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Abstract

In this paper, we establish the existence of positive solutions of a boundary value
problem for nonlinear singular third-order g-difference equations

Dyu(t) + Aa®)f (u(t) = 0, t € lg, u(0) = 0, Dyu(0) = 0, aDyu(1) + BDu(1) = 0, by using
Krasnoselskii's fixed-point theorem on a cone, where A is a positive parameter. Finally,
we give an example to demonstrate the use of the main result of this paper. The
conclusions in this paper essentially extend and improve known results.

Keywords: g-difference equations; positive solutions; singular boundary value
problem; Krasnoselskii's fixed-point theorem

1 Introduction
The g-difference equations initiated in the beginning of the 20th century [1-4], is a very
interesting field in difference equations. In the last few decades, it has evolved into a mul-
tidisciplinary subject and plays an important role in several fields of physics, such as cos-
mic strings and black holes [5], conformal quantum mechanics [6], and nuclear and high-
energy physics [7]. For some recent work on g-difference equations, we refer the reader to
[8-12]. However, the theory of boundary value problems (BVPs) for nonlinear g-difference
equations is still in an early stage and many aspects of this theory need to be explored. To
the best of our knowledge, for the BVPs of nonlinear third-order g-difference equations,
a few works were done, see [13, 14] and the references therein.

Recently, in [15], El-Shahed has studied the existence of positive solutions for the fol-
lowing nonlinear singular third-order BVP:

u”(t) + rat)f (u(t) =0, 0<t<l,
u(0) =4/'(0) =0, au'(1) + Bu’(1) =0,

by Krasnoselskii’s fixed-point theorem on a cone.
More recently, in [13] Ahmad has studied the existence of positive solutions for the fol-
lowing nonlinear BVP of third-order g-difference equations:

Dlu(t) =f(t,u(t), 0<t<l,
u(0) =0, D4u(0) =0, u(1)=0,

by Leray-Schauder degree theory and some standard fixed-point theorems.
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Motivated by the work above, in this paper, we will study the following BVP of nonlinear
singular third-order g-difference equations:

Dlu(t) + rat)f (u(t) =0, tel,

(11)
u(0) =0, D,u(0) =0, aD u(l) + ,BDqu(l) =0,

where A > 0 is a positive parameter, a : (0,1) — [0, o0) is continuous and 0 < fol a(t)dyt <
0o, f is a continuous function, I, = {¢" : n € N} U {0,1}, g € (0,1) is a fixed constant, and
o,>0,a+6>0.

Obviously, when g — 17, BVP (1.1) reduces to the standard BVP in [15].

Throughout this paper, we always suppose the following conditions to hold:

(C1) f e C([0,1],[0,+00));
(Cy) Ol,ﬁzO,a+ﬁ>0and%§q.

2 Preliminary results
In this section, firstly, let us recall some basic concepts of g-calculus [16, 17].

Definition 2.1 For 0 < g < 1, we define the g-derivative of a real-value function f as

fO-fap) i
Note that lim,_,1- D,f(t) = f'(t).
Definition 2.2 The higher-order g-derivatives are defined inductively as

Dyf()=f(®),  Djf(t)=D,D;'f(t), neN.

For example, Dq(tk ) = [k] qt"‘l, where £ is a positive integer and the bracket [k], = (g" -
1)/(g - 1). In particular, D,(£*) = (1 + g)t.

Definition 2.3 The g-integral of a function f defined in the interval [g, b] is given by
x oo
/ f®dgt=> x1-q"f(xq") - af (ag"), x€[a,b],
a n=0
and for a4 = 0, we denote
1f6)= [ fOdt =3 51-0g'f(sc"),
0 n=0
then

/abf(t) dqt = /Obf(t)dqt_/oaf(t)dqt

Similarly, we have

@ =f@),  Lf©)=LI]f@®, neN.
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Observe that

D,If(x) = f(x),

and if f is continuous at x = 0, then I,D,f (x) = f(x) — f(0).
In g-calculus, the product rule and integration by parts formula are

Dy(gh)(t) = Dyg(t)h(t) + g(qt)Dyh(t), 2.1)

fo f(OD,g(t)dyt = [f(t)g(t)]z - /0 D,f(t)g(qt)dy,t. (2.2)

Remark 2.1 In the limit ¢ — 17, the above results correspond to their counterparts in
standard calculus.

Definition 2.4 Let E be a real Banach space. A nonempty closed convex set P C E is called
a cone if it satisfies the following two conditions:

(i) x € P, A >0 implies \x € P;

(i) x € P, —x € P implies x = 0.

Theorem 2.1 (Krasnoselskii) [18] Let E be a Banach space and let K € E be a cone in E. As-
sume that Q1 and Qg are open subsets of E with 0 € Qq and Q1 C . Let T:KN(Q\Q1) —
K be a completely continuous operator. In addition, suppose either

(H1) 1 Tull < |lull, Yu e KN 32 and || Tu|| > ||ull, Yu € KN 32, or
(H2) I Tull < |lull, Yu e KN 032 and || Tul| > ||lu|, Vu € KN o2

holds. Then T has a fixed point in K N (2:\21).

Lemma 2.1 Let y € C[0,1], then the BVP

Df;u(t) +y(t)=0, tel, 2.3)
u(0) =0, D,u(0) =0, aD,u(l) + ,BDgu(l) =0, '
has a unique solution
1
)= [ Glesiano)ds
0
where
Glt.si) - 1 at? (l—gs)+ B2 —(t—gs)t—g*s)(@+ B), 0<s<t<l,
VT W e+ ) | a2 -gs) + 22, 0<t<s<1
Proof Integrate the g-difference equation from 0 to ¢, we get
t
Déu(t) = —/O y(s)dys + as. (2.4)

Integrate (2.4) from 0 to ¢, and change the order of integration, we have

Dyu(t) = - /t(t —gs)y(s)dys + ast + ay. (2.5)
0
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Integrating (2.5) from 0 to ¢, and changing the order of integration, we obtain

LOR o B2
u(t) = —/ 1res —qts |y(s)dys + ﬂt2 + a1t + ao, (2.6)
0 l+g l+g

where a5, a1, ag are arbitrary constants. Using the boundary conditions #(0) = 0, D,u(0) =
0, aDu(1) + BDu(1) = 0 in (2.6), we find that ay = a; = 0, and

1
— ﬂ( f (1= as)y()dys+ B f y(s)dqs)

Substituting the values of a,, a1, and 4y in (2.6), we obtain

LR 4 s
u(t) = —/0 <ﬁ - qts>y(s) dgs

t
m( /(1 QS)yS)qu+/3/ y(S)dqs)

aj =

= /0 1 G(t,59)y(s) dgs,
where
Glt.sq) = 1 {aﬂﬂ—qﬂ+ﬂﬂ—@—q@@—q%ﬂa+ﬂL 0<s<t<l,
(L+q)(o+B) | at?(1 - gs) + Bt2, 0<t<s<l.
This completes the proof. O

Remark 2.2 For ¢ — 1, equation (2.6) takes the form

1 t
u(t) = ——/ (t—s)zy(s) dgs + QtQ + ait + ag,
2 Jo 2

which is the solution of a classical third-order ordinary differential equation u”(¢) + y(¢) = 0
and the associated form of Green’s function for the classical case is

G(t,s) =

1 at*!(1-s)+ B2 —(t—s)?(a+B), 0<s<t<l,
2+ B) | at?(1-s) + Bt?, 0<t<s<l

It is obvious that, when (C,) holds, G(t,s;9) > 0, and G(¢,s;9) < G(1,s8;9), 0 <t,s <1.

Lemma 2.2 Let (Cy) hold, then G(t,s;q) > g(t)G(1,s;q) for 0 < t,s <1, where g(t) =
_4B 2
te.
5(a+p)

Proof If t <s, then

at?(1-gs) B> 2 ogs 2
G(t,59) _ Taep) * Taep _ L~ awpl
G(Q,s;,q) _«0-a) B 1— 24
Lsa)  Ghs + S awth
> 2 o o B, . 4B,

= ">
a+p a+ B
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If t > s, then
at?(1-gs) Bit> 124352 ags .2 3.2
G(t,S;q) _ (1+g)(a+p) + A+q)(a+B) ~  1+q +th _ _mt —qs T (1 + q)th
1,s; T a(l—gs) B L+¢3s2 T 98 362 4 (1
CLsa) iy * G~ 1 O wp ~ 05+ (Lra)gs
(1+q)gqt? - %tz -’ (+q)t* - ﬁtz — g?s?
> =
1 +q)gs - g°s> (1 +q)s - q*s*
2 o g2
ey 12 4B,

> te.
T 1l+q-¢*> " 5(a+p)

The proof is complete.

O

We consider the Banach space C; = C(I;,R) equipped with standard norm [u| =

sup{|u(t)|,t € I}, u € C;. Define a cone P by
P={ueCylu(t) > 0,ut) > g®)lul,t €I}

It is easy to see that if u € P, then ||| = u(1).
Define an integral operator T : P — C,; by

1
Tu(t) = A/ G(t,s; q)oz(s)f(u(s)) dgs, telj,uel.
0

(2.7)

Obviously, T is well defined and u € P is a solution of BVP (1.1) if and only if u is a fixed

point of T.

Remark 2.3 By Lemma 2.2, we obtain, for € P, Tu(t) > 0 on I, and

1 1
Tu(t) = A/O G(t,s;q)u(s)f(u(s)) dys > )»g(t)/O G(l,s;q)a(s)f(u(s)) dgs

> 2g(t)sup
telq

Thus T'(P) C P.

We adopt the following assumption:

1
/0 G(t,s; q)a(s)f(u(s)) dgs = g(t)|| Tull.

(C3) a(t) € C((0,1),R*) may be singular at £ = 0,1, 0 < fol a(t)dgt < +00, and 0 < fol G,

s;q)a(t) dgt < +00.
Lemma 2.3 Assume (Cy), (Cy), and (C3) hold, then T

Proof Define the functions a,(¢) for n > 2 by

inffa(s),a()), 0<t=<i
a,(t) = { a(t), L<r<1-4,
inf{a(t),a(l - %)}, 1- % <t<l

: P — P is completely continuous.
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Next, for n > 2, we define the operator T}, : P — P by

1
T,u(t) = A/ G(t,s; q)a,,(s)f(u(s)) dys, telj,uelP.
0
Obviously, T}, is completely continuous on P for any # > 2 by an application of the Ascoli-

Arzeld theorem. Denote Bx = {u € P: |u|| < K}. Then T, converges uniformly to T as
n — oo. In fact, for any ¢ € I, for each fixed K > 0 and u € B, from (C;), we obtain

1
’T,,u(t)— Tu(t)’ = ‘k/o Gl(t,s;q) [a(s —ay, s)lf( )
< A/Oﬁ GQ,s; q)’a(s) - a,,(s)[f(u(s)) dys
1_,
+)L‘/1 G(, s,q)|a(s) an(s)[f(u(s)) 45
"1
+ )»/1 X GQ1,s; q)|a(s) —a,,(s)[f(u(s)) dgs— 0 (n— 00),

where we have used the fact that G(¢,s;q) > 0, and G(¢,s;9) < G(1,s;9), 0 < t,s < 1. Hence,
T, converges uniformly to T as n — 00, and therefore T is completely continuous also.
This completes the proof. g

3 Main results
In this section, we will apply Krasnoselskii’s fixed-point theorem to the eigenvalue problem
(1.1). First, we define some important constants:

1 1
Ay = A G(1,s;q)als)g(s) dys, Bq=/0 G(,s;q)a(s) dys,

Fy = hm supf—) fo= 111’{)1 1nfM,
u—0+ u
F = lim supM, foo= lim infM.
U—+00 u Uu—+00 u
Here we assume that —— ,;f =0iffo =ocand 3= =0 if Fp =0 and — = 0 if fo = 0o and
W =0 lfFoo =0.

The main result of this paper is the following.

Theorem 3.1 Suppose that (C;), (Cy) and (C3) hold and A,fs > B;Fo. Then for each A €
(Aqlf B Fo) BVP (1.1) has at least one positive solution.

Proof By the definition of Fy, we see that there exists an /; > 0, such that f(u) < (Fy + &)u
for 0 <u <. If u € P with ||u| = [;, we have

1
| Tee|| = Tu(1) = A/O GQ,s; q)a(s)f(u(s)) dgs < AMFo + &) u||By.

Choose ¢ > 0 sufficiently small such that A(Fy + £)B; < 1. Then we obtain ||Tu|| < |«
Thus if we let Q; = {u € Cy|||ul| < L}, then || Tu|| < ||u|| for u € PN Q.
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From the definition of f,, we see that there exist an /3 > 0 and /5 > /3, such that f(u) >

(foo —&)u for u > l. Let I, > s, if u € P with ||u|| = /, we have
1
| Tl = Tu(l) = A/ G, s;q)als)f (u(s)) dgs
0

1
> )L./.o G(@1,s; q)a(s)g(s)f(u(s)) dys > Mfoo — &)llullA,.

Choose ¢ > 0 sufficiently small such that A(f,, — £)A; > 1. Then we have || Tu|| > ||lu|. Let
Qy = {u € Cylllull < lp}, then @ C Q, and || Tu| > ||u| for u € PN 3.

Condition (H;) of Krasnoselskii’s fixed-point theorem is satisfied. Hence, by Theo-
rem 2.1, the result of Theorem 3.1 holds. This completes the proof of Theorem 3.1. [

Theorem 3.2 Suppose that (Cy), (Ca) and (C3) hold and Ayfy > ByFs. Then for each A €
(Aq%, Bq%m), BVP (1.1) has at least one positive solution.
Proof 1t is similar to the proof of Theorem 3.1. d

Theorem 3.3 Suppose that (C,), (Cy) and (C3) hold and AB,f (u) < u for u € (0,+00). Then
BVP (1.1) has no positive solution.

Proof Assume to the contrary that u is a positive solution of BVP (1.1). Then

1 1 1
u(l) = )L/ G(l,s;q)a(s)f(u(s)) dys < B—/ G, s;q)als)u(s) dys
0 q JO
1 1
< &/ G(,s;q)als)dys = u(1).
B, Jo
This is a contradiction and completes the proof. d

Theorem 3.4 Suppose that (C,), (Cy) and (C3) hold and A A ,f (u) > u for u € (0, +00). Then
BVP (1.1) has no positive solution.

Proof 1t is similar to the proof of Theorem 3.3. O

4 Example
Consider the following BVP:

D3 u(t) + at3 %(5 +sinu) =0, tel,
2 4.1
u(0) = 0, D1u(0) =0, Dyu(l) + 3D%u(1) =0. 1)
2

Then Fy = 6, fo = 4, Fx = 60, foo = 40, and 4u < f(u) < 60u. By direct calculations,
we obtain A, = 0.110963 and B, = 0.271661. From Theorem 3.1 we see that if A €
(0.225299, 0.613510) then the problem (4.1) has a positive solution. From Theorem 3.3 we
see that if A < 0.061351 then the problem (4.1) has no positive solution. By Theorem 3.4
we see that if A > 2.252986 then the problem (4.1) has no positive solution.
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