at + a, (.)

where a, a, a are arbitrary constants. Using the boundary conditions u() = ,Dqu() =
, αDqu() + βD

qu() =  in (.), we find that a = a = , and

a =


α + β

(
α

∫ 


( – qs)y(s)dqs + β

∫ 


y(s)dqs

)
.

Substituting the values of a, a, and a in (.), we obtain

u(t) = –
∫ t



(
t + qs

 + q
– qts

)
y(s)dqs

+
t

( + q)(α + β)

(
α

∫ 


( – qs)y(s)dqs + β

∫ 


y(s)dqs

)

=
∫ 


G(t, s;q)y(s)dqs,

where

G(t, s;q) =


( + q)(α + β)

{
αt( – qs) + βt – (t – qs)(t – qs)(α + β),  ≤ s≤ t ≤ ,
αt( – qs) + βt,  ≤ t ≤ s≤ .

This completes the proof. �

Remark . For q → , equation (.) takes the form

u(t) = –



∫ t


(t – s)y(s)dqs +

a

t + at + a,

which is the solution of a classical third-order ordinary differential equationu′′′(t)+y(t) = 
and the associated form of Green’s function for the classical case is

G(t, s) =


(α + β)

{
αt( – s) + βt – (t – s)(α + β),  ≤ s≤ t ≤ ,
αt( – s) + βt,  ≤ t ≤ s≤ .

It is obvious that, when (C) holds, G(t, s;q) ≥ , and G(t, s;q) ≤G(, s;q), ≤ t, s≤ .

Lemma . Let (C) hold, then G(t, s;q) ≥ g(t)G(, s;q) for  ≤ t, s ≤ , where g(t) =
β

(α+β) t
.

Proof If t ≤ s, then

G(t, s;q)
G(, s;q)

=
αt(–qs)
(+q)(α+β) +

βt
(+q)(α+β)

α(–qs)
(+q)(α+β) +

β

(+q)(α+β)

=
t – αqs

α+β
t

 – αqs
α+β

≥ t –
α

α + β
t =

β

α + β
t ≥ β

(α + β)
t.
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If t ≥ s, then

G(t, s;q)
G(, s;q)

=
αt(–qs)
(+q)(α+β) +

βt
(+q)(α+β) –

t+qs
+q + qts

α(–qs)
(+q)(α+β) +

β

(+q)(α+β) –
+qs
+q + qs

=
– αqs

α+β
t – qs + ( + q)qts

– αqs
α+β

– qs + ( + q)qs

≥ ( + q)qt – αqs
α+β

t – qs

( + q)qs – qs
=
( + q)t – αs

α+β
t – qs

( + q)s – qs

≥ t – α
α+β

t

 + q – q
≥ β

(α + β)
t.

The proof is complete. �

We consider the Banach space Cq = C(Iq,R) equipped with standard norm ‖u‖ =
sup{|u(t)|, t ∈ Iq}, u ∈ Cq. Define a cone P by

P =
{
u ∈ Cq|u(t) ≥ ,u(t) ≥ g(t)‖u‖, t ∈ Iq

}
.

It is easy to see that if u ∈ P, then ‖u‖ = u().
Define an integral operator T : P → Cq by

Tu(t) = λ

∫ 


G(t, s;q)a(s)f

(
u(s)

)
dqs, t ∈ Iq,u ∈ P. (.)

Obviously, T is well defined and u ∈ P is a solution of BVP (.) if and only if u is a fixed
point of T .

Remark . By Lemma ., we obtain, for u ∈ P, Tu(t) ≥  on Iq and

Tu(t) = λ

∫ 


G(t, s;q)a(s)f

(
u(s)

)
dqs ≥ λg(t)

∫ 


G(, s;q)a(s)f

(
u(s)

)
dqs

≥ λg(t) sup
t∈Iq

∫ 


G(t, s;q)a(s)f

(
u(s)

)
dqs = g(t)‖Tu‖.

Thus T(P) ⊂ P.

We adopt the following assumption:

(C) a(t) ∈ C((, ),R+) may be singular at t = , ,  <
∫ 
 a(t)dqt < +∞, and  <

∫ 
 G(,

s;q)a(t)dqt < +∞.

Lemma . Assume (C), (C), and (C) hold, then T : P → P is completely continuous.

Proof Define the functions an(t) for n≥  by

an(t) =

⎧⎪⎨
⎪⎩
inf{a(t),a( n )},  ≤ t ≤ 

n ,
a(t), 

n ≤ t ≤  – 
n ,

inf{a(t),a( – 
n )},  – 

n ≤ t ≤ .
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Next, for n ≥ , we define the operator Tn : P → P by

Tnu(t) = λ

∫ 


G(t, s;q)an(s)f

(
u(s)

)
dqs, t ∈ Iq,u ∈ P.

Obviously, Tn is completely continuous on P for any n≥  by an application of the Ascoli-
Arzelá theorem. Denote BK = {u ∈ P : ‖u‖ ≤ K}. Then Tn converges uniformly to T as
n→ ∞. In fact, for any t ∈ Iq, for each fixed K >  and u ∈ BK , from (C), we obtain

∣∣Tnu(t) – Tu(t)
∣∣ = ∣∣∣∣λ

∫ 


G(t, s;q)

[
a(s) – an(s)

]
f
(
u(s)

)
dqs

∣∣∣∣
≤ λ

∫ 
n


G(, s;q)

∣∣a(s) – an(s)
∣∣f (u(s))dqs

+ λ

∫ – 
n


n

G(, s;q)
∣∣a(s) – an(s)

∣∣f (u(s))dqs
+ λ

∫ 

– 
n

G(, s;q)
∣∣a(s) – an(s)

∣∣f (u(s))dqs →  (n→ ∞),

where we have used the fact thatG(t, s;q) ≥ , andG(t, s;q) ≤G(, s;q), ≤ t, s ≤ . Hence,
Tn converges uniformly to T as n → ∞, and therefore T is completely continuous also.
This completes the proof. �

3 Main results
In this section, wewill applyKrasnoselskii’s fixed-point theorem to the eigenvalue problem
(.). First, we define some important constants:

Aq =
∫ 


G(, s;q)a(s)g(s)dqs, Bq =

∫ 


G(, s;q)a(s)dqs,

F = lim
u→+

sup
f (u)
u

, f = lim
u→+

inf
f (u)
u

,

F∞ = lim
u→+∞ sup

f (u)
u

, f∞ = lim
u→+∞ inf

f (u)
u

.

Here we assume that 
Aqf∞ =  if f∞ = ∞ and 

BqF
= ∞ if F =  and 

Aqf
=  if f = ∞ and


BqF∞ =∞ if F∞ = .
The main result of this paper is the following.

Theorem . Suppose that (C), (C) and (C) hold and Aqf∞ > BqF. Then for each λ ∈
( 
Aqf∞ , 

BqF
), BVP (.) has at least one positive solution.

Proof By the definition of F, we see that there exists an l > , such that f (u) ≤ (F + ε)u
for  ≤ u≤ l. If u ∈ P with ‖u‖ = l, we have

‖Tu‖ = Tu() = λ

∫ 


G(, s;q)a(s)f

(
u(s)

)
dqs≤ λ(F + ε)‖u‖Bq.

Choose ε >  sufficiently small such that λ(F + ε)Bq ≤ . Then we obtain ‖Tu‖ ≤ ‖u‖.
Thus if we let � = {u ∈ Cq|‖u‖ < l}, then ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂�.

http://www.advancesindifferenceequations.com/content/2014/1/21
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From the definition of f∞, we see that there exist an l >  and l > l, such that f (u) ≥
(f∞ – ε)u for u > l. Let l > l, if u ∈ P with ‖u‖ = l we have

‖Tu‖ = Tu() = λ

∫ 


G(, s;q)a(s)f

(
u(s)

)
dqs

≥ λ

∫ 


G(, s;q)a(s)g(s)f

(
u(s)

)
dqs≥ λ(f∞ – ε)‖u‖Aq.

Choose ε >  sufficiently small such that λ(f∞ – ε)Aq ≥ . Then we have ‖Tu‖ ≥ ‖u‖. Let
� = {u ∈ Cq|‖u‖ < l}, then � ⊂ � and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂�.
Condition (H) of Krasnoselskii’s fixed-point theorem is satisfied. Hence, by Theo-

rem ., the result of Theorem . holds. This completes the proof of Theorem .. �

Theorem . Suppose that (C), (C) and (C) hold and Aqf > BqF∞. Then for each λ ∈
( 
Aqf

, 
BqF∞ ), BVP (.) has at least one positive solution.

Proof It is similar to the proof of Theorem .. �

Theorem. Suppose that (C), (C) and (C) hold and λBqf (u) < u for u ∈ (, +∞).Then
BVP (.) has no positive solution.

Proof Assume to the contrary that u is a positive solution of BVP (.). Then

u() = λ

∫ 


G(, s;q)a(s)f

(
u(s)

)
dqs <


Bq

∫ 


G(, s;q)a(s)u(s)dqs

≤ u()
Bq

∫ 


G(, s;q)a(s)dqs = u().

This is a contradiction and completes the proof. �

Theorem. Suppose that (C), (C) and (C) hold and λAqf (u) > u for u ∈ (, +∞).Then
BVP (.) has no positive solution.

Proof It is similar to the proof of Theorem .. �

4 Example
Consider the following BVP:

⎧⎨
⎩
D



u(t) + λt– 

 u+u
u+ ( + sinu) = , t ∈ Iq,

u() = , D 

u() = , D 


u() + D



u() = .

(.)

Then F = , f = , F∞ = , f∞ = , and u ≤ f (u) ≤ u. By direct calculations,
we obtain Aq = . and Bq = .. From Theorem . we see that if λ ∈
(., .) then the problem (.) has a positive solution. FromTheorem . we
see that if λ < . then the problem (.) has no positive solution. By Theorem .
we see that if λ > . then the problem (.) has no positive solution.
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